
Lingo:
A prototypical functional language for linearity

polymorphism

Benjamin Flin, Jay Karp, Sophia Kolak

Agenda

1. Lingo Overview
2. Linear Typing Motivation
3. Compiler Architecture
4. Testing
5. Demo
6. Future Work

Lingo

- Linear Typing
- Functional/Strong type
- Algebraic Data Types
- Pattern matching
- Rank-n polymorphism
- First class functions /

lambda calculus
- C interoperability

Lingo in one Slide

LINGO

Lingo in One Slide

Multiplicities
and Types

Type and Multiplicity
Polymorphism

External Function
Declaration

Function Application

Abstract Data Types

Cases + Pattern
Matching

Motivation for Linear Typing

- Want a type system which eliminates classes
of bugs violating resource protocols, i.e. double
free, closing file pointers, use after free, etc.

- In order to do this, we need to characterize
whether/how a function will use or evaluate
its argument.

Linear arrows
- Extend the normal function arrow →

with a linear one -o.
- Linear arrow from a -o b functions same

as a normal function arrow, with one
additional guarantee: if the output of an
application, is evaluated once, then the
input will be evaluated exactly once.

- Guarantee is enough to ensure that the
programmer follows a resource
protocols.
- f : a -o b
- u : a
- f u : b (* u is used linearly *)

Linearity Example

A problem with compose

How should the following be typed?

Need 4 different types for the same function body. We answer with linearity
polymorphism.

System F

- Extends simply-typed lambda
calculus with a a new type of
abstraction for types denoted by
uppercase lambda.

- Types can be applied and they
are substituted on the type-level.

- Idea: Use this type system to
characterize polymorphism in
linearity

Compose again

Demo compose

Typing rules

Compiler Architecture

Elaboration

- Source Ast -> Core Ast
- During elaboration, all syntax is

expanded into a form which the
typechecker can understand.

- This includes
- Converting all variable names to

Debruijn indices
- Each lambda into their

corresponding abstractions
(value, type, or multiplicity)

- Variable lists into nested
lambdas.

Typechecking

- Core ast -> semantically checked Sast with annotated types.
- linearity checking and type checking happens.
- Multiplicities are stripped out
- If there is a type or multiplicity mismatch of any sort, or any other type

related error, the typechecker will throw an error.

Monomorphization

- polymorphic / rank-n code ->
non-polymorphic / rank-1 code.

- LLVM doesn’t have polymorphism!
- Our strategy: BoxT, a single type which

represents all polymorphic variables.
- Convert to and from BoxT through the use of

new expressions Box and Unbox.
- Box: turns any value into a BoxT
- Unbox: turns any Box value back into a

given type.
- Application to a lambda of type BoxT ->

BoxT boxes the argument and unboxes the
result.

- Later down the pipeline during code gen,
this will result in a simple cast in LLVM.

Closure Conversion

- Mast -> performs lambda lifting
until everything is a top level
declaration

- Uniquely named lambdas
- Takes every free variable and

adds it to a closure environment

Code Generation

- Conversion of Closure Converted Cast
-> llvm IR

- Abstract data types become tagged
unions, i.e. { i64, i8* }. The first
parameter, the tag, tells us what
constructor is pointed to as the
second parameter.

- Everything becomes function
application and building closures.

- External C Calls

Testing

- Testing run inside docker
container before every git
commit

- Passing and Failing Tests
- Syntax
- Memory Allocation
- Function Composition
- Polymorphism
- Basic Operations
- Abstract Data Types

Demo Safe File (Time Permitting)

Future Work

- Better monomorphization? (may be intractable)
- Qualified types and interfaces
- Replace current type checker with quantitative type theory (dependent

types + linear types)
- This actually may have been easier to implement in the long-run as types and terms

exist on the same level. Typechecking will become a little more costly, however.

- Garbage Collection / better memory management
- Fix bugs (hopefully there are no big ones :))

- “A segfault a day keeps the sanity away” - Ben Flin

Thank You

Questions?

