Digo

Distrbuted Golang

About the Team

Sida Huang, System Architect
® >ldaniuang >y L5 sdh21
[}

e Wengian Yan, Manager ‘ wy2249 Wengian Yan

e Yufan Chen, Language Guru @ xiaomi388

e Hanxiao Lu, Test Designer Ihxxh Hanxiao Lu

Feb 14, 2021- Apr 27, 2021 Contributions: Commits ~

Contributions to main, excluding merge commits and bot accounts

About the Team :

40

20

a wy2249 / DigO & Unwatc 0

Feb 21 Feb 28 Mar 07 Mar 14 Mar 21 Mar 28 Apr 04 Apr 11 Apr 18 Apr2s

<> Code () Issues 2 1 Pull requests (») Actions [7]] Projects 4 71 Wiki ©) Security |~ Insights 52 Set

¥ main ~ ¥ 7branches © 0tags Go to file Add file ~

:g: sdh21 fix typo v af44blc 6 hours ago @ 330 commits
M circleci Update config.yml 2 days ago
9 async-remote-lib fix worker gc leak & add gc leak check in test script yesterday
M demo fix typo 6 hours ago
M digo-compiler Update parser.mly 9 hours ago
0 digo-linker add demo 14 hours ago
M digo-test fix typo 6 hours ago
(] .gitignore update tests & fix bugs 3 days ago
[% .gitmodules add test framework & finish network::Server::Start 2 months ago
[Makefile fix slice gc bugs 3 days ago
[README.md fixed all warnings in semant 11 hours ago
% run-master.sh add demo 14 hours ago

About the Team

Compiler . s
Q Filter cards + Addcards [] Fullscre
Updated 21 hours ago
0 ToDo + e 2 InProgress + oo 0 InReview + e 13 Done +
(@ Test suite cases design (failed at some normal test cases
#24 opened by wy2249 #53 opened by xiaomi388

Highest Priority J&

urgent i @]

@ more precise semantic error report . 1% add read function to support readfile
#46 opened by wy2249 [in demo
#52 opened by wy2249

< Changes approved

1 support readfile in compiler e
#43 opened by wy2249

@ support multi-type print function
#32 opened by wy2249 1

O O struggling to find semantic error in word count (Urgent. Q2
#84 opened 18 hours ago by sdh21

O O still connection refused
#83 opened 18 hours ago by sdh21

@ 9 (mi]

0 O can't use future as slice type or function parameter 191 ‘ QD7
#68 opened 2 days ago by xiaomi388

O ©® more precise semantic error report (1 (e |
#46 opened 8 days ago by wy2249

0 O Test suite cases design \Urgent . [mh}
#24 opened 22 days ago by wy2249

O © pigo library API o2

#18 opened on Mar 27 by sdh21

About the Team

-o- Commits on Apr 26, 2021
fix worker gc leak & add gc leak check in test script
:u': sdh21 committed 7 minutes ago X

solve slice declare

feiyun lu authored and feiyun lu committed 35 minutes ago v/

Merge branch 'main’ of https://github.com/wy2249/Digo into main
9 xiaomi388 committed 2 hours ago v/

tweak log at connection fail
Q xiaomi388 committed 2 hours ago

update wordcount & add tests
2L sdh21 committed 2 hours ago v/

D Digo 22 Invite team

Filters

&3 Everyone's Pipelines ~

PIPELINE

Digo 60

Digo 59

Digo 58

Digo 57

Jobs

Jobs

Jobs

Jobs

STATUS

@ build 74

@ build 73

@ build 72

@ build 71

[pigo

WORKFLOW

workflow

workflow

workflow

workflow

Q Edit Config

P AllBranches - v

BRANCH / COMMIT

main
ea0a1f8 fix worker gc leak & add gc leak check in test
script

main
9fbfddd solve slice declare

main
2321292 Merge branch 'main’ of
https://github.com/wy2249/Digo into main

main
cd81e1f update wordcount & add tests

&2 Run Pipeline

START

6m ago

34m ago

2h ago

2h ago

DURATION

m 43s

m 38s

m19s

m 15s

m 6s

m3s

m9s

m 5s

Q Project Settings

Auto-expand @D

C Rerun

C Rerun

C Rerun

C Rerun

ACTIONS

(O

(O

() e

(G

Language intro

Digo is an imperative, statically typed language inspired by Golang, but with
distributed routines to support master-worker model in distributed system.

network response model? thread management? concurrency?

