ARBOL Programming
Language

A High-Level Programming Language that Provides Easy Access for Tree Manipulation

Andrea Mary McCormick {amm2497}
Anthony Palmeira Nascimento {asp2199}

Derek Hui Zhang {dhz2104}

26 April, 2021

Table of Contents

1. Introduction

1.1 Inspiration

1.2 Overview

1.3 Program Execution

1.4 ARBOL Code Example

2. Language Reference Manual

2.1 Lexical Conventions
2.1.1 Comments
2.1.2 Identifiers (Names)
2.1.3 Keywords
2.1.4 Literals
i. Integer Literal
ii. Float Literal
1ii. Boolean Literal
iv. Char Literal
v. String Literal
2.2 Punctuation
2.3 Operators
2.4 Whitespace

3. Types

3.1 Primitive Types
3.2 Derived Types: node Type

4. Expressions

4.1 Literal Expression

4.2 Variable Expression

4.3 Binary Operator Expressions
4.3.1 Equality Operators
4.3.2 Arithmetic Operators
4.3.3 Logical Operators

4.3 Unary Operator Expressions

4.4 Assignment Expression

4.5 Node Operation Expression
4.5.1 Dereference Operator
4.5.2 Get Child Operators

4.6 Call Function Expression

O O O 0 0 0 0 X AN N L I

— e
N = = O O O

p— ek
W W W

[\ T O T NS R e e e e e e e
S O O 0O O X0 XIS

5. Functions

5.1 Function Declaration
5.2 Built-in Functions

6. Statements

6.1 Expression Statements

6.2 Conditional Statements

6.3 While Statements

6.4 For Statements

6.5 Break Statements

6.6 Continue Statement

6.7 Return Statement

6.8 Node Child Statement

6.9 Variable Initialization Statement
6.9 Statement Block

7. Project Plan

7.1 Planning Process

7.2 Specification Process

7.3 Development Process

7.4 Testing Process

7.5 Team Responsibilities

7.6 Project Timeline

7.7 Development Environment

8. Architectural Design

8.1 The Compiler (Block Diagram)
8.2 Scanner

8.3 Parser and AST

8.4 Semantic Checking

8.5 Code Generator

9. Test Plan

9.1 Test Suites
9.2 Test Automation

10. Lessons Learned

10.1 Andrea McCormick
10.2 Anthony Palmeira Nascimento
10.3 Derek Hui Zhang

21
21
22

22
22
22
23
23
24
24
25
25
26
27

27
27
27
28
28
28
29
29

30
30
31
31
31
32

32
32
32

34
34
34
35

11. Appendix
11.1 Scanner
11.2 Parser
11.3 AST
11.4 Semantic Checker
11.5 Code Generator
11.6 Tests
11.7 Git Logs

35
35
38
44
49
57
68
87

1. Introduction

1.1 Inspiration

The world we live in today and the data we often seek are composed of intricate
relationships and connections. As such, we recognized the importance of efficiency in
terms of building and expressing this web of relationships among entities. Hence, we
sought to exploit the versatility of the tree data structure within our programming
language in order to facilitate an environment where users have the freedom to build,
manipulate, and organize node-based connections with ease. Hence, not only did we
decide to pursue a programming language that accomplishes just that, but we also named
our language ARBOL, which is the Spanish word for “tree” — an appropriate
reinforcement of the allurement of our language.

1.2 Overview

In the realm of programming there is a plethora of languages that enable the
implementation of trees. However, in many of those cases such implementations are not
native to the language, which poses particular challenges to inexperienced programmers.
Thus, the purpose of the ARBOL language is to abstract much of the logic behind the tree
data structure in order to reduce the complexity and promote easy access to such useful
functionality.

Our language — which is primarily based upon the C programming language — includes
built-in syntax in order to provide ease and usefulness for trees by comprising node data
structures as well as elements of node-traversal abstraction behind-the-scenes. Therefore,
it follows the paradigm of a primarily imperative programming language, where a user’s
code is written as a set of instructions that are executed sequentially as opposed to relying
on function execution as the fundamental means of data manipulation and transformation
in order to reach a desired outcome. The most fundamental operations provided through
our tree-specific syntax include: node declaration, child assignment, node dereferencing,
node assignment, and a get-child functionality that provides easy access to a given node’s
immediate children. With this new tree-specific syntax and the underlying layer of
abstraction offered by ARBOL, users will be able to solve algorithmic tree data structure
problems without having to worry about properly implementing the tree data structure
itself.

1.3 Program Execution

ARBOL is syntactically similar to C, but utilizes syntactic sugar in order to promote
efficient implementation and manipulation of trees which are composed of individual
node data structures. Within the src folder, type make clean. Then, type make. This
creates the ARBOL to LLVM compiler. Next, utilizing the shell script run_arbol.sh, type
bash ./run_arbol.sh [.arbol file name], which will successfully resolve the paths
to the LLVM interpreter, LLVM compiler, C compiler, ARBOL compiler, and essentially
feed a given test file to the ./arbol executable. The special void function named “main” in
the given arbol file name will be run. The output of the given test file will then output to
the standard output.

1.4 ARBOL Code Example

The following sample ARBOL code demonstrates the following features:

e Function declaration semantics of a user-declared (recursive) function called
“get_height” which returns an integer and takes a node of integer type as an
argument

e Various node-specific built-in syntax including: get right child operator ([), get
left child operator (]), node initialization operator (@), node assignment
operator (=>), and set child operators (<-- , —=>)

e The mandatory “main” function which doesn’t take any parameters and doesn’t
include a return statement

e (alling the built-in print_int function, which takes an integer argument and prints
its corresponding value to standard output

e Multiple node declarations (using @ and => operators)

test-heightl.arbol

function int get height (int Q@root) ({
int lheight = 0;
if ([root !'= null) {
lheight = get height ([root);

int rheight = 0;
if (]Jroot !'= null) {
rheight = get height (]Jroot);

if (lheight > rheight) {
return lheight + 1;
} else {
return rheight + 1;

function void main () {
int @a => 1;
int @b => 2;
int @c => 3;
int @d => 4;
int @e => 5;
<-- b;
-—> Cy
d;
-—> ey

O o v W
A
|
|

print int (get height(a));

In order to compile the sample code above, the user must type the following (assuming
the file is saved to a .arbol file in the current directory):

S make clean
S make

$ bash ./run arbol.sh ./test-heightl.arbol

Then, the following expected output will appear in standard output, representing the
height of the tree:

3

2. Language Reference Manual

2.1 Lexical Conventions

An ARBOL program is first tokenized by the lexical analyzer (scanner.ml) before passing
along this stream of tokens to the parser (parser.mly). The lexer is responsible for
tokenizing the input program into delimited identifiers, keywords, and literals. This
section describes how the lexical analyzer carries out the process of tokenizing an
ARBOL program. See sections 8.2 and 8.3 for additional details.

2.1.1 Comments

The character # introduces a single-line comment, which is terminated by the end of the
line (“\n”). The character #* introduces a multi-line comment, which is terminated with a
corresponding *#.

2.1.2 Identifiers (Names)

An identifier includes some sequence of upper/lowercase letters, digits, and underscores
¢ . The first character of an identifier must be alphabetic. Identifiers are case-sensitive.

Examples:

foo
foo bar
tempChar

2.1.3 Keywords

The following identifiers are reserved for use as keywords, and may not be used
otherwise (i.e. as variable or function names):

function
return
if
else
for
while
continue

break
int
float
boolean
char
string
null
true
false

2.1.4 Literals

Literals are notations for constant values of some built-in types, and are as follows:

i. Integer Literal

An integer literal is a sequence of digits. An integer literal may begin with the
optional unary operator minus sign (‘-’), which denotes a negative value, or it
may begin with a digit. An integer literal must not begin with a zero if it contains
more than one digit. All integer literals are interpreted as base-10 (decimal)

numbers.
Examples:
89
-9
2537
0

ii. Float Literal

A float literal consists of a signed integer part, a decimal part, or a fraction part.
Both the integer part and decimal part of a float literal include a sequence of
digits. Either the integer part, or the fraction part (but not both) may be missing.

Examples:

-2.46
62.0

10

iii. Boolean Literal

A Boolean literal has one of the two values: true or false.

iv. Char Literal

A char literal consists of a single character enclosed in single-quotes (°). The
following escape sequences exist in the Arbol Language and are preceded by a
back-slash \’:

\n Newline
\t Tab
W\ Backslash

Examples:

\b/
A4
\PI
\9/

v. String Literal

A string literal consists of a sequence of characters surrounded by double quotes
(““”). A string has the type: array-of-characters. The compiler places a null byte
(\0) at the end of each string in order to specify the end.

Examples:

“sunshine”

A\W/4

\\968//

11

2.2 Punctuation

The following punctuation conventions are recognized within the Arbol Language and
are as follows:

@ Create new node object

~ Dereference node object to get the
node value

[Get left child

] Get right child

=> Node assignment

<—- Set left child

== Set right child

() Expression precedence,
conditional parameters,
function arguments

{1} Statement block

< End of statement

, Separate arguments in function
declaration

2.3 Operators

The following operators are listed from top to bottom in order of precedence with their
corresponding associativity:

Top has the highest precedence:

Precedence Associativity Description Operator

12

1 Left-to-right Get left child,
Get right child

2 Left-to-right Node dereference

3 Right-to-left Logical NOT

3 Left-to-right Left bracket

4 Left-to-right Multiplication,
Division, Modulo
(remainder)

5 Left-to-right Addition,
Subtraction

6 Left-to-right Relational greater
than, greater than or
equal to, less than,
less than or equal to

7 Left-to-right Relational equal,
not equal to

8 Left-to-right Logical And

9 Left-to-right Logical Or

10 Right-to-left Assignment equals,
Node assignment

2.4 Whitespace

Instances of whitespace includes the following:

Blank character

\t Tab character

\n Newline character
\r Carriage return

3. Types
3.1 Primitive Types

There are five primitive types:

13

int 32-bit integer

float 32-bit single precision floating
point type

char 8-bit data type used to store ASCII
characters

string sequence of chars
boolean 1-bit data type that is either ‘true’

or ‘false’

void No value (usually used to signify
the return type of a function that
returns nothing)

3.2 Derived Types: node Type

All nodes in a tree have the derived node data type. This recursive data type specifies

how we enter data and what type of data we enter. Each node data type includes a name,

primitive type, value, and pointers to left/right children (if applicable).

This node type is built into our language. Just as most other languages have built-in

syntax for creating arrays, our language has built-in syntax for creating trees. All nodes in

a tree must have the same type.

The following code creates an integer node named a using the node initializer @ that

denotes a node object is being declared. Then, using the node assignment operator =>

the node object is assigned the value of 5. Remember, a is not of type integer; a is a

node type and thus the value cannot be accessed directly. In order to get the value of a,

the dereference symbol ~ must be used before the expression. However, this differs from

14

C-based pointer syntax because ARBOL doesn’t support dereferencing and value
re-assignment syntax within a single line (i.e. ~a = 5). A user must use the node

assignment operator => for value reassignment for a given node. This operator (=>)

essentially includes both the dereferencing and node-value assignment functionalities in
one.

A node can be created as follows:

int @a => 5;

Dereferencing node ‘a’ and value assignment not supported in the same line

~E = # ERROR

5¢
a => 06;

In the following code, the dereference symbol (~) in the last line indicates that we are
getting the value of a, rather than just the node itself. The assignment equals operator

(=) isrestricted to variable assignment for primitive types and for node-pointer

assignment (discussed below).

Dereferences node ‘a’ in order to be used in variable assignment:

int x = ~a;
~a + 3;

int y

In the following code, the first line creates a new node of int type named b with a value
of 5. However, the second line uses the assignment equals operator (=) for node-pointer
assignment, where node a is initialized and assigned to point to the same node that was
created in node b.

Create a new node b and assigning node a to point to the same node that
was created in node b:

int @b => 5;
int Qa = b;

15

In the following code, the “~->"" operator assigns the node on the right side as the right
child of the node on the left side of the operator. The “<--"" operator assigns the node on
the left side as the left child of the node on the right side of the operator. Note that the
nodes on both sides must have the same type, or an error will be returned.

Create three nodes; assign c as the left child of a and b as the right child of a.

int @a => 1;
int Q@b => 2;
int @c => 3;
a ——> b;
€ <== ag

Further, as described below, the] operator is used to get the right child of the current
node, and the [operator is used to get the left child of the current node. These two
operators return the node object, not the value, of the specified child node. In order to get
the value, the node must also be dereferenced.

It’s important to note that ARBOL supports node initialization using node-pointer
assignment to a given node's right or left child-node (i.e. int @b = [a;). However,
ARBOL doesn’t support get-child operators in addition to node dereferencing within the
same line (i.e. int val = ~[a;). A get-child operator must be used and pointed to by
a node object before it can later be dereferenced in later steps in order to obtain its
specific node-value.

#Given node a, gets the left and right child nodes of a

[a;
las

#Initializes nodes b, and sets node c to point to the same thing the left
child-node of node a points to

int @b = [a;

#Initializes node ¢ and uses node-pointer assignment to assign node ¢ to point
#to the the right child-node of a

16

#Gets the value of node ¢ (which is also equal to the right child-node of a) and
#initializes integer val to its node value

int Qc;
c = la;
int val = ~c;

#Initializes nodes x and y, and sets y as the right child-node of node x

int @x => 1;
int Ay => 2;
X —=> Vv

4. Expressions

4.1 Literal Expression

literal

Literals are integer literals, float literals, boolean literals, character literals, and string
literals.

