Graphene

Intro/Motivation

In most programming languages, when a user needs to utilize a graph-like data
type to perform an operation, they must expend non-trivial effort writing their
own types to represent suchs graphs and functions to utilize these.

Graphene intends to be a small, C-like language designed to alleviate this
annoyance. Graphene has C-like syntax with flexible built-in operators, types,
and functions that allow users to easily create graphs and implement a wide
variety of graph algorithms.

We started with microC’s compiler as our foundation and added/changed as
needed.

Eeatures - Primitive Types

e int- Standard 32 bit integer type, integers act as booleans as they doin C, 0 =
false, nonzero = true

o intx=23;
o 23

e float - Standard double floating point type.
o floatf=11;

o 11
e string - Immutable sequence of 8-bit characters, enclosed in double quotes.
o string s = “string”;
o “string”
e ints and floats are compared and passed by value, strings are compared by
value and passed by reference.

Eeatures - Built-In Types - List

Lists, declared with “list<t>”, are linked lists than can store any other Graphene type
list<int> |,

e Elements can be pushed to the front or back of lists
o l.push_back(20);
e Lists can be indexed using the [] operator
o 1[0} //=20
e Lists include pop_front/back functions, peek_front/back functions, and a size
field

o lsize;// =1

o lLpeek_front();// =20
o lLpop_front(); // =20
o |size;//=0

Eeatures - Built-In Types - Node

Nodes are wrapper types that can wrap any primitive Graphene type.
node<string> n;

e Type wrapped by node cannot be changed, but the value can be reassigned.
o nval=*node”; // nval stores a reference to “node”

e Nodes contain an integer id (used in graph type) and contain a list of edges.
o nid=2;
o n.edges.size;//=0

e Nodes are passed and compared by reference, a node variable can be

reassigned to reference a different node wrapping the same type.
o node<string> m;
o n=m;//0
O n=m;
o n=m;//1

Eeatures - Built-In Types - Edges

Edges are wrapper types that contain a weight (of wrapped type), a destination
node (wrapping the same type as the edge), and can be non-traversable.

e Edges are declared using special operators on nodes, with a default “weight”
of O (or 0.0 or *”) unless a weight is specified with [].

e Edge fields cannot be reassigned after initialization, but they can be accessed.
o e.weight; // wrapped type of e
o e.dest; // reference to node
o edt;//1if traversable, O if not

Eeatures - Built-In Types - Edge Operators

e Edge operators initialize all three fields of edges
0 node<int>n;
o node<int> m;
o n->m;// directed edge<int> from n to m, weight = O (default)
e The above operation creates two copies of the same edge, one traversable,

the other not, and stores them accordingly in both nodes’ edge lists.
o n.edges[0]t; /=1
o m.edges[O]t;//=0
o n.edges[O]weight == m.edges[O].weight; // 1
o n.edges[O].dest==m; //1
e All variants: ->, ->[weight], <-> (undirected), <->[weight]
e An expression “n ->m” evaluates to a reference to the node on the left (n), so

these operators can be chained, and they are right associative.
o n1->n2->n3->n4->..// creates edges matching the visual structure of the expression

Features - Built-In Types - Graphs

Graphs are wrapper types that wrap a list of nodes of matching type.

e Graphs contain a list of nodes
o graph<int>g;
o node<int>n; n.id =1; nval = 20;
o g.add_node(n); // where n is of type node<int>
e Nodes in graphs can be indexed by their id
o g;/=n
e Node list of a graph can be accessed.
o g.nodes[O]==([1]; //1
e Graphs have built-in functions that enable easier node creation
o g.add(0, 1); //creates a node with id =0, val =1and adds it to g

o g.contains(0); // 1if g contains a node with id =0
o g.contains_node(n); // 1if g contains node n

Misc. Features

e Parser supports chaining of accesses/indexes
o g.nodes[0O].edges|2].destval; // valid expression

e “Universal” print function
o print() can take one argument of any primitive type, and by extension can print any field in
Graphene.
o Can also be passed a node as its argument, converts to calls to print for each field (size of
edgelist)
e Improved variable declarations
o node<int>n,o,p,q,ns,t,uVv,..;
o or
o inti=0;

I”

Architectural Design

Source code (.gph) is scanned,
parsed, semantically check,
and translated to LLVM IR,
which is then linked with a C
library to produce the final
executable

Structs are not actually
supported, Graphene provides
the illusion of structs/objects

for its built-in types.
o l.push_back(0);
o parser outputs: push_back(l, O)

(0] -

Source Code

EXE

Executable

Pom—

Scanner

Parser

Linking

Code
Generation

\J

AST

Y

C Library

Semantic
Checking

C Library

The C library is called from
codegen to abstract some of
the graph logic away from
OCaml

Void pointers are sent between
the files and casted
accordingly in codegen where
we have the types from the
sast

struct list

{

};

int size;
struct list_element *head;

struct edge

{

};

void *weight;
struct node *dest;
dinte e

struct node

{

};

int id;
void *val;
struct list *edges;

struct graph

{

};

struct list *nodes;
struct node *root;

Future Work

Kill memory leaks

Structs

Support editing of graphs/nodes
null

break;

continue;

foreach

Demo Gode

Graph:
S7: ¢ —e@
e
e — Qe e—1t+Qe
e—CQt+e : e— 1€+ el e—CQt+e
S0:e— Q¢ SZ:e—-t@ S4:e— @t
t—@ldx ¢ Tt t—edxt
t—eld t— €ld
Id / e
o, i~ 1dEx [S6: e—t+eq]
t—I1dg
Ik
t—Id*Qt "
S3:r—@ldx¢ S5: t—Id* @
t—Qld

Stacks:
Stack Input Action
O | 1d«1d+1ds Shift, goto 1
Id
0 xId+1d$ Shift, goto 3
0 Id *
1 3 | I1d+Id$ Shift, goto 1
0 Id * Id
131 | +1ds$ Reduce 4
0 Id * ¢
135 | +1ds Reduce 3
t
02 +1d$ Shift, goto 4

