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Language intro

Digo is an imperative, statically typed language inspired by Golang, but with
distributed routines to support master-worker model in distributed system.

network response model? thread management? concurrency?

Not any more. Digo handles them for you!

e With Digo, users can focus on only writing necessary functions and Digo can hide everything
else.

e Users only need to give function annotations (async/ async remote) to run the function
asynchronously either locally or on workers



continued overview

e Go-like syntax to accelerate learning curve for golangers (short declare, multi
values, slice, etc.)

e Hides socket, threading, and network packet serialization/deserialization

e Master distributes work across slave nodes or another local thread (distributed
routine)

e Automatic garbage collection (reference count analysis)



Language Features




Basic Syntax

The basic syntax of Digo follows Golang syntax.

For basic data types, Digo supports int, float, bool, string, slice. The semantics of them are totally same with those in
Golang.
func gcd(a int, b int) int {
For basic control flows, Digo supports if statement and for loop statement. for (ja !=b;) {
if (a > b) {
a=a-b>b
} else {

func foo(s []lstring) []lstring {
s2 := append(s, "haha")
return s2

hy

func digo_main() void {
a := [Istring {"hello", "word"}
b := foo(a)
println("%d",len(a))
println("%d",len(b))
println("%s", al[1])
println("%s", b[2])

return a

hy

func digo_main() void {
println("%d", gcd(2,14))
println("%d", gcd(3,15))
println("%d", gcd(99,121))
¥




Async/Await (Distributed Routines)

An async function defines a job to be performed in a local worker or a remote worker.
Async function returns a future object denoting the state of a job.

Await a future object retrieves the return result from the worker. func digo_main() void {
func digo_main() void { e
we 1.0
e 0] := try_return_one(a)
try_return_one(a) := try_return_two(a,b)
:= try_return_two(a,b) := await e
, 9 := await e

println("%d", f)

println("%d", f) .
println("%f", g)

println("%f", g)

async func try_return_one(a int) int { async remote func try_return_one(a int) int {
return a+10

return a+1@
}

async func try_return_two(a int,b float) (int,float) {
async remote func try_return_two(a int,b float) (int,float) {

return a+10,b+20.0 return a+10,b+20.0




Garbage Collection

Values of type slice, string and future are allocated on the heap, therefore Digo will do
garbage collection towards them by reference counting.

: Ox1c5d3f0 is created
: 0x1c5d360 is created
~ ~ = : ref cnt of String Object, 0x1c5d360 is incremented to 2
func digo _main() void { : 0x1c5d5b@ is created
. = o= = o o - : Ox1c5d7a0 is created
a .= []Str‘lng{ sl > s2 > s3 } : ref cnt of String Object, Ox1c5d7a@ is incremented to 2
: 0x1c5d860 is created
: Ox1c5dal® is created
: ref cnt of String Object, ©x1c5dal@® is incremented to 2
'f:, g = 'f:l(a, a) : Ox1c5d6de %s created
: Ox1c5ddde is created
: ref cnt of Slice Object, O0x1c5ddu@ is incremented to
: ref cnt of Slice Object, O0x1c5ddu® is incremented to
: ref cnt of Slice Object, 0x1lc5ddd@ is decremented to
5 i S S : ref cnt of Slice Object, 0x1lc5dddU@® is decremented to
func fl1l(a []strlng, b []string) ([]string, []string) { : ref cnt of Slice Object, ©x1c5ddu® is decremented to
: ref cnt of Slice Object, 0x1c5d6d0® is decremented to
return b, a : ref cnt of String Object, 0x1lc5dal® is decremented to 1
: ref cnt of Slice Object, 0x1c5d5b@ is decremented to ©
: ref cnt of String Object, 0x1c5d7a@ is decremented to 1
: ref cnt of Slice Object, 0x1c5d860 is decremented to ©
: ref cnt of String Object, ©x1c5d360 is decremented to 1
: ref cnt of Slice Object, 0x1c5d3f0 is decremented to ©
: ref cnt of String Object, 0x1c5d360 is decremented to ©
: ref cnt of String Object, 0x1c5d7a@ is decremented to ©
: ref cnt of String Object, 0x1c5dal@® is decremented to 0




Short Declaration (Type Inference)

The := short assignment statement can be used in place of a var declaration
with implicit type.