4.2 Variable Expression

ID

A variable expression is the name of a variable defined previously in the same block, or
in a block of higher scope (such as global variables).

4.3 Binary Operator Expressions

17

expression +
expression
expression
expression
expression
expression
expression
expression
expression
expression
expression
expression

expression

expression
- expression
expression

>~ *

expression

o\°

expression

= expression
!= expression
< expression
<= expression
> expression
>= expression
&& expression
| | expression

A binary operator expression takes in an expression on the left, and expression on the
right, and returns a single expression in response. The following are expressions that
include arithmetic, relational, logical, or assignment operators:

4.3.1 Equality Operators

This == and != operators tests for equality or non-equality between two expressions of

any type, as long as they are the same type, and returns a boolean in response. Note that it
is also possible to compare the left or right child of a node to the special variable “null,”
which represents a null pointer.

expression == expression

expression

The other relational operators can be used to compare between two ints or floats of the

same type:

expression
expression
expression
expression

!= expression

> expression

= expression

< expression

= expression

4.3.2 Arithmetic Operators

The following arithmetic operators (addition, subtraction, multiplication, division, and
modulo, respectively) operate between ints, floats, and chars of the same type:

expression
expression
expression
expression
expression

S~ X

o°

expression
expression
expression
expression
expression

4.3.3 Logical Operators

Logical AND and OR operators can be used if both expressions are boolean type, and

returns a boolean in response:

expression && expression

expression

expression

4.3 Unary Operator Expressions

18

-expression
| 'expression

Unary expressions include the minus (-) operator, denoting a negative value, and the not
(1) operator, which produces the opposite of the current value of the boolean expression.

Examples:

int b =

boolean a
i

boolean c

= true;

#Boolean c is initialized to the opposite value of variable a (false)
#Integer d is initialized to the negative value of variable b (-1)

= la;

19

int d = -b;

4.4 Assignment Expression

ID = expression
| ID => expression

An assignment and node assignment expression consists of a string on the left type,
representing the ID to which to assign the value, and a value on the right side. The value
returned from an assignment operation is the value of the right side of the expression. An
assignment expression assigns a value to the variable on the left, while a node assignment
expression specifically assigns a value to the node variable on the right.

Examples:
int a;
int Qb;
int ¢ = (a = 2) + 3;
int d = (b => 2) + 3;

In this example, variables ¢ and d have the value of 5, because a 2 is returned from both
the assignment operator (a = 2) and (b => 2). Moreover, due to the assignment operation,
a has the value of 2, and b is a node which now points to the value of 2 as well.

4.5 Node Operation Expression

~ID
| [ID
| 1ID

A node operation expression takes in an operator and the variable name of a node, and
returns either a node or a value, depending on the operation.

20

4.5.1 Dereference Operator

The dereference operator (~) dereferences the value of a node. For instance, in the
following example, c is 8, as it is the value of b (5) added to 3.

int @b => 5;

int ¢ = ~b + 3;

4.5.2 Get Child Operators

The get child operator gets the left ([) or right (]) child of a node. Note that the operator is
always used before the variable name. In the following code, ~d will have the value of
“c” as the left child of d is ¢, which has a value of “c.” ~e will have the value of “b” as b
is the right child of a, and b has a value of “b.” Note that while the dereference operator
returns a value that is the type of the node, the get child operators return the node itself.

string @a => "a";
string @b => "b";
string @c => "c";

a <-- ¢c;
a ——> b;
string @d = [a;
string @e = Ja;

4.6 Call Function Expression

ID(args optional)

A call function expression calls a function and returns the value of the result. Note that
the function can be anywhere in the same file; it does not have to appear chronologically
before the function call in the same document. For instance, the below function will
work, even though the max() function appears below its invocation:

21

function void main () {
print int (max (3, 4));
}
function int max(int a, int b) {
if (a > b) {
return a;

}

return b;

5. Functions

5.1 Function Declaration

function return type ID(params optional) {
statement list

A function in ARBOL can take zero or more arguments. In this example, add takes two
parameters of type int. Notice that the type comes before the variable name.

function int add(int x, int y) {
return x + y;

Moreover, functions can take in nodes as the return value or as arguments to the function.

The following function takes in a node of type string and returns the value of its left
child.

function string get leftchild(string @t) {
string @x = [t;
return ~x;

22

5.2 Built-in Functions

ARBOL comes with the following standard functions, which are linked via print.c, for

convenience.
print Prints a string with newline to standard
output
print_int Prints an integer to standard output
print float Prints a float to standard output

6. Statements

Statements are executed sequentially.

6.1 Expression Statements

expression;

Expression statements are mostly used as assignments or function calls.

6.2 Conditional Statements

if (expression) statement
| if (expression) statement else statement

Conditional statements are executed as follows (note that the else statement is optional):

if (x == 5) {

23

return true;
} else {
return false;

6.3 While Statements

while (expression) statement

While statements can be written as follows::

6.4 For Statements

for (expression; expression; expression)
statement

For statements can be executed as follows:

int 1i;
for (x = 0; x < 20; x++) {
print (“Hi”) ;

The first expression in the for statement is an expression that is evaluated before the for
loop is called. The second statement is called on every iteration of the loop. The third
expression is called after each loop iteration, and before the second statement is called.
Note that each section of code in the parentheses is expecting an expression, and thus no

24

variable creation can be done; instead, any variables must be created beforehand, as
shown in the picture.

6.5 Break Statements

break;

Like in C, break statements can be used to exit out of loops (for loops and while loops)
statements early:

for (int x = 0; x < 20; x++) {
if (x == 5) {
break;

6.6 Continue Statement

continue;

Like in C, the continue keyword is used to indicate that we should continue to the next
iteration of the control statement, as opposed to exiting the control statement early.

function void main () {

int 1i;
for(i = 0; 1 < 5; 1 =1 + 1) {
if (1 == 3) {

continue;

}

print int(i);

25

When the above code is executed, it produces the following result

N B O

6.7 Return Statement

return expression;

Always, only one value can be returned from a function. A return statement with an
expression shall not appear in a function whose return type is void. A return statement
without an expression shall only appear in a function whose return type is void.

6.8 Node Child Statement

ID --> expression;
ID <-- expression;

A node child statement causes the node variable on the left hand side to be assigned to
have the left (<--) or right (-->) child of the right hand side, which is an expression that
evaluates to a node variable. For instance, the following expression creates three nodes: a,
b, and c. It assigns c to to be the left child of a, and b to be the right child of a.

function void main () {
string Qa => "a"
string Q@b => "b";
string @c => "c"
a <-- ¢;
a --> b;

26

6.9 Variable Initialization Statement

type ID = expression;
| type Q@ID => expression;
| type ID;

A variable initialization statement creates a new variable and adds it to the stack. If a
variable is not a node, it can be assigned a value on the same line. If a variable is a node,
it can either be assigned to point to another node, or be assigned a value on the same line
as well using the node assignment syntax. Alternatively, a variable does not need to be
assigned a value on the same line. Note that a node will be initialized to have a default
value of 0 or an empty string, and the left and right children will be assigned the value of
“null” on creation, as they initially point to null pointers.

function void main () {
string Q@a => "a";
string @b = a;
string ¢ = "c";
if ([b == null) {
print (“hello”) ;

This program will print “hello,” as the left child of b has not yet been initialized. It
creates three variables: a, b, and c. Variable a is created a string node type and is assigned
a value of a. Variable b points to the string node of a. Variable c is created as a string and
is assigned the value of “c.” ([b ==null) is true because the left child of b has not yet
been assigned.

Note that variables are scoped according to the block in which they are created. Variables
created globally are viewable in any functions. Variables from the formal arguments and
those created in the main body of a function are visible throughout the function. Variables
created in an if/else, for loop, or while loop are only visible within that particular loop.
Variables within the same block cannot share a common name, but variables in different
blocks can have the same name.

27

Variable initialization is the only statement that can be made outside any other function,
so that users can define global variables. However, global variables can only be assigned
a value within functions; they can only be initialized outside of any functions.

6.9 Statement Block

{ statement list }

A statement block is used to indicate a series of statements, used for control blocks like if
statements, while loops, and for loops.

7. Project Plan

7.1 Planning Process

Throughout this process, our team met virtually to discuss this project one to two times a
week in addition to constant email or text-messaging communication about minor
implementation details. Given that our team is short one member, we decided to delegate
individual responsibilities in pursuit of clearly-defined milestone deadlines for building
the ARBOL compiler as opposed to strictly upholding our given roles within the team
(i.e. Manager, Architect Design, Test-Suite Specialist, etc.). By maintaining flexibility in
terms of our individual tasks, we were able to utilize an iterative approach in creating
short-term goals in pursuit of our larger milestones. The specific milestones were defined
based on upcoming deadlines that Professor Edwards imposed in order to help with the
organization of this evolving process.

7.2 Specification Process

Initially, we envisioned the ARBOL Programming Language to include an expansive list
of syntactic sugar, encouraging efficiency in terms of tree manipulation, as well as
multiple built-in functions that would also be applicable. Such a list included
binary-search tree capabilities, extensive child-manipulation capabilities that extended
beyond a given node’s direct child, built-in node traversal functionalities, and more.
However, as we continued to iterate through this process, we realized that honing in on
the primary building blocks that would provide users the most useful tree-based
functionalities would be far more important. In other words, we decided that simplicity
was key and quality over quantity in terms of the built-in node syntax would allow the
user to utilize their own ingenuity in a broader sense.

28

Our first detailed specification included the lexical and syntactic qualifications that
included keywords, primitive data types, various operator syntax, literals, expression and
statement syntax, variable and function syntax, and more. All of these specifications were
outlined within the lexer (scanner.mll) and parser (parser.mly) while we simultaneously
outlined their importance within our Language Reference Manual. As a team, we
collaborated and delegated tasks in discussing, composing, and refining the specifications
outlined within our reference manual. Following the submission of our LRM, we
frequently re-assessed the necessity of various specifications and prioritized our
collective capacity to implement each. In particular, we decided that arrays, C-based
structs, global variables, additional postfix operators, and nuances in our node syntax
were all changes that needed to be made.

7.3 Development Process

We began this project by defining the primary specifications of the ARBOL
programming language, which were implemented in the lexer and parser. Then, we
proceeded to construct the semantics checker, where the specified types for each element
within our program were clearly defined. Finally, we implemented the code generator,
which took the semantic checker, and constructed LLVM IR to conclude the extent of our
end-to-end compiler. We found that the type requirements outlined and maintained within
the SAST proved to be the most tedious. Thus, we decided to prioritize this middle stage
above most other steps before ensuring that the concluding code generator was
implemented successfully.

7.4 Testing Process

Throughout the process of completing this project, we ensured that unit testing was
central to our definition of success, and that it was clearly outlined within our collective
milestones. In particular, we built out an extensive test-suite, inspired by the examples
provided by Professor Edwards’ MicroC program test suite. We continually added
additional tests for functionalities as we saw fit. This allowed us to maintain unit testing
at each stage within the compilation process. In particular, to overcome the grueling
nature of implementing the SAST, we sought to analyze the intermediate data-structures
(i.e. Abstract Syntax Tree) for each individual test, which allowed us to visually pinpoint
any inconsistencies. As our program continued to evolve, we honed in on creating more
concise test programs that would allow us to diagnose bugs most efficiently.

7.5 Team Responsibilities

Our team responsibilities were broadly divided across three members, and are outlined
below. Although the specified roles represent the primary responsibilities expected of

each individual member, we allowed a range of flexibility in terms of delegating tasks
and facilitating a more cohesive collaboration attempt in the creation of this project.

Team Member

Responsibility

Andrea McCormick

Compiler Front End, Code
Generation, Automated Testing
Suite

Anthony Palmeira Nascimento

Compiler Front End, Automated
Testing Suite, CLI tool

Derek Hui Zhang

Compiler Back End, Semantic
Checking, Code Generation

7.6 Project Timeline

February 3rd Submitted Project Proposal

February 24th Submitted Language Reference
Manual

February 24th Finished Scanner

March 12th Finished Parser and AST

March 24th Submitted Hello World Milestone

April 16th Revised and finished SAST and
Code Generator

April 25th Project Presentation

April 26th Submission of Final Project
Report

7.7 Development Environment

The following programming language and software infrastructure were utilized
throughout the creation of our project.

30

° Github-Hosted Git Repository - for the purposes of version control, and it
encompasses our compiler code, test-suite, Makefile, and shell script to facilitate efficient
collaboration and testing

° Python 3.8.5 - for writing our test program, which enables us to go through and
check all our tests against the expected output

° OCaml 4.2.01 - for parsing and implementing the semantic checker

o Ocamlyacc and Ocamllex extensions were used for compiling the scanner and
parser

) LLVM 11.0.0 - for building the IR for our compiler in order to produce output
code

° VSCode - for the development environment that was universally used by our

team (also useful for Live Share via VSCode)
8. Architectural Design

8.1 The Compiler (Block Diagram)

The architecture of the ARBOL programming language compiler consists of the
following components: Lexer, Parser, Semantic (Type) Checker, and Code Generator. The
lexer and parser constitute the front-end of our compiler, and the semantic checker and
code generator constitute the back-end.

LLVM IR
Lexer
(scanner.ml)
Parser
(parser.mly)
EXECUTABLE

(.arbol file)

31

8.2 Scanner
° Relevant Files: scanner.mll

The scanner is written in OCamllex, and it tokenizes an input ARBOL source program
into identifiers, keywords, and literals. Also, the scanner removes all whitespace, and
signifies an error for any tokens that are not syntactically valid (i.e. identifiers or literals).
The tokens produced by the scanner are then fed into the Parser in order to produce an
Abstract Syntax Tree.

8.3 Parser and AST

° Relevant Files: parser.mly, ast.ml

The parser is written in OCamlyacc, and it takes the tokenized data from the scanner and
builds an Abstract Syntax Tree data structure that is built from the grammar defined in the
parser.mly file and the specified data-types defined in the ast .m1 file.

The grammar defined in parser .mly details production rules that seek to eliminate
any ambiguities within the language. Successfully compiling the parser means that the
given code for the language is syntactically (but not necessarily semantically) correct.

8.4 Semantic Checking

° Relevant Files: semantic.ml, codegen.ml

The semantic checking phase of compilation takes the Abstract Syntax Tree generated
from the Parser, and recursively traverses the data-structure in order to transform it into a
semantically-checked abstract syntax tree (SAST). Through this process, semantic.ml
also builds a symbol table from all of the identifiers. A unique symbol table is created for
each new block that is encountered, with a pointer to the outer block it is in. This symbol
table verifies that each identifier that gets called has been formally declared, maintains its
correct scope within the program, and has the correct data type. If a variable cannot be
found in the current symbol table, the semantic checker looks for it in the outer block, up
until the global scope. One of the most important functionalities of the semantic checker
is its analysis of binary operators, where it ensures that the operands within a given
expression have the same corresponding data type and there are no scoping violations,
considering ARBOL doesn’t support type-casting. We also make sure that all functions
have the proper return type, that variables cannot be defined with type void, that all
statements that require predicates (if, while, and for blocks) have a predicate expression
(expression that evaluates to a boolean) in the right location, that breaks and continues

32

only occur within loops, and that all function calls call functions that have been defined
and use the right type and number of arguments. Finally, we make sure that a main
function has been defined.

8.5 Code Generator

° Relevant Files: codegen.ml

The code generator represents the final step in this compilation process, where it takes a
semantically-checked Abstract Syntax Tree and translates each node in this tree into
LLVM Intermediate Representation by traversing and generating code in a bottom-up
fashion. A symbol table is maintained for each block; when a variable is called, codegen
looks for it in a similar fashion as semantic, so we can get the proper address for a
variable by looking for it in the innermost block possible. Throughout this process, basic
blocks are constructed for control-flow statements. Also, this stage generates the code
necessary to initialize a function instance first so that we can call them when we build
their bodies.

9. Test Plan

9.1 Test Suites

As we continued to refine our compiler, we implemented individual test programs that
pinpointed specific features that were added or modified in order to ensure their
implementations were successful. For most of our implementations, we were intentional
in creating two different test programs: one intended to pass and one intended to fail. As
our program continued to expand, our tests seemingly became smaller and more concise.
This allowed us to hone in on features such as binary and unary operators, variable
assignment, function declaration and calls, scoping rules, etc.

Lastly, as a culminating step in our testing process, we created large ARBOL programs
that served as an amalgamation of previously-tested small programs in order to verify
that our implementations were well-suited for more sophisticated functionalities. Some of
these larger programs we created to fail, while others were useful in testing the overall
success of our program.

9.2 Test Automation

We created a CLI tool in Python for the purpose of unit-testing our language. This tool
made it easier for us to compile, and check the outputs of all programs in the tests folder
at once, or one at a time. We included a fixtures.json file that contained the expected

output for each of our tests. The CLI tool ran each given file and ultimately asserts the
result against the fixtures file containing expected output.

Follow the instructions to install tool (need to be in the root directory):

1) First create a virtual environment

python3 -m venv env

2) Activate the virtual environment.

source env/bin/activate

3) Install CLI tool.

pip3 install --editable .

CLI tool runs all .arbol programs in tests folder by default:

arbol test

To run a single .arbol file from tests folder you can add the following flag:

arbol test -t <file name>

CLI Tool Running Unit Tests:

34

, '131.946780', '13.369827'1 PASS

| Expected:

008'] PASS
S5

10. Lessons Learned

10.1 Andrea McCormick

I learned that meeting to discuss taks, milestones, and deadlines for given stages of
implementation for our project proved to be the bare-minimum that had to be
accomplished. Instead, constant communication, instantaneous feedback, reports of
challenges and realizations, and unexpected or last-minute collaboration or instructional
sessions were all incredibly essential aspects in carrying out this project as a cohesive
unit. Also, I learned that starting early was one of the most critical pieces of advice that |
could’ve received (and should’ve taken to heart a little more) prior to embarking on this
journey. Finally, I actually found functional programming (specifically OCaml) to be far
more useful and (dare I admit) cooler than I anticipated.

10.2 Anthony Palmeira Nascimento

In working in OCaml I learned a completely new paradigm of programming. Shifting
from traditional object-oriented programming to functional programming was not trivial,
but the effort proved to be incredibly useful in terms of thinking recursively. I’d say,

35

however, one of the most challenging parts was understanding the LLVM, especially
given that there is limited documentation available. In addition, debugging proved to be a
grinding, sometimes cruel, yet valuable experience in understanding the underlying
concepts of building a programming language. At the end of the day, seeing the expected
outputs from a file containing your language’s name was immensely rewarding.

10.3 Derek Hui Zhang

For this project, my primary responsibility was handling the semantic analysis and code
generation portions. I realized that gaining a deeper understanding of LLVM, and
specifically the code generation parts that we used as a reference for MicroC, was key to
being able to implement all our desired features. Initially, I jumped in and tried to
implement all the additional features without really understanding how LLVM worked,
which caused me to waste a fair amount of time. In the end, I realized that understanding
the architecture first, before trying to write any code, was the key to using LLVM
effectively. It was quite interesting as LLVM’s underlying code is written in C, yet it can
be used in a functional programming language in OCAML. Moreover, though I had some
previous experience with functional programming, most notably writing a Tetris Al in
Haskell in a previous class taught by Professor Edwards, writing the semantic analysis
and code generation portions gave me a better understanding of how to fully leverage
OCAML’s functional aspects.

11. Appendix

11.1 Scanner

scanner.ml

rule token = parse
{ token lexbuf

| "#" { comment lexbuf }

["#*" { comment multi line lexbuf }

{LPAREN} [")

l}l

{RPAREN}
{LBRACE } | {RBRACE }
SEMI }
{ COMMA }

{DEREF'}

{NODE_TINTT}

{GET CHILD L}
{GET CHILD R}
n_sn

{NODE ASSIGN}

"<--" {LCHILD}

{RCHILD}

"function"

"return"

"o

if"
"else"
Hforﬂ
"while"

"continue"

"break"

”iflt"
"float"
"boolean"
nhharu
"void"

"string"

'+' {PLUS

191

{MOD}

T/

{FUNCTION}
{RETURN }

{IF}
{ELSE}
{FOR}
WHILE}
{CONTINUE}

{BREAK }

{INT}
{FLOAT}
{BOOL}

{CHAR}

{VOID}

{STRING}

I '=" A

[

MINUS }

TIMES }

/ { DIVIDE }

"==" {EQUALS} | "!=" {NOT EQUALS}

'>'" {GREATER THAN} ">= {GREATER THAN EQUALS}

'<' {LESS THAN} ["<=" {LESS THAN EQUALS}

"&&" {AND}
"||" {OR}

"It (NOT}

"true" { BOOL LIT (true) }

"false" { BOOL LIT (false)}

identifier as 1lit {ID(lit) }

digit+ as lit {INT LIT(int of string 1lit)}
('-'? digit+ '.' digit* '-'2 "' digit+) as 1lit {FLOAT LIT (lit)}

LA T AR T A<V /N B A O s T O A L A N AT A LI IO I BT B B B | LI I I T I A I | '
+ [y 5 /] (") grUstrerrettlit=

'0'7'9"a'f'z'TA'f'Z"\\']* + """ as 1lit {

let strip quotes = String.sub str 1 ((String.length s
STRING LIT (strip quotes 1lit)

}

"\''" ([*'\''] as 1lit) '\'' {CHAR LIT(lit)}

"\'\\n\'" {CHAR LIT('\n')}

"NUANEN"" {CHAR LIT('\t')}

"NIONANNNTT {CHAR LIT('\\'")}

eof {EOF}

c { raise (Failure("Illegal character: " ”~ Char.escaped c))}

and comment = parse

| '"\n' {token lexbuf}

| eof {EOF}

I {comment lexbuf}

and comment multi line = parse
| "*#" {token lexbuf}

| {comment multi line lexbuf}

11.2 Parser

Parser.mly

) RCHILD

DEREF

DE INIT NODE

NTINUE B

TR

GET CHILD L

38

ool> BOOL LIT
en <string> ID
token <int> INT LIT
token <string> FLOAT LIT
token <char> CHAR LIT

STRING LIT

sstart entry
<Ast.program> entry
<Ast.program> program
<Ast.expr> expr

<Ast.vtype> vtype

c NOELSE
ELSE
LPAREN
sright ASSIGN NODE ASSIGN
left OR
left AND
EQUALS NOT_ EQUALS

GREATER THAN GREATER THAN EQUALS LESS THAN LESS THAN EQUALS

PLUS MINUS
TIMES DIVIDE MOD
NOT

GET CHILD L GET CHILD R

entry:

program EOF

statement list:

{[1}

| statement list statement

statement:

BREAK SEMI
CONTINUE SEMI

RETURN expr

tement list RBRACE

declare child SEMI

var initialize

els

> statement:
IF LPAREN expr RPAREN

| IF LPAREN expr RPAREN

iteration statement:

FOR LPAREN expr optional SEMI expr optional SEMI expr
$7l
| WHILE LPAREN expr optional RPAREN statement

statement For ($3, $5,

function dec:

FUNCTION vtype

RBRACE {

optional SEMI

ID LPAREN pa

{Expr ($1) }

(s1)

{Break}

{Continue}
{Return ($2) }

{Block (List.rev $2)}
{$1}

{Variable ($1) }

statement $%$prec NOELSE{ If ($3,

statement ELSE statement {If ($3,

$9)}
{ While($3,

ams_optional RPAREN LBRACE

$5,

Block ([
$7) }

1)}

optional RPAREN

$5) }

params optional:
//nothing

params {List.rev $1}

carams:

vtype ID { [{

v_type Silg

V_name 822
v_val = Noexpr;

node val = false;

| params COMMA vtype
v_type 83¢
v_name = $4;
v_val = Noexpr;
node val = false;

S1}

expr optional:
{Noexpr}

{s$1}

LPAREN expr RPAREN {$2}

expr PLUS expr {Binop ($1
expr MINUS expr {Binop (S1,
expr TIMES expr {Binop (S1,

expr DIVIDE expr {Binop (S1,

Times,

Divide,

> MOD expr {Binop ($1, Mo
EQUALS expr {Binop ($1, Equals,

~ NOT EQUALS expr {Binop ($1, Not Equals, $3)}
GREATER THAN expr {Binop ($1, Greater, $3)}
GREATER THAN EQUALS expr {Binop (51, Greater Eq, $3)}
LESS_THAN expr {Binop ($1, Less, $3)}
LESS THAN EQUALS expr {Binop ($1, Less Eq, $3)}

-~ AND expr

OR expr

ID LPAREN args optional RPAREN {Call ($1,

js_optional:

sl

COMMA expr

declare child:

ID LCHILD exp {Node child($1, Set left child, $3)}

ID RCHILD expr {Node child($1, Set right child, $3)}

_ops:

DEREF ID {Nodeop (Dref, $2)}

GET CHILD R ID {Nodeop (Get_right child, $2)}
GET CHILD L ID {Nodeop (Get left child, $2)}

ID NODE ASSIGN expr {Node assign($1, $3)}

vtype:
literal type

| vtype NODE INIT {Node ($1)}

literal type:
INT {Int}
FLOAT {Float}
BOOL {Bool}
CHAR {Char}
VOID {Void}

STRING {String}

var initialize:
ecl {$1}
| vtype ID ASSIGN expr {
{ v_type = $1;
v name = $2;
v_val = $4;
node val = false;
}}
| vtype ID NODE ASSIGN expr {

{ v_type = $1;

v name = $2;
v_val = $4;

node val = true;

if ($1 == Void)
raise Variable of
else
{
v_type 8l g
V_name $2;
v_val = Noexpr;
node val = false;

}

44

11.3 AST

ast.ml

Get right child

Set right

~hild

Char
Void
String

Node of vtype

Int 1it of int
Float 1lit of string
Bool 1lit of bool
Char 1lit of char
String 1lit of string
d of string
Assign of string * expr
Unop of unop * expr

*

Binop of expr op * expr
Call of string * expr list
~op of node op * string

X

ssign of string expr

| ArrayAccess

| Value of

v_type: vtype;

v_name: string;

v_val: expr;

node val: bool;

Block of stmt list
Expr of expr

Return of expr

If of expr * stmt * stmt

For of expr * expr * expr * stmt
While of expr * stmt

Continue

Break

*

child of string * node child op

sign of s 2 * expr

Variable of wvdecl

rtype: vtype;
fname: string;
args list: vdecl

body: stmt list;

vdecl * c decl *)

vdecl list * fdecl list

ariable of void

let string of
Plus =>
Minus ->
Times ->

Divide

s Eg -> "<="
Greater -> ">"
Greater Egq -> ">="
And -> "&&"

or -> "||

)

string of unop = function
Neg -> "-"

| Not -> "iv

let string of node op = function
Get left child -> "<~"
Get right child -> "~>"

Dref -> "~"

string of node child op = function

Set right child -> "-->"

Set left child -> "<--"

string of node

rec string of expr = function
Int 1it(l) -> string of int 1
Float 1it(I) -> 1

Bool 1lit(true) -> "true"

Bool 1lit(false) -> "false"
Char 1it(l) -> String.make 1 1

String lit (1) -> 1

Assign (v,)y > v N~ " = » string of expr e
Unop (o,) —> string of unop o " string of expr e

Binop (el, ,) —>

string of expr el * ~ string of op o * * string of expr e2

Call (£,) > £ ~ "(" ~ String.concat ", " —.map string of expr el)

Nodeop (o, string of node op o ” nl
Node assign () =>nl ~ " " * string of node assign op
string of expr e

| Noexpr -> ""

-> "bool"
Float -> "float"
Char -> "char"

String -> "string"

string of vdecl
match var.v _val with
| Noexpr -> string of vtype var.v type * ~ var.v_name
I
match var.node val with

wown

| true -> Stringiofivtype var.v_type var.v_name

string of node assign op "o string of expr var.v val

non

| false -> string of vtype var.v_ type var.v_name

string of expr var.v val

string of fdecl = string of vtype var.v type * ~ var.v name

rec string of
ock () =
"{\n" ~ String.concat "" (List.map string of stmt stmts) ~ "}\n"
Expr () —> string of expr expr ~ ";\n";
) —> "return " string of expr expr ~ ";\n";
, Block([])) -> "if (" ”~ string of expr e ~ ")\n" ”~ string of stmt s
,) "if (" ©~ string of expr e ~ ")\n"
string of stmt sl * "else\n" ”~ string of stmt s2
For (p p 0) —>
"for (" ” string of expr el ~ " ; " ” string of expr e2
string of expr e3 ~ ") " ” string of stmt s
While (e,) -> "while (" ~ string of expr e ~ ") " ” string of stmt s
Continue -> "continue" ~ ";\n"
Break -> "break" ~ ";\n"

Node child(nlI, 0) —> nl » ” string of node child op o

string of expr e ~ ";\n"

-> string of vdecl v ~ ";\n"

g of fdecl =

1]

"function string of vtype fdecl.rtype

fdecl.fname ~ " (" ~©

String.concat ", " (List.map string of fdecl fdecl.args list)
")\n{\n"

String.concat "" (List.map string of stmt fdecl.body)

" } \H"

String

(String at "\n\n" (List.map string of

"\nEND\n"

11.4 Semantic Checker

Semantic.ml

cl 1i

parent: environment option;

k

builtins = [

"print";

= String;

v name = "str";

string of

1 vlist)) "\n\n"

(List.rev flist)

))

49

fname = "print int";
rtype = Void;
args_list =

v_type Int;

v_name = "int";

vival = Noexpr;
node val = false;
}1;
body [1;

fname "print float";
rtype = Void;
args_list = [{
v_type = Float;
v_name = "float";
v val = Noexpr;

fal

let built in decls =
let add bind = StringMap.add f.fname f map

in List.fold left add bind StringMap.empty builtins

true -> tl
false -> raise (Failure ("type error in

": expected type " ”* string of vtype tl

"

but received type string of vtype t2 ~ " in expr " ” string of sexpr

bindings has no void types or duplicate

string) (: vdecl list) =

let type to name List.map (fun -> (vdecl.v type, vdecl.v name)) types

in
List.iter (function
(Void,) —> raise (Failure ("illegal void " ~ kind
-> ()) type to name;

dups = function

0 ::) when
raise (Failure ("duplicate . n ~ nl))
| H -> dups t

in dups (List.sort (fun (_,a) (,b) -> compare a b) type to name)

(* Add f ~tion n >t symbol le *)
add func

built in

"function " ~ fd.fname ~ " may not be defined"
dup err = "duplicate function " ~ fd.fname
make err = raise (Failure er)
fd.fname (* Name of th function *)
with (* No duplicate functions or redef ions built-ins *)
StringMap. -> make err built in err
StringMap.mem n map —-> make err dup err

StringMap.add n fd map

Look for
let find func
try StringMap.find s

with Not found -> raise (Failure ("could not find function

sure

_binds "formal" func.args list;
= List.map (fun
v.v_type;

V.V_name;

sv_val
sv_node val = false;
1) func.arqsilist in

local env = { vars = formals; parent = Some(global env); in loop =

var exists = match vars with

o

name then Some else var exists rest

-> if var.sv_name

var = match env option with
None -> raise (Failure ("variable " ”~ name ~ " is not in scope")
) =
match var exists env.vars name with
| Some () —-> var

None -> find var env.parent name in

>c check expr (e: Ast.expr)
Int 1it (1) -> SInt 1lit(l), Int
Float 1lit(l) -> SFloat 1lit(l), Float
Bool 1it(I) -> SBool 1it(1l), Bool
Char 1it (1) -> SChar 1lit(l), Char
String SString 1lit(l), String
==
check expr el env in
with
Neg when Int || £t = Float -> t
Not when t Bool -> Bool

1]

-> raise (Failure ("illegal unary operator

string of unop op ”~ string of vtype t

" 1]

in string of expr e))
in (SUnop(op, el', ty), ty)
| Binop (, -

check expr el env

check expr e2 env in

1e expression type based on

atch op with

Plus | Minus | Times

Plus | Minus | Times
Not Equals | Equals

| Less
(tl = Int |
| And | Or wher && tl = Bool -> Bool
| Not Equals | Equals when (is node tl && t2 Void) | (is_node t2
= Void) -> Bool
| _ == raise (
Failure ("illegal binary operator "
string of vtype tl1 ~ " " ”* string of op op ~ " "
string of vtype t2 ~ " in " * string of expr e))
in (SBinop(el', op, e2', tl, t2, ty), ty)
p) as =>
= find func func decls fname in
param length = List.length fd.args list in
if List.length args != param length then
raise (Failure ("expecting " ~ string of int param length

"

arguments in " * string of expr call))

let (,) = check expr e env in

let = check types "function call" (vdecl.v type, et) e'

R

= List.map2 check call fd.args list args

Call (fname, args', fd.rtype), fd.rtype

find var (Some env) s in SId(s, sv.sv_type), sv.sv_type

= find var (Some env) s in

"assignment" (sv.sv_type, et)

| Nodeop (et sv = find var (Some env)
with
-> (match node op with
| Get left child | Get right child -> SN

Sv.sv_type), sv.sv_ type

eop (node op,

(Failure ("expected Node type for var
) —> let sv = find var (Some env) s
check expr e env in
(match sv.sv_type with
) -> let t = check types "node assign" (tl, et) e' in

B, E

1]

-> raise (Failure ("expected Node type for var S

" "

for node assignment in expression string of sexpr e'))

)
| Noexpr -> SNoexpr,
let to_ s 3 o) = check expr v.v_val env 1n match
v.node val
ch v.v_type with

let = check types ("node assignment" ”~ v.v name) (tl, et)

sv_type
SV_name Vo
1

sv val = e';

sv_node val

-> raise (Failure ("internal parsing error"))

| false -> let t = check types ("variable declaration
(v.v_type, et) e
sv_type =
SV_name
sv_val =
sv_node val

} in

let add id
match v.v_type with

"

| Void -> raise (Failure ("illegal void type for variable V.V_name))

| ==

match var exists env.vars v.v_name with

| Some() -> raise (Failure ("variable "

v.v_name ~ " declared previously|

in this scope"))

| None ->

match v.node val with

| false -> { env with vars = to svdecl v env :: env.vars }

| true ->

match v.v_type with

| Node() -> { env with vars = to svdecl v env :: env.vars }

| -> raise (Failure ("illegal declaration for variable " ~ v.v_name

": expected node type with node assignment operator")) in

check bool expr
) = check expr e env
"expected Boolean expression in " © string of expr e

Bool then raise (Failure err) else e'

in
let add var = match s with
| Variable(v) -> add id curr env v

| -> curr_env in

Ast.stmt)

-> SIf (check bool expr p env, check stmt bl env, check stmt

’) ->

env = { vars = []; parent = Some(env); in loop = true

SFor (fst (check expr el new env), check bool expr eZ new env,

(check expr e3 new env), check stmt st new env)
| While (p,) —=>
let new env = { vars = []; parent = Some(env); in loop = true
SWhile (check bool expr p new _env, check stmt s new env)
Return -> let (,) = check expr e env in
if t = func.rtype then SReturn (e', t)

raise (

Failure ("return gives " * string of vtype t expected

string of vtype func.rtype in " % string of expr e))

Continue -> (match env.in loop with

| true -> SContinue

| false -> raise (Failure "continue statement must occur within loop"))
Break -> (match env.in loop with

| true -> SBreak

| false -> raise (Failure "break statement must occur within loop"))

Block ->

parent = Some(env); in loop = env.in loop
rec check ist : Sast.sstmt list
[Return as [check stmt s curr env]
Break as 88 -> [check stmt s curr env]
Continue as :: —> [check stmt s curr env]
Return :: -> raise (Failure "nothing may follow a return")
Block :: = -> raise (Failure "cannot nest block inside a block"
-> (check stmt s curr env) :: check stmt list ss
curr_env)
[] -> [1)
ck (check stmt list sl new env)
-> let (+) = check expr e env 1n SExpr (sexpr)
Variable(v) -> (match v.v _name with
| "null" -> raise (Failure ("not allowed to create variable named null")
| -> SVariable(to _svdecl v env))
Node child(n, ,) —> let (,) = check expr in (match et
-> let sv = (find var (Some env) n)
= check types "node child operation" (sv.sv_type, et) e' in
e child(n, o, e', t)
| -> raise (Failure ("expected node type for expression "

string of sexpr e')))

srtype = func.rtype;
sfname = func.fname;

sargs list = List.map (fun -> (x.v_type, x.v _name)) func.args list;

sbody = match (check stmt (Block func.body) local env) with

SBlock () —> sl

| -> raise (Failure ("internal error: block didn't become a block?")

(* Semantic checking of

an exception

global

oid;

= find func fu

(gl

func

11.5 Code Generator

Codegen.ml

add func

functio

57

module StringMap = Map.Make (

environment = {

vars: L.llvalue StringMap.t;

1 environment option;

parent:

1 typ

mutable nodes:

get

Some (x) ->

| None -> raise (Failure

by semant)"))
Sast.program —->
’
L.global
LL comg
*)

~NAeo
coae

rate

L.create modul

Q+
oTC

nodes =
rom the

context

L.i32 type

("failed to extract wvalue

L.lltype StringMap.t;

(should have been

lvm

)

context

e context "Arbol" in

ringMap.empty } in

*)

context

.18 type context
.11 type context
.double type context
.pointer type (L.18 type context)

.void type context in

icroC type *)

il t

float t
\.Char -> 18 t
A.String -> str t

.Void -> void t

StringMap.find (A.string of vtype t) mytypes.nodes
ith Not found ->

L.named struct type context ("node " »~ A.string of vtype t)

L.pointer type (ltype of typ t)
L.pointer type ntype in
L.struct set body ntype [|ptype; ctype; ctypel|] true in
mytypes.nodes <- StringMap.add (A.string of vtype t) ntype

mytypes.nodes; ntype

default vals = match t with
A.Float -> L.const float (ltype of typ t) 0.0
nt -> L.const int (ltype of typ t) O
\.Bool -> L.const int (ltype of typ t) O
A.Char -> L.const int (ltype of typ t) O

A.String -> L.const pointer null (ltype of typ t)

.Node (t) -> let pnull = L.const pointer null (ltype of typ t) in

let cnull = L.const pointer null (ltype of typ t) in
L.const struct context [|pnull; cnull; cnull]]
Void -> raise (Failure "illegal void type (should have been checked by
t)") in
_node =
= L.build malloc (ltype of typ t) "default val" builder in
= L.const pointer null (L.pointer type (ltype of typ node t))

ptr = L.build struct gep node 0 "result" builder in

ild ptr = L.build struct gep node 1 "lchild ptr" builder in

rchild ptr = L.build struct gep node 2 "rchild ptr" builder in

= L.buildistore (default vals t) pnull builder in
L.build store pnull data ptr builder in
L.build store cnull lchild ptr builder in
L.build store cnull rchild ptr builder in builder in
Create a map of global variables after creating each *)
Takes a bindincg type and and creates global constants 1ir
*)
global vars : L.llvalue StringMap.t =
global var =

let init = default vals sv.sv_type

in StringMap.add sv.sv _name (L.define global sv.sv _name init the module)

vars = global vars; parent = None

printf t : L.lltype =
L.var arg function type 132 t [| L.pointer type i8 t |] in

printf func : L.llvalue =

L.declare function "print" printf t the module in

L.var arg function type 132 t
printf int func : L.llvalue =

L.declare function "print int" printf int the module in

float
let printf float : L.lltype =
L.Variargifunc:ionitype float t [float t |]
printf float func : L.llvalue =

L.declare function "print float" printf float the module in

L.declare function Dreo! ~ node the module in *)

unwrap sargs = function) —> ltype of typ t in

let name = fdecl.sfname

and formal types = Array.of list (List.map unwrap sargs fdecl.sargs list)
let ftype = L.function type (ltype of typ fdecl.srtype) formal types in

StringMap.add name (L.define function name ftype the module, fdecl) m in

List.fold left function decl StringMap.empty functions in

= StringMap.find fdecl.sfname function decls in

let builder = L.builder at end context (L.entry block the function) in

StringMap.find n env.vars
with Not found -> match env.parent with
| Some(p) —-> lookup n p
| None -> raise (Failure ("var " ~ ~ " not found

(semantic analysis failed!)")) A4ir

add formal
L.set value name n p;
= L.build alloca (ltype of typ t) n builder
ignore (L.build store p local builder);

StringMap.add n local m in

tch sv.sv _type with

= ma
-> let node var = L.build alloca (ltype of typ

sv.sv_name builder in
fill null node node var node t t builder in
StringMap.add sv.sv_name node var m
| -> let local var = L.build alloca (ltype of typ sv.sv_type) sv.sv name

builder in

StringMap.add sv.sv_name local var m in

List.fold left2 add formal StringMap.empty fdecl.sargs 1i

(Array.to list (L.params the function)) in

vars = formals; parent = Some (global env)

code for an expression;
(

-> L.const int i32 t i, None

-> L.const _int i8 t (Char.code

-> L.const int il t (if b then 1 else 0), None

-> L.build global stringptr s "string" builder, None
-> L.const float of string float t 1, None

) —>

= expr env builder e in

.Float -> L.build fneg
-> L.build neg
-> L.build not) e' "tmp" builder, Nc
. ==
) = expr env builder e2 in
op with
A.Equals -> L.build is null
A.Not Equals -> L.build is not null
| -> raise (Failure "internal error: semant should have
invalid op on void")
) (get opt ptr) "tmp" builder, None
| SBinop (el, v _
) = expr env builder el in
op with
\.Equals -> L.build is null
\.Not Equals -> L.build is not null
| -> raise (Failure "internal error: semant should have rejected
invalid op on void")
) (get opt ptr) "tmp" builder, None
| SBinop (, , g Rolllleeie, 5) =2
= expr env builder el
= expr env builder e2 in
op with
A.Plus -> L.build fadd

A.Minus -> L.build fsub

-> L.build fmul
-> L.build fdiv
-> L.build frem
A.Equals -> L.build fcmp L.Fcmp.Oeg
\.Not Equals -> L.build fcmp L.Fcmp.One
-> L.build fcmp L.Fcmp.Olt
-> L.build fcmp L.Fcmp.Ole
-> L.build fcmp L.Fcmp.Ogt
\.Greater Eq -> L.build fcmp L.Fcmp.Oge
.And |
raise (Failure "internal error: semant should have rejected and/or
float")
) el' e2' "tmp" builder,
SBinop (el, , v o o _
= expr env builder el
= expr env builder e2 in
with
-> L.build add
-> L.build sub
-> L.build mul
-> L.build sdiv
-> L.build srem
-> L.build and
-> L.build or
-> L.build icmp L.Icmp.Eg
-> L.build icmp L.Icmp.Ne
-> L.build icmp L.Icmp.S1lt
A.Less Eq -> L.build icmp L.Icmp.Sle
A.Greater -> L.build icmp L.Icmp.Sgt
A.Greater Eqg -> L.build icmp L.Icmp.Sge
el' e2' "tmp" builder, None
311 ("print", [el,) —>

) = expr env builder e in L.build call printf func

"print" builder, None

("prin:iin:", [e]l,)y >

(v,) = expr env builder e in L.build call printf int func

"print int" builder, None

("print float"™, [e]l,) ->

) = expr env builder e in L.build call printf float func

"print float" builder, None

builder, No
, ->
= StringMap.find f function decls in
.rev (List.map (fun -> fst (expr env builder arg))
rev args)) in
let result = (match fdecl.srtype with
A.Void -> ""

| -> £ ~ " result") in

L.build call fdef (Array.of list llargs) result builder, None

;) —> let (,) = expr env builder e in
ignore(L.build store e' (lookup s env) builder); e', None
-> let ptr = lookup s env in L.build load ptr s builder,
) —> let (e',) = expr env builder e in
>~ = L.build malloc (ltype of typ t) (s ~ " val") builder in
= L.build store e' ptr builder in

node = lookup s env in
ptr ptr = L.build struct gep node 0 "result" builder in
= L.build store ptr ptr ptr builder in e', Some (ptr)

SNodeop (,) —> (match nodeop with

.Get left child ->
let node = lookup s env in
ptr ptr = L.build struct gep node 1 "result" builder in
let ptr = L.build load ptr ptr (s © " ptr") builder in
L.build load ptr (s * " 1lchild") builder, Some (ptr)
right child ->
= lookup s env in
ptr ptr = L.build struct gep node 2 "result" builder in
2t ptr = L.build load ptr ptr (s ~ " ptr") builder in
L.build load ptr (s ~ " rchild") builder, Some (ptr)
A.Dref ->
node = lookup s env in
ptr ptr = L.build struct gep node 0 "result" builder in
ptr = L.build load ptr ptr (s ~ " ptr") builder in
L.build load ptr (s * " val") builder, Some (ptr)

SNoexpr -> L.const_int i32 t 0, None

ma
\
\

ch L.block terminator (L.insertion block builder)
Some > ()

None -> ignore (instr builder) in

sv.sv_node val with

gn (sv.sv_name, sv.sv_val, t))

-> raise (Failure ("internal error: node assignment check failed")

th
SNoexpr —-> SEXpr (S

-> SExpr (ign(sv.sv_name, exXpr, Sv.sv_type))

.fold left (create env builder) StringMap.empty sl;

> (env)

1d left (stmt merge block next block new env) builder

-> ignore (expr env builder e); builder

SReturn) —> ignore(match fdecl.srtype with

(* Special
A.Void -> L.build ret void builder

| recturn

14) ->
(, _) = expr env builder predicate in
merge bb = L.append block context "merge" the function in

build br merge = L.build br merge bb in (* partial fu

then bb = L.append block context "then" the function in
_terminal (stmt merge block next block env (L.builder at end context
_bb) then stmt)
build br merge;

else bb = L.append block context "else" the function in
additerminal (stmt merge block next block env (L.bui?deviatiend context
bb) else stmt)

build br merge;

ignore (L.build cond br bool val then bb else bb builder);
L.builder at end context merge bb

14 > ->
let pred bb = L.append block context "while" the function in

ignore(L.build br pred bb builder);

let body bb = L.append block context "while body" the function in

et pred builder = L.builder at end context pred bb in
,) = expr env pred builder predicate in

.t merge bb = L.append block context "merge" the function in

add terminal (stmt (Some merge bb) (Some pred bb) env (L.builder at end
context body bb) body)
(L.build br pred bb);

ignore (L.build cond br bool val body bb merge bb pred builder);

L.builder at end context merge bb

ignore (expr env builder el);

let pred bb = L.append block context "for" the function in

ignore(L.build br pred bb builder);
body bb L.append block context "for body" the function in
next bb L.append block context "for next" the function in
r = L.builder at end context pred bb in
,) = expr env pred builder predicate in

merge bb = L.append block context "merge" the function in

let next builder = L.builder at end context next bb in

ignore (expr env next builder e3);

additerminal (stmt (Some merge bb) (Some next bb) env (T.bui?deviatiend

context body bb) body)
(L.build br next bb);

add terminal next builder (L.build br pred bb);
ignore(L.build cond br bool val body bb merge bb pred builder);
L.builder at end context merge bb
e3, body) -> stmt merge block next block
SBlock [body , SExpr e3])])
| SNode child(s, let child ptr = (match nodeop with
| A.Set left child -> L.build struct gep (lookup s env) 1 (s *~ " Ichild")

builder
| A.Set right child -> L.build struct gep (lookup s env) 2 (s
" rchild") builder) in
) = expr env builder e in (match target with

Some () -> ignore (L.build store ptr child ptr builder); builder

None -> raise (Failure "no node detected")

(match merge block with
) —> ignore(L.build br bb builder); builder
| None -> raise (Failure "not in loop--internal error, should have been
checked in semant"))
| SContinue -> (match next block with

-> ignore(L.build br bb builder); builder

68

b>uld have been

> L.build ret

> L.build ret (default

.iter (build function b g g env) functions;

11.6 Tests

We have copy-pasted each test in our test suite from the tests folder, along with their
expected output below.

test-add1.arbol

function int add(int x, int y) {
return x + y;

function void main () {
print int((add (2, 2)));

4

test-add2.arbol

69

return x + y;

function void main () {

function int add(int x, int y)

print int((add (-1, -1)));

{

-2

test-arith1.arbol

function void main () {
print int(2 + 2);

4

test-arith2.arbol

function void main () {

print int(2 + 2 * 10 + 2);

24

test-arith3.arbol

function void main () {
int x;
x = 10;
int y;
V. = 97
print int(x + y);

15

test-break1.arbol

function void main () {

70

int 1i;
for(i = 0; i < 5; 1 =1 + 1)
if (L = 3) {

break;

}

print int(i);

012

test-continuel.arbol

function void main () {

int i;
for(i = 0; 1 < 5; 1 =1 + 1)
1f (4 == 3) {

continue;

}

print int(i);

0124

test-fibonacci.arbol

function int fib (int x) {
if (x < 2) {
return 1;

}
return fib(x-1) + fib(x-2);

function void main ()
print int (fib(5));

8

test-float1.arbol

71

function void main () {
float a;
a = 3.14159267;
print float(a);

}

3.141593

test-float2.arbol

function void main () {
float a;
float b;
float c;
a 3.14159267;
b = -2.71828;
c =a + b;
print float(c);

0.423313

test-float3.arbol

function void testfloat (float a, float b)
print float(a + b);

(
print float(a - b);
print float(a * b);
print float(a / b);

function void main () {
float c;
float d;

e = af2 S (0)2
d = 3.14159;

testfloat (c, d):;

{

45.141590 38.858410 131.946780 13.369027

test-forl.arbol

function void main () {
int 1i;
for(i = 0; 1 < 5; 1 =1 + 1)/{
print int(i);
}
print int (42);

01 2 3 442

test-func1.arbol

function int add(int x, int y) {
return x + y;

function void main () {
int a = add (2, 2);
print int(a);

4

test-func2.arbol

function int fun(int x, int y)

{

return O;

function void main ()

{
int i;
Al = dlg

fun(i = 2, 1 = 1 + 1);

print int(i);

test-func3.arbol

73

4

print int(a

4

print int

4

)
(b)
print int(c);
print int (d)

function void main () {
printall (42,17,192,8);

function void printall (int a, int b,

int c,

int d)

{

42 17 192 8

test-func4.arbol

function void main () {
return;

null

test-func5.arbol

function int bar (int a, boolean b,
return a + c;

function void main () {
print int (bar (17, false,25));

int c¢)

{

42

test-func6.arbol

int a;

function void foo (int c) {
a=c¢ + 42;

74

function void main ()

foo (73);
print int(a);

}

115
test-ged1.arbol
function int gcd(int a, int b) {
while (a != b) {
if (a > b) a = a - b;
else b = b - a;
}
return a;

4

function void main () {
print int(gcd(2,14))
print int(gcd(3,15));
1))7

print int(gcd(99,12
}
2 3 11
test-gcd2.arbol
function int gcd(int a, int b)
while (a != b)
if (a > b) a = a - b;
else b = b - a;

return a;

function void main () {
print int (gcd(14,21));
print int(gcd(8,36));
print int(gcd(99,121));

}

74 11

test-height-printlevel.arbol

75

function int get height (int Qroot) ({
int lheight = 0;
if ([root !'= null) {
lheight = get height ([root);

int rheight = 0;
if (Jroot != null) {
rheight = get height (]Jroot);

if (lheight > rheight) {
return lheight + 1;
} else {
return rheight + 1;

function void print level (int @root, int level)
if (level == 0) {
print int (~root);

return;
}
if ([root !'= null) {
print level ([root, level - 1);
}
if (Jroot != null) {
print level (]Jroot, level - 1);
}
}
function void main () {
int @a => 1;
int @b => 2;
int @c => 3;
int @d => 4;
int @e => 5;

{

int @f => 6;
int Qg => 7;

€== log
== @F
<--d;
e;
--> £
-—> g;

H ® O O ©
|
|
V

int height = get height(a);
int 1i;

for(i = 0; i < height; i =1 + 1)
print level(a, 1i);

1234567

test-height1.arbol

function int get height (int @root) ({
int lheight = 0;
if ([root != null) {
lheight = get height ([root);

int rheight = 0;
if (Jroot != null) {
rheight = get height (]root);

if (lheight > rheight) {
return lheight + 1;
} else {
return rheight + 1;

function void main () {

77

~e

¢ ~e

~e

'_l
5
=
@
Q
Il
Vv
oo W N e

~e

-=> c;
d;
--> e;

O o o o
A
|
|

print int(get height(a));

test-height2.arbol

function int get height (int @root) ({
int lheight = 0;
if ([root !'= null) {
lheight = get height ([root);

int rheight = 0;
if (Jroot != null) {
rheight = get height (]Jroot);

if (lheight > rheight) {
return lheight + 1;
} else {
return rheight + 1;

function void main () {
int @a => 1;
int @b => 2;

78

~e

¢ ~e

~e

'_l
5
=
@
()
Il
Vv
~ o U b W

==> @F
== @lg
e/
==> g
-—> g;

Hh ® O O © Q©
|
|
\Y

print int (get height(a));

test-hello1.arbol

function void main () {
print ("hello world!");

hello world!

test-inorderl.arbol

function void inorder int (int @root)
traverse the left subtree
if ([root !'= null) {
inorder int ([root);

visit the root
print int (~root);

if (Jroot != null) {
inorder int (]Jroot);

{

function void main ()
int @a => 1;
int @b =>
int @c =>
int @d =>
int Qe =>

« N

~e

g b w N

==> €¢
d;
-—> e;

O O o o
A
|
|

inorder int(a);

{

42513

test-mod1.arbol

function void main ()

int x = 0;
int y = 3;
int z = 6;
int a = y%z;

print int(a);

{

3

test-nodel.arbol

function void main () {
int @a => 5;
int b;
b = ~a;
print int (b);

5

test-node2.arbol

80

function void main ()

int x = 5;
int @a => 5;
test (a);

print int(~a);

{

function void test (int@ a) {

test-node3.arbol

function void main () {
string @a => "a"
string @b => "b";
string @c => "c"
a <-- c;
a --> b;

print (get leftchild(a));

function string get leftchild(string @t)
string @x = [t;
return ~x;

{

test-node4.arbol

function void main () {
string @a => "a"
string @b => "b";
string @c => "c"
a <== @g
a ——> b;
print (get rightchild(a));

function string get rightchild(string @t)

{

81

string @x =]t;
return ~x;

b

test-node5.arbol

function void main ()
int x = 5;
int @b => 6;
int @Qa => ~b;
print int(~a);

6

test-node6.arbol

function void main ()
float Qa;
float@ x;
float Qy;
a => 3.42;
print float (~a);

{

3.42

test-node7.arbol

function void main ()
string @a => "a";

oo e
AN

|

|

&

string @b => "b";
string Q@c => "c";
string @d => "d";
string Qe => "e";

{

82

print (get leftchild(a));
print (get rightchild(a)
print (get leftchild(b));
print (get rightchild (b)

) ;
)

string Q@right child of a = Ja;

print (get rightchild(right child of a));

print (get leftchild(right child of a));

string @x =]t;
return ~x;

string @x = [t;
return ~x;

function string get leftchild(string @t)

{

function string get rightchild(string @t) {

cbdeed

test-null.arbol

function void main () {
int @a => 5;

if ([a == null) {
print ("Node a is null");

Node a is null

test-postorder1.arbol

function void postorder int (int @root)

{

83

if ([root != null) {
postorder int ([root);

if (Jroot != null) {
postorder int (]root);

visit the root
print int (~root);

function void main () {
int @a => 1;
int @b =>
int Q@c =>
int @d =>
int Qe =>

~e . Ne

g s w N
~

~e

<-- b;
-—> c;
d;
-—> e;

O O o W
A
|
|

postorder int (a);

45231

test-preoder.arbol

function void preorder string(string @root)
visit the root
print (~root) ;

traverse the left subtree

if ([root !'= null) {
preorder string([root);

if (Jroot != null) {

{

84

preorder string(]root);

function void main () {
string @a => "a"
string Q@b => "b";
string @c => "c"
a <-- ¢;
a --> b;
preorder string(a);

acb

test-preorder2.arbol

function void preorder int (int @root)
visit the root
print int (~root);

traverse the left subtree
if ([root != null) {
preorder int ([root);

if (Jroot != null) {
preorder int (]Jroot);

function void main () {

int @a => 1;
int @b => 2;
int Qc => 3;
int @d => 4;
int @e => 5;
a <-- b;

a ——> Ccy;

o €== ¢@lg

85

b —> e;

preorder int (a);

12453

test-printlevel.arbol

function void main () {
int @a => 1;
int @b =>
int Qc =>
int Q@d =>
int Qe =>

~e

g b W N

oo e
AN

|

|

&

int 1i;
int height = 3;

print level(a, 1i);

function void print level (int Q@root, int level)

if (level == 0) {
print int (~root);
return;
}
if ([root != null) {
print level ([root, level - 1);
}
if (Jroot != null) {
print level (]Jroot, level - 1);

for(i = 0; i < height; i =1 + 1) {

{

86

12345

test-subtract1.arbol

function int subtract(int x, int y) {
return x - y;

function void main () {
print int ((subtract (10, 8)));

2

test-subtract2.arbol

function int subtract (int x, int y) {
return x - y;

function void main () {
print int ((subtract (5, 10)));

5

test-whilel.arbol

function void main () {

int 1i;

i=5;

while (1 > 0) {
print int(i);
i=1-1;

}

print int (42);

54321 42

87

test-while2.arbol

function int foo(int a) {

int j;

J = 0;

while (a > 0) {
j=3 + 2;
a=a - 1;

}

return j;

function void main () {
print int(foo(7));

14

11.7 Git Logs

This project shows a history of 129 commits from February 23rd and ending on April
26th. Although the commit history may appear partially skewed, it is important to note
that the majority of our implementation strategy involved “Live Share” through Visual
Studio code. This allowed one team member to display the code on his screen, while the
rest of the team members discussed and implemented changes to our code
instantaneously. This resulted in additional commits by one team member more than the
others; however, the entirety of our team collaborated in order to produce such commits.
Hence, this facilitated a more intimate and comprehensive collaboration framework.

commit 4b6ab422628f2703463d22542cebB8924399f6776 (HEAD -> master,
origin/master, origin/HEAD)

Author: anthonypalmeira <anthonypalmeira@gmail.com>

Date: Mon Apr 26 22:17:15 2021 -0300

git logs txt file

commit e325f76a067elcde8eabb32021107a8f947a22f6 (HEAD -> master,
origin/master, origin/HEAD)

88

Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Mon Apr 26 19:58:04 2021 -0400

delete tests suite

commit 863236£f0de3f1180a068ced92e431519331d7c84
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Mon Apr 26 14:31:07 2021 -0400

add run_arbol

commit 670£c7019a95daef5a96ef2f46cac773d14d9716
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Mon Apr 26 14:54:31 2021 -0300

test/continue

commit eabb2637ad3f66abdl0b590edce34d4ff8ef35ba
Merge: £560105 212d59%e

Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Mon Apr 26 03:47:27 2021 -0400

Merge pull request #21 from amm2497/continue-break

Continue break
commit 212d59e065292b8eb371cfalc6463ddaf2b493al
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Mon Apr 26 03:45:50 2021 -0400

add break and continue
commit aclldf9bcldcfcl05££293£6e39711768cda2416
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Mon Apr 26 02:10:26 2021 -0400

add tests
commit £56010589b80£26chbde2b3c628£94226836907d0
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sun Apr 25 18:38:48 2021 -0300

HEIGHT, PRINT LEVEL and MIX OF BOTH tests
commit bb684547d4ea2b63b46a4f7e¢1a9b1£8070851f26

Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sun Apr 25 18:11:10 2021 -0300

89

PRINT LEVEL traversal

commit 3eaca30d67e9%9aff9a3bal3ac24de6a90bcl8abaz9
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sun Apr 25 15:25:41 2021 -0300

Tests for INORDER/POSTORDER traversal

commit bc2433a8247396208028c45a2d4£3677cbfc57f1
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sun Apr 25 15:18:55 2021 -0300

Pre-order traversal tests

commit 4b38f8a196e9d49e931bcb808a289%aee92cbf3e’
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sun Apr 25 15:04:04 2021 -0300

null test

commit f0457da7c5ada880bl36fcdl3d59e86e6335fche
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sun Apr 25 14:48:54 2021 -0300

Removed some tests

commit f12eff5e3483c7£8a79c080£6c£3321e74b8633c
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sun Apr 25 14:37:53 2021 -0300

test-node7 which multiple children. This could be four fav
program for presentaion

commit 26be84938c320d5ad854dda6c49417c47£3caedb
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sun Apr 25 14:07:06 2021 -0300

test node with float
commit fea9dedc914f171b547e720b92b7£f3de8a26laba
Author: Anthony Palmeira
<66444090+anthonypalmeira@users.noreply.github.com>
Date: Sun Apr 25 14:05:49 2021 -0300

Codegen null (#20)

* add null type

90

* cleaned up some stuff
Co-authored-by: derekhuizhang <derekhuizhang@gmail.com>

commit £989d80333578af27b22b662066e3de398223fc6
(origin/codegen-null)

Merge: 371a59d 50c3d58

Author: Anthony Palmeira
<66444090+anthonypalmeira@users.noreply.github.com>
Date: Sun Apr 25 14:05:27 2021 -0300

Merge branch 'master' into codegen-null

commit 50c3d587d9105e€1397126d5db1£8686a45b9%acb6
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sun Apr 25 14:00:39 2021 -0300

new node test

commit acf88d803c3947ecde612307d397c79a7924dd6d
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sun Apr 25 13:35:11 2021 -0300

CLI tool instructions to README

commit 371a59dd28548c1f0d26ec075b40922fb9d1l62fa
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Sun Apr 25 09:27:39 2021 -0400

cleaned up some stuff
commit 3675542bb8db7ab3ebef602bad875673527a7cbf

Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Sun Apr 25 09:24:07 2021 -0400

add null type
commit e554864edda002fc63e42be%aac589b5fbldb7c?2
Author: Anthony Palmeira
<66444090+anthonypalmeira@users.noreply.github.com>
Date: Sun Apr 25 02:42:23 2021 -0300

Anthony/more stuff (#19)

* Modified CLI tool. Now gives us output error or compile
error

* Updates test

91

* updated README

* Now able to run a single test. by passing -t flag

commit 4636aba8227b7debl272£3107d344c25435dbde6
(origin/anthony/more-stuff, anthony/more-stuff)
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sun Apr 25 02:41:30 2021 -0300

Now able to run a single test. by passing -t flag

commit 021lece24ebd269103233ea78357d19d58670db0
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sun Apr 25 02:33:15 2021 -0300

updated README

commit 247de3657e£9005e29317eab028097624d9841b5
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sun Apr 25 02:29:14 2021 -0300

Updates test

commit 8e359ba77eb943cl1f48a00a40le75e3e2fddea2¢c
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sun Apr 25 02:21:19 2021 -0300

Modified CLI tool. Now gives us output error or compile error

commit f£7bbla987b608bc2e0e0a8cec71b553582c3d30d
Author: amm2497 <amccormickk08@gmail.com>
Date: Sun Apr 25 00:52:50 2021 -0400

Working through built-in function implementations for
preorder - still debugging

commit 2£fc9%9ab4c4059£9cb993f0632172£78578eb214£9
Author: amm2497 <amccormickk08@gmail.com>
Date: Sat Apr 24 23:59:34 2021 -0400

code gen preorder
commit db325aeec74d730b%eeb4435042c382c2f44acae
Author: anthonypalmeira <anthonypalmeira@gmail.com>

Date: Sun Apr 25 00:57:53 2021 -0300

node 4 tests right child

92

commit 8£5a258865ccbl4e204£931267196a5b2c60a0d6
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sun Apr 25 00:42:27 2021 -0300

node test 3

commit 774e36feed267141bbebc841eafd9f02797470ca
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sun Apr 25 00:38:52 2021 -0300

node2 test

commit 8bal0fe5cd26b91632b5463632874490b009c80a4 (refs/stash)
Merge: e5713b5 702ca8d

Author: anthonypalmeira <anthonypalmeira@gmail.com>

Date: Sun Apr 25 00:32:17 2021 -0300

WIP on master: e5713b5 Merge pull request #18 from
amm2497/codegen-node

commit 702ca8de9d056c504e012£d99261a9edb89d9ded
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sun Apr 25 00:32:17 2021 -0300

index on master: e5713b5 Merge pull request #18 from
amm2497/codegen-node

commit 176c633f86a97ef82acc36918al4e77cf9a0db2f
Author: amm2497 <amccormickk08@gmail.com>
Date: Sat Apr 24 23:30:41 2021 -0400

anthony/ fixed nodel test

commit ¢569a94209b4cla3ad2cf82e88774a97edbaf8ab
Author: amm2497 <amccormickkO08@gmail.com>
Date: Sat Apr 24 23:28:45 2021 -0400

anthony/ fixed tests and codegen
commit e€0996247e48e27dd7858debbdd4lae2e2ea8al3fb
Author: amm2497 <amccormickk08@gmail.com>

Date: Sat Apr 24 22:43:58 2021 -0400

Edited double type to implement print float successfully in
codegen

commit 28ba2d33681f1b7491142a9844a905977956c7£fE

93

Author: amm2497 <amccormickk08@gmail.com>
Date: Sat Apr 24 22:31:35 2021 -0400

Working through print float tests and debugging

commit 2080809486c01548b394df0c869b676eeecb44552
(origin/tests-built-ins)

Author: amm2497 <amccormickkO08@gmail.com>

Date: Sat Apr 24 22:15:19 2021 -0400

Implemented print float successfully in codegen

commit e5713b555e0ef9cle73843e52b71a8356addd22a
Merge: ac23c88 c7af5f5

Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Sat Apr 24 22:12:53 2021 -0400

Merge pull request #18 from amm2497/codegen-node
Codegen node

commit c7af5£59c646£7a12e00de73306cf0b9£86e96eb
(origin/codegen—-node)

Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Sat Apr 24 22:12:44 2021 -0400

update syntax
commit b2150773677a29094e32979cfcl37ba%922dad5b8
Merge: 4e82bab ac23c88
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Sat Apr 24 22:09:20 2021 -0400

Merge branch 'master' into codegen-node
commit 4e82babl78260469a4f9bf84065902f5cflb2afa
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Sat Apr 24 21:49:47 2021 -0400

add tests
commit 674d91512295a6d2f477a8580cf194a4e015b27¢c
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Sat Apr 24 21:30:39 2021 -0400

fixed 1/r child

commit ac23c8879c4746e92bcf306d4d369dc92¢c784a37

94

Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sat Apr 24 22:05:00 2021 -0300

remove try except

commit ££7e06060b54917d0d430cf3bab48654df4daa7a0
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sat Apr 24 21:59:01 2021 -0300

produced files deleted by make
commit 9dd6fccbc2d023002dbd43519ccf2e5b693a20£fb
Author: amm2497 <amccormickk08@gmail.com>

Date: Sat Apr 24 19:59:55 2021 -0400

Trying to implement print float in code gen for arbol tests
involving floats

commit 2f2d1f03eb9354d5fabb32e9ad9%aldefbea2lbe
(anthony/file-cleansing-update)
Author: amm2497 <amccormickk08@gmail.com>

Date: Sat Apr 24 19:23:07 2021 -0400

Debugging CLI tool for arbol file tests and implemented
print int in codegen

commit 004d0d74£013d673743c37bbc0cd4alf40fb64ch
Author: Anthony Palmeira
<66444090+anthonypalmeira@users.noreply.github.com>
Date: Sat Apr 24 19:25:35 2021 -0300

More Tests (#17)

* node tests

* Test

* charminus, modulus, hello tests

* nl

* Changes to CLI. Compile Error/Output Error
* subprocess

* ¢ files

95

commit 5560c80050£a99d12db2b3£f0a07cc2d4d8d724b0
(origin/anthony/more-tests, anthony/more-tests)
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sat Apr 24 19:25:01 2021 -0300

c files

commit 94bd693297007e4£2a589feac01d0bba37c70cde
Author: amm2497 <amccormickk08@gmail.com>
Date: Sat Apr 24 17:11:40 2021 -0400

Deleted LBRACK and RBRACK tokens from scanner/parser bc
arrays not supported

commit 10b7bfffl6ab62db6f8a2b372ac5e0329f064b6b
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sat Apr 24 17:56:45 2021 -0300

subprocess

commit 4c655d4d7397709d24d8a4a4b269497279%9e8bab’
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sat Apr 24 16:52:28 2021 -0300

Changes to CLI. Compile Error/Output Error

commit 3acl6fcf50ecl0abf5££f953£fc906675bfb9da8aa
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sat Apr 24 16:35:54 2021 -0300

commit 57028d680b9%b613924a4d9%a87abaebcac467306e
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sat Apr 24 16:34:56 2021 -0300

nl
commit a6456b4a58f5bf8c9edbf02cldbc93b5e54167¢e7
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sat Apr 24 16:32:48 2021 -0300

charminus, modulus, hello tests
commit 4d27535b088224a25b972b262764016dc3efef69

Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sat Apr 24 16:17:37 2021 -0300

96

Test

commit 0e5fc717dfd5e999b2177570276£6858589cf66f
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Sat Apr 24 13:26:40 2021 -0400

fix
commit 2b4164e22cf8c51810d8£0975238a54cebd4fed5
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Sat Apr 24 13:06:04 2021 -0400

lchild/rchild
commit ecc0l7b7badal5a365e61d0ee40cd7189323080d
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sat Apr 24 13:36:49 2021 -0300

node tests
commit ab2eb2fceeb26e835c6e439€al04666952c3c5e0
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Sat Apr 24 03:40:50 2021 -0400

add node sntrax
commit 4652db06682a3e199e6397d2aef9%4d6b4695a00
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Sat Apr 24 01:27:29 2021 -0400

getting segfault
commit c8bab3a790£fc765909b7829ebfdc533643£8d562
Author: Anthony Palmeira
<66444090+anthonypalmeira@users.noreply.github.com>
Date: Fri Apr 23 19:58:26 2021 -0300

CLI Tool and Tests (#14)

* CLI Tool For Running Tests

* readme

* update

* Add/Subtract tests

97

* line

* Arithmetics

* fib test

* fib

* fixtures

* Asserting output files

L

* More tests

#
commit 491759f75a368a5c40a450alal04ee834bb72c9d3
Merge: e3c7d7a 63c2346
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Fri Apr 23 18:26:16 2021 -0400

merge
commit 63c2346209ef7laabeaa32119bfb59%94addc27adc
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Fri Apr 23 18:25:28 2021 -0400

update gitignore

commit 53c0elel26825e3c67a57833651b6e7bedecdct3
(origin/anthony/test)

Author: anthonypalmeira <anthonypalmeira@gmail.com>

Date: Fri Apr 23 19:24:28 2021 -0300

nl
commit 7f£6ef792ae445f449dfced4290deb7da4548a0a73
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Fri Apr 23 18:24:10 2021 -0400

update gitignore

commit e3c7d7ac55¢c9cbb774db0£062903dcd0bld6ee27d
Merge: 80c38ce 5ba34ff

98

Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Fri Apr 23 18:22:54 2021 -0400

fix conflicts

commit 5ba34ffa750451e72c439%e2c5677dbbd2cad23b6
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Fri Apr 23 18:14:38 2021 -0400

update everything

commit 689723348£4dd05e19b8186374cblc282d8db4b5
Merge: 17a5002 50b0£f48

Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Fri Apr 23 16:55:50 2021 -0400

Merge pull request #16 from amm2497/andrea-refactor
Andrea refactor

commit 50b0f48af4a611bb294ff28940e664a0d600b798d
(origin/andrea-refactor)

Merge: 378d7d4 17a5002

Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Fri Apr 23 16:55:25 2021 -0400

fix conflicts
commit 80c38ceblaaf9ccl3ebb4d8f3b94c597a72dbf9c
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Fri Apr 23 16:46:22 2021 -0400

add node skeleton

commit a9cl1305dd95746£35ed51520d32£1755001d862fF
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Fri Apr 23 16:32:22 2021 -0300

More tests
commit 0£79490celed4dc6b8e06138a8213cc79288del”
Merge: 5aa89%al 17a5002
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Fri Apr 23 15:31:29 2021 -0300

Merge branch 'master' into anthony/test

commit 378d7d46e96e5£953£40034931182516fble7745

99

Author: amm2497 <amccormickk08@gmail.com>
Date: Fri Apr 23 13:23:07 2021 -0400

Added additional if statement tests with binop expr

commit £62131d1552e2498d1lfe74bc2a0l0eelda8eladd
Author: amm2497 <amccormickk08@gmail.com>
Date: Fri Apr 23 13:05:10 2021 -0400

Added pass/fail tests for all assignments, binops, unops

commit 17a5002e7delae%9ab8felad96£f8fc756e6c8e9029
Merge: 6£92fcb bccablc

Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Thu Apr 22 21:56:45 2021 -0400

Merge pull request #15 from amm2497/derek-refactor
Derek refactor

commit bccab5lcbc7a8737fblbb265e08553070e281769%a
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Thu Apr 22 21:56:00 2021 -0400

add basics

commit 6474elbb619324316b0faff7d4£6b098£fbc0b69b
Author: amm2497 <amccormickk08@gmail.com>
Date: Thu Apr 22 16:32:10 2021 -0400

Inserted Derek's additions and trying to debug testing errors
with LLVM package

commit 8bb57c1lb82162edlb5bd009a2115c8df84bb4d6ee
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Wed Apr 21 02:38:42 2021 -0400

add more tests

commit 7230b5dfc7d47d5250e77ce317cd21fcl193a5e45
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Wed Apr 21 02:31:38 2021 -0400

add codegen
commit 2d4f408dde5fe53dc7b%9a3c7c72%e21ffbaa283d

Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Tue Apr 20 00:09:07 2021 -0400

100

add more statements

commit 313495a2cd0db9cf92b2734240ecaal5fd90acft4
Author: amm2497 <amccormickk08@gmail.com>
Date: Mon Apr 19 22:51:22 2021 -0400

Code Gen additions and extra test cases

commit a83aclea749c90ddb0eadb2f955f7eleal5361e6
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Mon Apr 19 22:42:40 2021 -0400

add node test case

commit 400cbb89cf79165448819c6432ad8800b40350e6
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Mon Apr 19 22:42:27 2021 -0400

add node test case

commit £7380d18faf591cdc52011b0370e33882e15651a
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Mon Apr 19 22:14:46 2021 -0400

fixed boolean error

commit 6b29f72e3253ecb31031d2422c7cb503dedl2a60
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Mon Apr 19 22:06:58 2021 -0400

fixed some parsing bugs

commit 477cb027da9%d8ecb6214£fc54c4d744688b8800b1
Merge: 9d79057 4479976

Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Mon Apr 19 21:49:07 2021 -0400

wgMerge branch 'derek-refactor' of
https://github.com/amm2497/arbol tree language into
derek-refactor

commit 9d79057dd287e823fd724cd300e670d4c774ed00
Author: derekhuizhang <derekhuizhang@gmail.com>

Date: Mon Apr 19 21:48:34 2021 -0400

add loops and more expressions

101

commit 44799760852c5d7¢323be602f8df2a3d52aac5a4
Author: amm2497 <amccormickk08@gmail.com>
Date: Mon Apr 19 21:34:33 2021 -0400

Added some test cases

commit 0a803c330alcfl7e93b6247f6cad4c012d7d3e68
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Mon Apr 19 16:03:00 2021 -0400

add almost everything

commit 35fc723354fe726422ae61511d42230e4e39ddb7
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Mon Apr 19 14:12:42 2021 -0400

add some more env stuff

commit e53f311db6cf58d0£30922b481b48c834ae08ad’
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Mon Apr 19 04:59:49 2021 -0400

add environment

commit 56£d566c079bfa2d18dfcf05247718dbedaad69e
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Mon Apr 19 02:47:37 2021 -0400

add expr to inside func

commit 6£92fcb6felal37bd671e7cedb5833d383ab7d56f
Author: amm2497 <amccormickk08@gmail.com>
Date: Sun Apr 11 16:45:49 2021 -0400

Minor error fix in sast
commit 7b242871816e8b636484812fcd7f9¢c9¢c18b75864
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Sun Apr 11 02:12:54 2021 -0400

added several more statements
commit 294073ed9%e4316ea%6c2e70eff63bleeb5a94ca?
Author: derekhuizhang <derekhuizhang@gmail.com>

Date: Sun Apr 11 02:11:02 2021 -0400

Added statements

102

commit 1d11f4ae0495623beal57a9c688a579cfefcdb2d
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Sun Apr 11 01:12:11 2021 -0400

add sexpr to sast

commit 3545706a6a8bf57d035b464729b38ed54bcd757d
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Sat Apr 10 23:31:13 2021 -0400

add node val

commit 08fb4ce6325a9966d8a918bfbadl1005b011bbb5
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Sat Apr 10 23:26:17 2021 -0400

minor type change
commit O0cafb061940678413f86995a9f2e39917d80a467

Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Sat Apr 10 22:30:42 2021 -0400

fix types

commit 52a89a1d7065c89112826aa9%7a7910cf42delfl
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sat Apr 10 20:45:27 2021 -0300

nl
commit 3£d33045d8508526640bba0331c0bf4d9d05d28b
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sat Apr 10 20:44:49 2021 -0300

Asserting output files
commit 188b158e427910c4d985£37abbf319£204c88b20
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sat Apr 10 20:20:42 2021 -0300

fixtures
commit 6a6bal0c2d59f0cealldd4a540ael922db4bcfe38
Author: anthonypalmeira <anthonypalmeira@gmail.com>

Date: Sat Apr 10 18:33:52 2021 -0300

fib

103

commit ffcb5cc2835c73ad7bcb02b455dbf30e73c8c66¢C
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sat Apr 10 18:33:38 2021 -0300

fib test

commit 85594ab300£76359£c9596468fb96197a2£47504
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sat Apr 10 18:30:55 2021 -0300

commit lcbceff72c37e68d1£3557b3ef£9219dbfb470e33
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sat Apr 10 18:29:23 2021 -0300

Arithmetics

commit 3715374625521852374664caff5£6£d5d19310e7
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sat Apr 10 18:22:57 2021 -0300

line

commit b5cd5b843b677538635£38£5a2425788021ca793
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sat Apr 10 18:20:20 2021 -0300

Add/Subtract tests
commit 39131b85afdlefbceb6095e6d3e5e157€a6554c30
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sat Apr 10 17:38:50 2021 -0300

update
commit 70a6d73bb482141c92fe88ecc8a30c99£3£f6c607
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Sat Apr 10 17:34:28 2021 -0300

readme
commit 9a533bf661c5¢c1317744e335d5aa07bcff929d5¢c
Author: anthonypalmeira <anthonypalmeira@gmail.com>

