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Lingo 

- Linear Typing
- Functional/Strong type
- Algebraic Data Types
- Pattern matching
- Rank-n polymorphism
- First class functions  / 

lambda calculus
- C interoperability



Lingo in one Slide

LINGO



Lingo in One Slide

Multiplicities 
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External Function 
Declaration

Function Application
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Motivation for Linear Typing

- Want a type system which eliminates classes 
of bugs violating resource protocols, i.e. double 
free, closing file pointers, use after free, etc.

- In order to do this, we need to characterize 
whether/how a function will use or evaluate 
its argument.



Linear arrows
- Extend the normal function arrow → 

with a linear one -o. 
- Linear arrow from a -o b functions same 

as a normal function arrow, with one 
additional guarantee: if the output of an 
application, is evaluated once, then the 
input will be evaluated exactly once. 

- Guarantee is enough to ensure that the 
programmer follows a resource 
protocols.
- f : a -o b
- u : a
- f u : b (* u is used linearly *)



Linearity Example



A problem with compose

How should the following be typed?

Need 4 different types for the same function body. We answer with linearity 
polymorphism.



System F

- Extends simply-typed lambda 
calculus with a a new type of 
abstraction for types denoted by 
uppercase lambda. 

- Types can be applied and they 
are substituted on the type-level.

- Idea: Use this type system to 
characterize polymorphism in 
linearity



Compose again



Demo compose



Typing rules



Compiler Architecture



Elaboration

- Source Ast -> Core Ast
- During elaboration, all syntax is 

expanded into a form which the 
typechecker can understand. 

- This includes 
- Converting all variable names to 

Debruijn indices
- Each lambda into their 

corresponding abstractions 
(value, type, or multiplicity) 

- Variable lists into nested 
lambdas.



Typechecking

- Core ast -> semantically checked Sast with annotated types. 
- linearity checking and type checking happens. 
- Multiplicities are stripped out
- If there is a type or multiplicity mismatch of any sort, or any other type 

related error, the typechecker will throw an error.



Monomorphization

- polymorphic / rank-n code -> 
non-polymorphic / rank-1 code. 

- LLVM doesn’t have polymorphism! 
- Our strategy: BoxT, a single type which 

represents all polymorphic variables.
- Convert to and from BoxT through the use of 

new expressions Box and Unbox. 
- Box: turns any value into a BoxT
- Unbox: turns any Box value back into a 

given type. 
- Application to a lambda of type BoxT -> 

BoxT boxes the argument and unboxes the 
result. 

- Later down the pipeline during code gen, 
this will result in a simple cast in LLVM.



Closure Conversion

- Mast -> performs lambda lifting 
until everything is a top level 
declaration

- Uniquely named lambdas
- Takes every free variable and 

adds it to a closure environment



Code Generation

- Conversion of Closure Converted Cast 
-> llvm IR

- Abstract data types become tagged 
unions, i.e. { i64, i8* }. The first 
parameter, the tag, tells us what 
constructor is pointed to as the 
second parameter. 

- Everything becomes function 
application and building closures. 

- External C Calls



Testing

- Testing run inside docker 
container before every git 
commit

- Passing and Failing Tests
- Syntax
- Memory Allocation
- Function Composition
- Polymorphism
- Basic Operations
- Abstract Data Types



Demo Safe File (Time Permitting)



Future Work

- Better monomorphization? (may be intractable)
- Qualified types and interfaces
- Replace current type checker with quantitative type theory (dependent 

types + linear types)
- This actually may have been easier to implement in the long-run as types and terms 

exist on the same level. Typechecking will become a little more costly, however.

- Garbage Collection / better memory management
- Fix bugs (hopefully there are no big ones :) )

- “A segfault a day keeps the sanity away” - Ben Flin



Thank You

Questions?