Short declaration also supports multiple values declaration

func digo_main() void {
a, b, c := 4, 5
println("%d", a)
println("%d", b)

printin("%d". c)




Multiple Return Values

Functions can return multiple values

func foo() (int, int) {
return 3, 4

}

func digo_main() void {

a, b := foo()
println("%d %d", a, b)




Implementation details

Remote Digo function call
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Implementation details

Async function name & serialized parameters
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Implementation details

Async function name & serialized parameters
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Implementation details

If we want this to be done at compile time......

The Digo program needs to provide an interface, with which the Worker can
call a digo function by its name (or by function id).

We do not want to make the code generator too complex, so we have an
abstraction layer called Digo Linker to provide this interface and hide all the
complexity.



Implementation details

The Digo Linker will also hide the Serialization and Deserialization,

An example of LLVM IR generated by Digo Linker:



Implementation details

192 define i32 @linker_call_function(i32 %func_id, i8* %arg, i32 %arg_len, i8** %result, i32* %result_len) {
193 call void @Debug_Real_LinkerCallFunction(i32 %func_id, i32 %arg_len)

194 %wrapper = call i8* @SW_CreateWrapper()

195 %extractor = call i8* @SW_CreateExtractor(i8* %arg, i32 %arg_len)

196 switch i32 %func_id, label %if.nomatch [

iz; ] i32 9, label %if.funce } Jump Table

199

200 if.funce: ; preds = %@

201 %argd_© = call i8* @SW_ExtractSlice(i8* %extractor) ° ° .

202 HargoLt = call is* GSExtractslice(is* Aextractor) } Argument de-serialization

203 %arg@_2 = call i8* @SW_ExtractSlice(i8* %extractor)

204 %aggResulto® = call { i8*, ig8*, i8* } @f1(i8* %argo_o, i8* %argod_1, i8* %arge_2)

205 %aggResulte_tmp_© = extractvalue { i8*%, i8*, i8* } %aggResulto, ©

206 call void @SW_AddSlice(i8* %wrapper, i8* %aggResult@_tmp_0)

207 %aggResulto_tmp_1 = extractvalue { i8%*, i8*, i8* } %aggResulto, 1 . o o
208 call void @SW_AddSlice(i8* %wrapper, i8* %aggResulto_tmp_1) Retu rn Value Serlallzatlon
209 %aggResulto_tmp_2 = extractvalue { i8%, i8*, i8* } %aggResulto, 2

210 call void @SW_AddSlice(i8* %wrapper, i8* %aggResulto_tmp_2)

214, call void @SW_GetAndDestroy(i8* %wrapper, i8** %result, i32* %result_len)

212 call void @__GC_DecRef(i8* %aggResulto_tmp_0)

213 call void @__GC_DecRef(i8* %aggResulte_tmp_1)

214 call void @__GC_DecRef(i8* %aggResult@_tmp_2)

215 call void @__GC_DecRef(i8* %arge_o)

216 call void @__GC_DecRef(i8* %arge_1)

217 call void @__GC_DecRef(i8* %argo_2)

218 br label %if.end
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Test suite

e Divide test cases into 8 categories and each one is responsible for a
particular feature of digo

(Async, Basic, ControlFlow, GC, Remote, Semantic, Syntax, Utils)

e An automated test script that compares results with expected value.



Future work

e More flexibility: support future object being passed as function parameter.

e Digo Objects in different language: current in C++, maybe in digo lang

e More complicated GC: Current GC is simple...

e More control flow: break and continue

e More built-in functions: Gather: await all future objects in a future object list.

e Optimizer: Delete unnecessary llvm command produced by compiler and merge multiple

commands into one



Demo

“Hello world” in distributed system: word count!