Date: Sat Apr 10 17:29:37 2021 -0300

CLI Tool For Running Tests

104

commit 043223b498b1d7107dbfd890072a9d8a73c38181
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Wed Apr 7 15:13:35 2021 -0400

changes

commit 08b0e%alclb95a634646291aec2ef049bal870ed
Merge: bcde98d c9c24ae

Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Wed Apr 7 13:53:34 2021 -0400

Merge pull request #13 from amm2497/andrea-debug
Hello world milestone

commit c9c24aed32c8ed602ccc69bacab3e3c339267b80
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Wed Mar 24 22:42:19 2021 -0400

modify makefile

commit b5176d7dc2647b4c5654fa496748a67cedbf5592
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Wed Mar 24 22:41:01 2021 -0400

remove unnecessary files

commit 4£d810a5401230£f4e40b38eflad80b2d3e5aldc3
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Wed Mar 24 22:37:42 2021 -0400

update readme
commit 1940b3a5eb02282blcbba87eelecfad7f£9772e4
(origin/andrea-debug, andrea-debug)

Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Wed Mar 24 22:29:23 2021 -0400

add codegen
commit 75efe51bf27c2a6b04£f£f113b0087alcd4b2943a3a
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Wed Mar 24 19:19:41 2021 -0400

fix mll

commit f34699d78af5fcc8c3ab6725629d77f3166e7a96
Author: amm2497 <amccormickk08@gmail.com>

105

Date: Wed Mar 24 14:56:32 2021 -0400

Working through debugging code generator to output hello
world

commit a09e960910a6ecb84e7adflefe3125a69fdaf7d9
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Wed Mar 24 05:21:31 2021 -0400

add semantic checking

commit £68cf5908704a050067c008e303951£f£847da8dl
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Wed Mar 24 02:34:41 2021 -0300

codegen
commit e€29ef362b7ca29781425¢cfb8c6116954ddb509dc

Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Wed Mar 24 02:33:20 2021 -0300

updates
commit 11b6db3917570b2f47bfd815e98beb5716ecaece8d
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Wed Mar 24 02:24:06 2021 -0300

updated SAST
commit 5197f1e5694d9bad0dld5a7eaa73203974647£3b
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Wed Mar 24 01:54:32 2021 -0300

new ast
commit 44fa31220924c6e5b371a6aa829fe2b40cb9107e
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Wed Mar 24 00:07:34 2021 -0300

Updated SAST
commit 80cd7a6363261fec2805¢c76£903b9%5a0cd77ceccd
Author: amm2497 <amccormickkO08@gmail.com>

Date: Tue Mar 23 22:51:05 2021 -0400

Committing updated AST

106

commit 47b2278el0efcoccbobc9adfadlac5e0ba98ad9044
(origin/hello world, hello world)

Author: amm2497 <57160538+amm2497@users.noreply.github.com>
Date: Tue Mar 23 22:41:10 2021 -0400

Andrea debug (#12)
* Debugged node vs. string error in AST
* Started Code Generator for "Hello World"

Very rough coding of code generator - based almost entirely
off of MicroC

* Added test case for hello world

* Debugging parser

* Debugging scanner, parser, ast, sast
* Ast work s successfully

commit 77f££583e6b411aal07£873b0d92c9c02e67db030
(origin/revert-10-andrea-debuqg)

Author: Anthony Palmeira
<66444090+anthonypalmeira@users.noreply.github.com>
Date: Tue Mar 23 23:40:08 2021 -0300

Revert "Andrea debug"

commit 965d9a416aeldl1733a07aa5feb31£811d5c7725b
Author: amm2497 <amccormickk08@gmail.com>
Date: Tue Mar 23 22:39:09 2021 -0400

Ast work s successfully
commit ef6588be53c38298fe5b98e59%a968eb5cbb552a
Author: amm2497 <amccormickk08@gmail.com>
Date: Tue Mar 23 22:32:03 2021 -0400
Debugging scanner, parser, ast, sast
commit e858b0£7062581cf1£93108824ed5c2665d71245
Author: amm2497 <amccormickk08@gmail.com>

Date: Tue Mar 23 21:44:00 2021 -0400

Debugging parser

107

commit eclc97deldaebelacale8253faeff966e5af090f
Author: amm2497 <amccormickk08@gmail.com>
Date: Tue Mar 23 16:05:48 2021 -0400

Added test case for hello world

commit 1ccc59¢5¢82008432703b8df41307b27b1614925
Author: amm2497 <amccormickkO08@gmail.com>
Date: Tue Mar 23 13:55:41 2021 -0400

Started Code Generator for "Hello World"

Very rough coding of code generator - based almost entirely
off of MicroC

commit 3b3454834c3a22d4c3c7bf7cb7bd0cc71e34£9a9
Author: amm2497 <amccormickk08@gmail.com>
Date: Mon Mar 22 23:40:31 2021 -0400

Debugged node vs. string error in AST

commit dfbc01649c3blbf3cb85486169037ec489491512

Merge: 50c7bbl 30ebe4?2

Author: amm2497 <57160538+amm2497@users.noreply.github.com>
Date: Mon Mar 22 23:06:57 2021 -0400

Merge pull request #10 from amm2497/andrea-debug
Andrea debug
commit 30ebed2b4db2e6cab742£198bb907167£28d30af3
Author: amm2497 <amccormickk08@gmail.com>
Date: Mon Mar 22 23:04:21 2021 -0400
Successfully debugged parser without any errors
commit 7065a4dbf05ec78c634e506al1b2555¢c319£7e032
Author: amm2497 <amccormickk08@gmail.com>
Date: Mon Mar 22 22:54:19 2021 -0400
Debugging node ops in parser
commit ea6de81d7dle6cd63414950a£5866159e79fcclf
Author: amm2497 <amccormickk08@gmail.com>

Date: Mon Mar 22 22:32:48 2021 -0400

Parser debugged with zero shift/reduce errors

108

commit 50c7bbl7337c5c2bad4ad2c24d9edl11779p113faf
Author: amm2497 <amccormickk08@gmail.com>
Date: Mon Mar 22 21:52:03 2021 -0400

Debugging shift/reduce errors for parser.mly

commit 6ebffl46507f8e7dbcbe5%acfede50498£f19ad6d
(origin/anthony/parser-debug)

Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Mon Mar 22 22:43:07 2021 -0300

39 shift/reduce, 5 reduce/reduce

commit 107fad4a3ea68df7981cf30991f2d8ca2d8e8ala’
Author: amm2497 <amccormickkO08@gmail.com>
Date: Mon Mar 22 20:44:08 2021 -0400

Debugging shift reduce errors in parser

commit f£delb9118473ec6fa685890aeb54d57¢c3540b0ba
Merge: 7492a41 1cf0931

Author: Anthony Palmeira
<66444090+anthonypalmeira@users.noreply.github.com>
Date: Mon Mar 22 16:36:22 2021 -0300

Merge pull request #8 from amm2497/anthony/builtin-funcs-sast
Semantically Checked AST & C-code built-in functions

commit 1cf09317187779461ce9d227e6402bfb9%bda8a43
(origin/anthony/builtin-funcs-sast)

Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Mon Mar 22 16:35:36 2021 -0300

Updated SASt
commit 601dc348f79b6d0c3ac6c544c6£dd056fab57545
Merge: cd81l74a 7492a4l
Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Mon Mar 22 16:20:06 2021 -0300
Merge branch 'hello world' into anthony/builtin-funcs-sast
commit cd8174a6c906738dc7af62£5449f750fe666bces

Author: anthonypalmeira <anthonypalmeira@gmail.com>
Date: Mon Mar 22 16:16:03 2021 -0300

SAST, C-code and stubs

109

commit 7492a418d537ee3b275fe7c6lf7cdc54£9e4b901
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Mon Mar 22 14:28:52 2021 -0400

add to ast

commit 76f7edc3541e6f96eb9defcd401leld329af32d96
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Mon Mar 22 06:29:14 2021 -0400

added makefile

commit 50815e51ca7982079728bb9c4fd36410a6c32ed’
Author: derekhuizhang <derekhuizhang@gmail.com>
Date: Mon Mar 22 06:29:04 2021 -0400

fixed some parser errors

commit e€306540e07c5ad2f34dc51164eld5f2edbed3bea
Author: amm2497 <amccormickk08@gmail.com>
Date: Sun Mar 21 23:28:35 2021 -0400

Main additions to AST and simplifying node ops in
parser/scanner

Based off of MicroC for most part except for node op

commit 995a2e507ed885732b5¢c1697509846946a8e2222
Author: amm2497 <amccormickk08@gmail.com>
Date: Sun Mar 21 17:35:44 2021 -0400

Updated scanner and parser (and some of AST)

Wrote out statements and expressions to ensure they made
sense & simplified some expressions. Still need to work on AST
more
commit 5bd41a8b0b69f0£f1d1c8507b8d8a784a9£28d89d
Author: amm2497 <amccormickkO08@gmail.com>
Date: Sun Mar 21 14:50:54 2021 -0400

Revert "Delete arbol scanner.mll"

This reverts commit 0216612f7c6b84c6018dff7b594f1ea590dcb3bl.

commit 16a2b28777293858c8fac077dd7bcbd0d41a9817
Author: amm2497 <57160538+amm2497Q@users.noreply.github.com>

110

Date: Tue Mar 16 21:57:10 2021 -0500

Update README.md

commit 25eb0ald8614a332cf94de20d9a54fc5cccdb/2a

Author: amm2497 <57160538+amm2497@users.noreply.

Date: Tue Mar 16 21:56:38 2021 -0500

Update README.md

commit 47e75551efe0lc9b6df3cd4ebb940320ccl6c2059

Author: amm2497 <57160538+amm2497@users.noreply.

Date: Tue Mar 16 21:56:15 2021 -0500
Create README.md

Description of language and instructions on
run/compile each file

commit 8b08ea0919834af772£8b79a6b5£8£1018be903f

Author: amm2497 <57160538+amm2497@users.noreply.

Date: Tue Mar 16 21:48:25 2021 -0500
Delete arbol parser.ml

commit d3fcf5449ab599%bf31e5aa648046fb89d78a8f6c

Author: amm2497 <57160538+amm2497Q@users.noreply.

Date: Tue Mar 16 21:48:16 2021 -0500
Delete arbol scanner.ml

commit 5823dlecddefd406b34d3c453b769464c00715506

Author: amm2497 <57160538+amm2497@users.noreply.

Date: Tue Mar 16 21:47:58 2021 -0500
Delete arbol parser.mly

commit 0216612f7c6b84c6018dff7b594f1ea590dcb3bl

Author: amm2497 <57160538+amm2497@users.noreply.

Date: Tue Mar 16 21:47:11 2021 -0500

Delete arbol scanner.mll
commit 6800e7cab5ad656ec72722699a4548cff617c¢7908
Author: amm2497 <amccormickk08@gmail.com>

Date: Tue Mar 16 21:45:27 2021 -0500

Array Implementation & Began AST

github

github

how to

github.

github.

github.

github.

.com>

.com>

com>

com>

com>

com>

111

Parser (and Scanner) now allow array implementation: array
assignment & access.

Implemented all ops/expr/stmt/function dec/var dec in AST.
commit 496447ae46130830d96e6617349945c£806aadl4
Author: amm2497 <amccormickkO08@gmail.com>
Date: Tue Mar 16 21:37:31 2021 -0500

Array implementations

Edits on Parser & Scanner (added array implementation)
commit bcde98d431360b8732856827cffc6b0bcfb76d77
Author: amm2497 <amccormickk08@gmail.com>
Date: Mon Mar 15 10:54:48 2021 -0500

Create Arbol LRM copy.pdf

LRM that we submitted for Arbol
commit e2ee0c6ef9663852d9d40caf78e0bdceaab7ce3f
Author: amm2497 <amccormickk08@gmail.com>
Date: Wed Feb 24 23:55:28 2021 -0500

LRM submission - fixing minor syntax details

No shift errors - submission files for LRM (2/24)
commit 102dee6l6b0eale9c022fedb8f2206c8307c55cd
Author: amm2497 <amccormickk08@gmail.com>
Date: Wed Feb 24 17:20:54 2021 -0500

Added all tree syntax features to Parser

No shift errors - all tree syntax implemented
commit 40c06blaec4e8b2102801a7£49636946e356ac9%4b
Author: amm2497 <amccormickkO08@gmail.com>
Date: Wed Feb 24 16:25:57 2021 -0500

Testing and debugging shift errors

Got no shift errors with all (non-tree) syntax

Have one shift error with tree syntax

112

commit 9aab6b3e515f0853a5afe77ee7b7fb7081519¢c131a
Author: amm2497 <amccormickk08@gmail.com>
Date: Tue Feb 23 22:48:45 2021 -0500
Node Ops added to Parser
Added Node Ops to Parser & refined expressions and statements
commit 15c6¢clbd749f04195977efaa8636£8ef15714£29
Author: amm2497 <amccormickkO08@gmail.com>
Date: Tue Feb 23 17:32:11 2021 -0500

Scanner & Parser without specialized tree syntax

ARBOL without special tree syntax
and without ocamlyacc testing.