Not any more. Digo handles them for you!

e With Digo, users can focus on only writing necessary functions and Digo can hide everything
else.

e Users only need to give function annotations (async/ async remote) to run the function
asynchronously either locally or on workers

continued overview

e Go-like syntax to accelerate learning curve for golangers (short declare, multi
values, slice, etc.)

e Hides socket, threading, and network packet serialization/deserialization

e Master distributes work across slave nodes or another local thread (distributed
routine)

e Automatic garbage collection (reference count analysis)

Language Features

Basic Syntax

The basic syntax of Digo follows Golang syntax.

For basic data types, Digo supports int, float, bool, string, slice. The semantics of them are totally same with those in
Golang.
func gcd(a int, b int) int {
For basic control flows, Digo supports if statement and for loop statement. for (ja !=b;) {
if (a > b) {
a=a-b>b
} else {

func foo(s []lstring) []lstring {
s2 := append(s, "haha")
return s2

hy

func digo_main() void {
a := [Istring {"hello", "word"}
b := foo(a)
println("%d",len(a))
println("%d",len(b))
println("%s", al[1])
println("%s", b[2])

return a

hy

func digo_main() void {
println("%d", gcd(2,14))
println("%d", gcd(3,15))
println("%d", gcd(99,121))
¥

Async/Await (Distributed Routines)

An async function defines a job to be performed in a local worker or a remote worker.
Async function returns a future object denoting the state of a job.

Await a future object retrieves the return result from the worker. func digo_main() void {
func digo_main() void { e
we 1.0
e 0] := try_return_one(a)
try_return_one(a) := try_return_two(a,b)
:= try_return_two(a,b) := await e
, 9 := await e

println("%d", f)

println("%d", f) .
println("%f", g)

println("%f", g)

async func try_return_one(a int) int { async remote func try_return_one(a int) int {
return a+10

return a+1@
}

async func try_return_two(a int,b float) (int,float) {
async remote func try_return_two(a int,b float) (int,float) {

return a+10,b+20.0 return a+10,b+20.0

Garbage Collection

Values of type slice, string and future are allocated on the heap, therefore Digo will do
garbage collection towards them by reference counting.

: Ox1c5d3f0 is created
: 0x1c5d360 is created
~ ~ = : ref cnt of String Object, 0x1c5d360 is incremented to 2
func digo _main() void { : 0x1c5d5b@ is created
. = o= = o o - : Ox1c5d7a0 is created
a .= []Str‘lng{ sl > s2 > s3 } : ref cnt of String Object, Ox1c5d7a@ is incremented to 2
: 0x1c5d860 is created
: Ox1c5dal® is created
: ref cnt of String Object, ©x1c5dal@® is incremented to 2
'f:, g = 'f:l(a, a) : Ox1c5d6de %s created
: Ox1c5ddde is created
: ref cnt of Slice Object, O0x1c5ddu@ is incremented to
: ref cnt of Slice Object, O0x1c5ddu® is incremented to
: ref cnt of Slice Object, 0x1lc5ddd@ is decremented to
5 i S S : ref cnt of Slice Object, 0x1lc5dddU@® is decremented to
func fl1l(a []strlng, b []string) ([]string, []string) { : ref cnt of Slice Object, ©x1c5ddu® is decremented to
: ref cnt of Slice Object, 0x1c5d6d0® is decremented to
return b, a : ref cnt of String Object, 0x1lc5dal® is decremented to 1
: ref cnt of Slice Object, 0x1c5d5b@ is decremented to ©
: ref cnt of String Object, 0x1c5d7a@ is decremented to 1
: ref cnt of Slice Object, 0x1c5d860 is decremented to ©
: ref cnt of String Object, ©x1c5d360 is decremented to 1
: ref cnt of Slice Object, 0x1c5d3f0 is decremented to ©
: ref cnt of String Object, 0x1c5d360 is decremented to ©
: ref cnt of String Object, 0x1c5d7a@ is decremented to ©
: ref cnt of String Object, 0x1c5dal@® is decremented to 0

Short Declaration (Type Inference)

The := short assignment statement can be used in place of a var declaration
with implicit type.

Short declaration also supports multiple values declaration

func digo_main() void {
a, b, c := 4, 5
println("%d", a)
println("%d", b)

printin("%d". c)

Multiple Return Values

Functions can return multiple values

func foo() (int, int) {
return 3, 4

}

func digo_main() void {

a, b := foo()
println("%d %d", a, b)

Implementation details

Remote Digo function call

Implementation details

.
Async Remote Service J

Master
e

Issues a remote
function call

User Digo
Program

Implementation details

Async function name & serialized parameters

s

Async Remote Service Async Remote Service
Master Worker
_
Issues a remote
function call

User Digo
Program

Implementation details

Async function name & serialized parameters

-
Async Remote Service} {Async Remote Service ‘]

Master Worker

Where

Issues a remote ? iS th iS
function call . fU nCt|0n

User Digo User Digo D
Program Program i

Implementation details

If we want this to be done at compile time......

The Digo program needs to provide an interface, with which the Worker can
call a digo function by its name (or by function id).

We do not want to make the code generator too complex, so we have an
abstraction layer called Digo Linker to provide this interface and hide all the
complexity.

Implementation details

The Digo Linker will also hide the Serialization and Deserialization,

An example of LLVM IR generated by Digo Linker:

Implementation details

192 define i32 @linker_call_function(i32 %func_id, i8* %arg, i32 %arg_len, i8** %result, i32* %result_len) {
193 call void @Debug_Real_LinkerCallFunction(i32 %func_id, i32 %arg_len)

194 %wrapper = call i8* @SW_CreateWrapper()

195 %extractor = call i8* @SW_CreateExtractor(i8* %arg, i32 %arg_len)

196 switch i32 %func_id, label %if.nomatch [

iz;] i32 9, label %if.funce } Jump Table

199

200 if.funce: ; preds = %@

201 %argd_© = call i8* @SW_ExtractSlice(i8* %extractor) ° ° .

202 HargoLt = call is* GSExtractslice(is* Aextractor) } Argument de-serialization

203 %arg@_2 = call i8* @SW_ExtractSlice(i8* %extractor)

204 %aggResulto® = call { i8*, ig8*, i8* } @f1(i8* %argo_o, i8* %argod_1, i8* %arge_2)

205 %aggResulte_tmp_© = extractvalue { i8*%, i8*, i8* } %aggResulto, ©

206 call void @SW_AddSlice(i8* %wrapper, i8* %aggResult@_tmp_0)

207 %aggResulto_tmp_1 = extractvalue { i8%*, i8*, i8* } %aggResulto, 1 . o o
208 call void @SW_AddSlice(i8* %wrapper, i8* %aggResulto_tmp_1) Retu rn Value Serlallzatlon
209 %aggResulto_tmp_2 = extractvalue { i8%, i8*, i8* } %aggResulto, 2

210 call void @SW_AddSlice(i8* %wrapper, i8* %aggResulto_tmp_2)

214, call void @SW_GetAndDestroy(i8* %wrapper, i8** %result, i32* %result_len)

212 call void @__GC_DecRef(i8* %aggResulto_tmp_0)

213 call void @__GC_DecRef(i8* %aggResulte_tmp_1)

214 call void @__GC_DecRef(i8* %aggResult@_tmp_2)

215 call void @__GC_DecRef(i8* %arge_o)

216 call void @__GC_DecRef(i8* %arge_1)

217 call void @__GC_DecRef(i8* %argo_2)

218 br label %if.end

Implementation details

N

used by

|

Async abstraction by
Digo Linker

Digo Compiler

<-used by—

Async Remote Library

Serialization Library

used by

Object Library
(String/Slice)

-

inherited by—|

GC lnterface\

Implementation details

Digo Soruce : SAST
File Scanner il Parser il %ehrgizgf Codegen el
N T T
Interface T
Interface: . X
Digo Linker
Interface
. LLVM IR LLVM IR
Async Remote Library Clang with async/remote
Bt call supported
Y D d
P y LLVM IR epencency,
— Serialization Library Clang > LLVM Link LLVM IR
o 7 ™ "
: — LLVM IR
Object & Util Library Clang
A LLVM
C++ Library
E tabl Object Fill
ARG System Linker IRERENe

Test suite

e Divide test cases into 8 categories and each one is responsible for a
particular feature of digo

(Async, Basic, ControlFlow, GC, Remote, Semantic, Syntax, Utils)

e An automated test script that compares results with expected value.

Future work

e More flexibility: support future object being passed as function parameter.

e Digo Objects in different language: current in C++, maybe in digo lang

e More complicated GC: Current GC is simple...

e More control flow: break and continue

e More built-in functions: Gather: await all future objects in a future object list.

e Optimizer: Delete unnecessary llvm command produced by compiler and merge multiple

commands into one

Demo

“Hello world” in distributed system: word count!

