Manager - Michael Fagan

Lang Guru - Elliott Morelli

Architect - Cherry Chu

PLT Final Presentation
Tester - Robert Becker

Introduction

Introduction

e Motivation
o (Game development
m Typical roadblocks
m Cross-platform

e Idea
o SDL integration
m Why SDL?
m SDL Uses & benefits
o XServer
o 2D games

Feature Highlights

Built-In Objects

Entity

Entity e;

e = new Entity(@, 0, “rock.png”):

Control array size

ne rMI-

Player p;

v
p = new Player(100, 100, “bird.png”, 6);

Function Usage

- Declaration

fun add int (int a, int b) { return a + b; }
- Global function call

add(1, 2);
- Object function call (Entity e)

e.changeEntityX(-10);

changeEntityX(e, -10);

Rungame Loop
e = new Entity(100, 100, “spaceship.png”);
X = 600;
runGame(x > 0; 1) {
X =X -1;

e.changeEntityX(-10);

SDL & Architecture

SDL

- Codegen enlists global C functions to interact with the SDL library

- C functions prepareScene() and presentScene() use SDL_SetRenderClear();
- Uses C struct “app” which stores SDL_Renderer, SDL_Window, int[] keyboard

- runGame() is responsible for rendering Entities and Players
- Calls to:
- SDL_LoadTexture()
- SDL_QueryTexture()
- SDL_RenderCopy()

- Luecifer links with SDL(C) at runtime

SDL

- Keyboard input
- Global fn: isKeyPressed(int key);
- Player controls array:

X Lucifer Renderer

p.controlPlayer(int speed);
- Running a Lucifer .exe that initializes
SDL

- A graphics window will open
- Any rendered textures will be visible at
their initial positions on SDL’s (x,y) plane

Architecture

Source code Scanner Parser

J

~

Target Code

I

'SDL(C) Global Functions

H AST
.
-
Code Generation H Semantic Checking

Testing

Testing

- Test suite is comprised of Pass (“test”) cases, Fail cases, and Visual cases
- We have over 90 non-visual tests to run, so these are all checked by our shell

script
- Each pass case’s output is checked against a .out file, while each Fail case’s error message is
tested against a .err file
- If a test’s result doesn’t match its corresponding file, the script prints a statement describing how
it failed, and saves the unexpected output and its difference from the expected output in the
current directory
- A more detailed report of test results are saved in the testall.log file that is generated afterwards

- Visual cases involve rendering a scene where the user can control what is
displayed, so these cases cannot reliably be fully tested through the script

- Instead, the shell script creates an executable file for each test, which can then be run on a
machine with an active X Server

Code Demo

fun checkCollision bool (Entity e, Player p) {
int pRightX;
int pDownY;
int eRightX;
int eDownyY;

pRightX = p.getPlayerX() + p.getPlayerHx() ;
pDownY = p.getPlayerY() + p.getPlayerHy() ;
eRightX = e.getEntityX () + e.getEntityHx() ;
eDownY = e.getEntityY () + e.getEntityHy () ;

if (p.getPlayerX () == pRightX || p.getPlayerY() == pDownY || e.getEntityX() ==
eRightX || e.getEntityY() == eDownY) {
return false;
}

if (p.getPlayerX () >= eRightX || e.getEntityX() >= pRightX) {
return false;
}

if (p.getPlayerY () >= eDownY || e.getEntityY() >= pDownY) {
return false;
}

return true;

llll;lIlllIllllllIllllllllIlIllllIllIIlll

fun main void () {

Player knight;
Entity e;
Entity e2;
Entity e3;

Entity winscreen;
running = true;
.. /*more globals*/

runGame (running; 60) {

knight.addPlayerHitBox (80, 80) ;
e.addEntityHitBox (100, 100) ;
e2.addEntityHitBox (120, 120) ;
e3.addEntityHitBox (120, 120)

A

collide = (checkCollision(e,knight) || checkCollision(e2,knight) ||
checkCollision(e3,knight)) ;

knight.controlPlayer (15) ;
/*...more loop logic.. but time for demo!*/

Thank you

