
Graphene

Intro/Motivation
● In most programming languages, when a user needs to utilize a graph-like data

type to perform an operation, they must expend non-trivial effort writing their
own types to represent suchs graphs and functions to utilize these.

● Graphene intends to be a small, C-like language designed to alleviate this
annoyance. Graphene has C-like syntax with flexible built-in operators, types,
and functions that allow users to easily create graphs and implement a wide
variety of graph algorithms.

● We started with microC’s compiler as our foundation and added/changed as
needed.

Features - Primitive Types
● int - Standard 32 bit integer type, integers act as booleans as they do in C, 0 =

false, nonzero = true
○ int x = 23;
○ 23;

● float - Standard double floating point type.
○ float f = 1.1;
○ 1.1;

● string - Immutable sequence of 8-bit characters, enclosed in double quotes.
○ string s = “string”;
○ “string”

● ints and floats are compared and passed by value, strings are compared by
value and passed by reference.

Features - Built-In Types - List
Lists, declared with “list<t>”, are linked lists than can store any other Graphene type

list<int> l;

● Elements can be pushed to the front or back of lists
○ l.push_back(20);

● Lists can be indexed using the [] operator
○ l[0]; // = 20

● Lists include pop_front/back functions, peek_front/back functions, and a size
field
○ l.size; // = 1
○ l.peek_front(); // = 20
○ l.pop_front(); // = 20
○ l.size; // = 0

Features - Built-In Types - Node
Nodes are wrapper types that can wrap any primitive Graphene type.

node<string> n;

● Type wrapped by node cannot be changed, but the value can be reassigned.
○ n.val = “node”; // n.val stores a reference to “node”

● Nodes contain an integer id (used in graph type) and contain a list of edges.
○ n.id = 2;
○ n.edges.size; // = 0

● Nodes are passed and compared by reference, a node variable can be
reassigned to reference a different node wrapping the same type.
○ node<string> m;
○ n == m; // 0
○ n = m;
○ n == m; // 1

Features - Built-In Types - Edges
Edges are wrapper types that contain a weight (of wrapped type), a destination
node (wrapping the same type as the edge), and can be non-traversable.

● Edges are declared using special operators on nodes, with a default “weight”
of 0 (or 0.0 or “”) unless a weight is specified with [].

● Edge fields cannot be reassigned after initialization, but they can be accessed.
○ e.weight; // wrapped type of e
○ e.dest; // reference to node
○ e.t; // 1 if traversable, 0 if not

Features - Built-In Types - Edge Operators
● Edge operators initialize all three fields of edges

○ node<int> n;
○ node<int> m;
○ n -> m; // directed edge<int> from n to m, weight = 0 (default)

● The above operation creates two copies of the same edge, one traversable,
the other not, and stores them accordingly in both nodes’ edge lists.
○ n.edges[0].t; // = 1
○ m.edges[0].t; // = 0
○ n.edges[0].weight == m.edges[0].weight; // 1
○ n.edges[0].dest == m; // 1

● All variants: ->, ->[weight], <-> (undirected), <->[weight]
● An expression “n -> m” evaluates to a reference to the node on the left (n), so

these operators can be chained, and they are right associative.
○ n1 -> n2 -> n3 -> n4 -> … // creates edges matching the visual structure of the expression

Features - Built-In Types - Graphs
Graphs are wrapper types that wrap a list of nodes of matching type.

● Graphs contain a list of nodes
○ graph<int> g;
○ node<int>n; n.id = 1; n.val = 20;
○ g.add_node(n); // where n is of type node<int>

● Nodes in graphs can be indexed by their id
○ g[1]; // = n

● Node list of a graph can be accessed.
○ g.nodes[0] == g[1]; // 1

● Graphs have built-in functions that enable easier node creation
○ g.add(0, 1); //creates a node with id = 0, val = 1 and adds it to g
○ g.contains(0); // 1 if g contains a node with id = 0
○ g.contains_node(n); // 1 if g contains node n

Misc. Features
● Parser supports chaining of accesses/indexes

○ g.nodes[0].edges[2].dest.val; // valid expression

● “Universal” print function
○ print() can take one argument of any primitive type, and by extension can print any field in

Graphene.
○ Can also be passed a node as its argument, converts to calls to print for each field (size of

edgelist)

● Improved variable declarations
○ node<int> n, o, p, q, r, s, t, u, v, …;
○ or
○ int i = 0;

Architectural Design
● Source code (.gph) is scanned,

parsed, semantically check,
and translated to LLVM IR,
which is then linked with a C
library to produce the final
executable

● Structs are not actually
supported, Graphene provides
the illusion of structs/objects
for its built-in types.
○ l.push_back(0);
○ parser outputs: push_back(l, 0)

C Library
● The C library is called from

codegen to abstract some of
the graph logic away from
OCaml

● Void pointers are sent between
the files and casted
accordingly in codegen where
we have the types from the
sast

Future Work
● Kill memory leaks
● Structs
● Support editing of graphs/nodes
● null
● break;
● continue;
● foreach

Demo Code
Graph: Stacks:

