Lingo:
A prototypical functional language for linearity
polymorphism

Benjamin Flin, Jay Karp, Sophia Kolak

Agenda

o1k WN =

Lingo Overview

Linear Typing Motivation
Compiler Architecture
Testing

Demo

Future Work

Lingo

Linear Typing
Functional/Strong type
Algebraic Data Types
Pattern matching
Rank-n polymorphism
First class functions /
lambda calculus

C interoperability

Lingo in one Slide

Lingo in One Slide

External Function

Declaration e Type and Multiplicity
Polymorphism
print_int : Int -> Int;
Abstract Data Types data Stephen a #p where

i\ : a -p> Stephen a #p;
Edwards : Maybe a #p; . . .
Function Application
foo : Int -> Stephen Int #One
= \Xx. A @Int #0One Xx;

foo' m Multiplicities
: Stephen Int #0ne -> Int and Types
Cases + Pattern = case m of

Al ->1;
- =& Ug

Matching

main : Int = print_int (foo' (A @Int #One 1));

Motivation for Linear Typing

Want a type system which eliminates classes
of bugs violating resource protocols, i.e. double
free, closing file pointers, use after free, etc.

In order to do this, we need to characterize
whether/how a function will use or evaluate
its argument.

int main() {
char *foo = malloc(6);
*foo = "hello";

free(foo);

*foo = "hi";

}

[.Inear arrows

Extend the normal function arrow —

with a linear one -o.

Linear arrow from a -o b functions same

as a normal function arrow, with one (a —> b)
additional guarantee: if the output of an

application, is evaluated once, then the

input will be evaluated exactly once. —0 b)
Guarantee is enough to ensure that the (a

programmer follows a resource

protocols.
- f :a-ob
- u : a
- fu:b (¥ uis used linearly x)

Linearity Example

malloc : Int - (Mem — ()) — ()

free : (Mem —o ())

set : Int — Byte - Mem — (Mem —o ()) — ()
malloc 5 (Am. set 0 O (Am. free m))

A problem with compose

How should the following be typed?
compose : (b - c¢) »> (a—b) > a— c=Af.Ag.Axf (g x)

compose : (b —oc¢) = (a—ob) > a—oc=Af.Ag.Ax.1 (g x)
compose : (b - ¢c) > (a—ob) > a— c=Af.Ag.Ax.1 (g x)

compose : (b o c) = (a— b) > a— c=Af.Ag.Ax.1 (g x)

Need 4 different types for the same function body. We answer with linearity
polymorphism.

System F

Extends simply-typed lambda
calculus with a a new type of
abstraction for types denoted by
uppercase lambda.

Types can be applied and they

are substituted on the type-level.

Idea: Use this type system to
characterize polymorphism in
linearity

id = Aa. Xz : a).x : Va.a = «

foo = 1id Int O : Int

Compose again

compose : ¥,,p.¥,,q.¥aNbNc.(b —, c) > (a -, b) > a—

pg € = Nyp Apg.Aa.Ab.Ac.Af.Ag.Ax1 (g x)

print_int : Int -> Int;
succ x : Int -> Int = x + 1;
compose pgqabcfgx:

#p #q @ @b @ (b -p> c) -> (a -g> b) -> a -p*g> c = T (g X);
main : Int =

(compose #Unr #Unr @Int @Int @Int print_int succ) 100;

Demo compose

Typing rules

rel

Thrz:Aw{z1} "

Cao:Abt: B~ {2z pu U} TR«

b
TF Mz A)t: Ao B~ (U}

'-t:A—_B~{U} F'Fu: A~ {V}
'ttu:B~{U+nV}

app

'kt: A~ {U} pfreshfor T . CHt:Vp.A~ {U}
' Ap.t:Vp.A~ {U} HHans 'kt m: Aln/p] ~ {U}m.app

Compiler Architecture

Source Code Scanning/Parsing———p

Closed AST |-«—Closure Conversion.
Code generation

lle——————————

Source AST

ASM +
Library

Elaboration——— -

Core AST

Typechecking

Semantically

Checked
AST

Executable

Elaboration

- Source Ast -> Core Ast

- During elaboration, all syntax is
expanded into a form which the
typechecker can understand.

- This includes
- Converting all variable names to

Debruijn indices
Each lambda into their
corresponding abstractions
(value, type, or multiplicity)
Variable lists into nested
lambdas.

Typechecking

- Core ast -> semantically checked Sast with annotated types.

- linearity checking and type checking happens.

- Multiplicities are stripped out

- If there is a type or multiplicity mismatch of any sort, or any other type
related error, the typechecker will throw an error.

Monomorphization

- polymorphic / rank-n code ->
non-polymorphic / rank-1 code.

- LLVM doesn't have polymorphism! o000

- Our strategy: BoxT, a single type which
represents all polymorphic variables. id : @ a -> a = \a. \x. x;

- Convert to and from BoxT through the use of
new expressions Box and Unbox.

- Box:turns any value into a BoxT

- Unbox: turns any Box value back into a

main : Int = i1d @Int 0;

given type. id : BoxT -> BoxT = \X. X;

- Application to a lambda of type BoxT ->
BoxT boxes the argument and unboxes the main : Id = Unbox (id (Box 0));
result.

- Later down the pipeline during code gen,
this will result in a simple cast in LLVM.

Closure Conversion

- Mast -> performs lambda lifting
until everything is a top level
declaration

- Uniquely named lambdas

- Takes every free variable and
adds it to a closure environment

f = \x. \y. x

f = MkClosure f1 []
fl = \x []. MkClosure f2 [x]
f2 = \y. [x] x

Code Generation

- Conversion of Closure Converted Cast

-> llvm IR e

- Abstract data types become tagged Struif\tL{LZ;TInt {
unions, i.e. {164, i8* }. The first union 1.
parameter, the tag, tells us what S R
constructor is pointed to as the et it o
second parameter. ' Va{ug?ns;

- Everything becomes function 1;

application and building closures.
- External C Calls

Testing

- Testing run inside docker
container before every git o et e
. lingo_file = f'{src_file}.lingo'
Commlt 1lvm_file = f'{llvm_dir}/{src_file}.1llvm'

asm_file = f'{asm_dir}/{src_file}.s'
execu_file = f'{exec_dir}/{src_file}.exe'

_ . : 14 ted_out_file = f'{out_dir}/{src_file}.out'
Passing and Failing Tests e
diff_file = f'{diff_dir}/{src_file}.diff’

- Syntax log(f'{bcolors.WARNING} TESTING '

f'{lingo_file}... {bcolors.ENDC}")

- MemOI’Y AllOC&thIl try:get_llvm(lingo_file, Llvm_file)

build_asm(llvm_file, asm_file)
= Sdhe build_exec(asm_file, execu_file)
- Functlon CompOS].tlon run_exec(execu_file, out_file)
except RunException as err:
: _» —» _, stderr = err.tuple()
- POlymorphlsm with open(out_file, 'w') as file:

file.write(stderr.decode('utf-8'))

- BaSiC Operations diff_output(lingo_file, expected_out_file, out_file, diff_file)
- Abstract Data Types

Demo Safe File (Time Permitting)

Future Work

- Better monomorphization? (may be intractable)

- Qualified types and interfaces

- Replace current type checker with quantitative type theory (dependent
types + linear types)

- This actually may have been easier to implement in the long-run as types and terms
exist on the same level. Typechecking will become a little more costly, however.

- Garbage Collection / better memory management

- Fix bugs (hopefully there are no big ones:))
“A segfault a day keeps the sanity away” - Ben Flin

Thank You

Questions?

