
Digo
Distrbuted Golang

About the Team
● Sida Huang, System Architect

● Wenqian Yan, Manager

● Yufan Chen, Language Guru

● Hanxiao Lu, Test Designer

About the Team

About the Team

About the Team

 Language intro
Digo is an imperative, statically typed language inspired by Golang, but with
distributed routines to support master-worker model in distributed system.

network response model? thread management? concurrency?
Not any more. Digo handles them for you!

● With Digo, users can focus on only writing necessary functions and Digo can hide everything
else.

● Users only need to give function annotations (async/ async remote) to run the function
asynchronously either locally or on workers

continued overview
● Go-like syntax to accelerate learning curve for golangers (short declare, multi

values, slice, etc.)
● Hides socket, threading, and network packet serialization/deserialization
● Master distributes work across slave nodes or another local thread (distributed

routine)
● Automatic garbage collection (reference count analysis)

Language Features

Basic Syntax
The basic syntax of Digo follows Golang syntax.

For basic data types, Digo supports int, float, bool, string, slice. The semantics of them are totally same with those in
Golang.

For basic control flows, Digo supports if statement and for loop statement.

Async/Await (Distributed Routines)
An async function defines a job to be performed in a local worker or a remote worker.

Async function returns a future object denoting the state of a job.

Await a future object retrieves the return result from the worker.

Garbage Collection
Values of type slice, string and future are allocated on the heap, therefore Digo will do
garbage collection towards them by reference counting.

Short Declaration (Type Inference)
The := short assignment statement can be used in place of a var declaration
with implicit type.

Short declaration also supports multiple values declaration

Multiple Return Values
Functions can return multiple values

Implementation details
Remote Digo function call

Implementation details

Implementation details

Implementation details

Implementation details
If we want this to be done at compile time……

The Digo program needs to provide an interface, with which the Worker can
call a digo function by its name (or by function id).

We do not want to make the code generator too complex, so we have an
abstraction layer called Digo Linker to provide this interface and hide all the
complexity.

Implementation details
The Digo Linker will also hide the Serialization and Deserialization,

An example of LLVM IR generated by Digo Linker:

Implementation details

Argument de-serialization

Jump Table

Return Value serialization

}
}

}

Implementation details

Implementation details

Test suite
● Divide test cases into 8 categories and each one is responsible for a

particular feature of digo

(Async, Basic, ControlFlow, GC, Remote, Semantic, Syntax, Utils)

● An automated test script that compares results with expected value.

Future work
● More flexibility: support future object being passed as function parameter.

● Digo Objects in different language: current in C++, maybe in digo lang

● More complicated GC: Current GC is simple…

● More control flow: break and continue

● More built-in functions: Gather: await all future objects in a future object list.

● Optimizer: Delete unnecessary llvm command produced by compiler and merge multiple

commands into one

Demo

“Hello world” in distributed system: word count!

