nodable Programming Language Proposal

February 2021
Karen Shi (ks3650@columbia.edu) Manager
Elena Sotolongo (es3693@columbia.edu) Language Guru
Ajita Bala (ab4420@columbia.edu) System Architect
Ariel Goldman (apg2l64@barnard.edu) System Architect
Naviya Makhija (nm3076@columbia.edu) Tester

1. Overview

nodable is an imperative, statically-typed graph programming language designed to
help users create, use, manipulate, and search graphs. The goal is to simplify the
implementation of commonly used graph algorithms by eliminating the need for
lower-level data structures to represent graphs. Instead, nodable will feature
built-in data types for graphs and edges, and allow for user-defined nodes.
Similarly to structs in C, users of the language will be able to store any type of data
in a node and customize and modify the information held within it. We anticipate
that the language will be able to meet the needs of programmers who routinely use
graphs to represent data and networks.

nodable syntax will contain elements of C, Java, and Python. For example, the way a
user builds a type of node is modeled on how you build structs in C, the notation of

calling functions on nodes is inspired by Java, and the structure of a ‘for loop’ is
inspired by a combination of Java and Python.

2. Language Details

2.1 Data Types

Type Description / notation

graph A set of nodes (nodeset) and a set of edges (edgeset) that connect
pairs of nodes

node Similar to struct in C, contains attributes that uniquely identify the

node. Users define their own nodes, so the size is customizable

edge Similar to struct in C, contains information on the source and
destination nodes and whether it is directed or undirected

int 4 bytes, integer value

double 8 bytes, decimal value

char 1byte, character value

float 4 bytes, floating point value

string An array of characters

boolean |1byte, True or False

list A resizable array with a built-in functionality, including add(),
remove(), and contains(); can support any data type

list<int> example = [4, 6, 2, 9, 0];
dict

A collection of unordered and unique key-value pairs, can support
any data type

dict<city, int> values = {[keyl:valuel],
[key2:value2]};

2.2 Operators and Syntax

Operator

Description

Simple assignment operator. Assigns the value of the right operand
to the left operand

Adds two operands

Subtracts the second operand from the first

Multiplies operands

Exponents

Divides first operand by second operand

Checks if the values of two operands are equal. Returns True if yes,
False if not

Checks if values of two operands are not equal. Returns True if they
are not equal, False if they are

Checks if the value of the left operand is greater than the value of
the right operand. Returns True if this condition is met

Checks if the value of the left operand is less than the value of right
operand. Returns True if this condition is met

Checks if the value of the left operand is greater than or equal to the
value of the right operand. Returns True if this condition is met

Checks if the value of the left operand is less than or equal to the
value of right operand. Returns True if this condition is met

Increment operator; increases integer value of operand by 1

Decrement operator; decreases integer value of operand by 1

Add AND operator. Adds the value of the right operand to the value
of the left operand and assigns the result to the left operand

Subtract AND operator. Subtracts the value of the right operand
from the value of the left operand and assigns the result to the left
operand

&&

Logical AND operator. Returns True if both of the operands are
true /non-zero

Logical OR operator. Returns True if either of the operands are
true /non-zero

Logical NOT operator. Reverses logical state of given operand; if the
operand is logically true, the NOT operator will make it return False

Undirected /bidirectional edge (default weight of 1)

Directed edge (default weight of 1)

Undirected /bidirectional edge with weight n (n is an int)

Directed edge with weight n (n is an int)

2.3 Keywords /Reserved words

The reserved words in nodable are based on our source languages as well as graph
theory.

They include:
e while, for, in, if, else, elif, continue, break, range
® def, main, return
e and, or, not
e graph, node, edge
e int, double, char, float, string, boolean, True, False
e 1list, dict, len
® new, const

2.4 Control Flow

IF /ELSE Statements: Established based on Python and Java syntax to allow users
to selectively execute statements.

if (temp >= 90)) {
weather = “hot”;

}
elif (temp > 40 && temp <= 90) {
weather = “nice”;

}

else {
weather = “cold”;

WHILE Loops: As based in Python and Java, this loop executes the inner code if the
boolean expression is satisfied. The loop terminates once this condition is false.

int i = 5;

while (i > 0) {
print (i) ;
i--;

FOR Loops: For loops allow iteration through lists and other data structures as in
the example below so that operations can be performed on that data.

for v in d.values () {
if (len(value) == 0) {
count = count + 1;

}
}

A generic FOR loop might look like:
for i in range(1l, 4){
if (arr[i]== 0){
count = count + 1;

}

2.5 Graphs

Graphs are an inbuilt data type in nodable. They contain a nodeset (a dict of node
objects), an edgeset (a list of edge objects), and a boolean ‘directed’ that determines
the types of edges that can be contained in the graph’s edgeset. All nodes in a graph
must be of the same user-defined type (for example, one graph can’t contain nodes
of type ‘city’ and nodes of type ‘person’).

e The nodeset of a graph must be a dict where the key is of type string that
represents the name /ID of the node (unique for each item in the dict) and
the value is a node of a certain type already created by the user.

e The edgeset of a graph is a list of type edge. All of the edges added to this
edgeset must correspond to the type of graph (directed or
undirected /bidirectional). An error will occur if the user attempts to add a
conflicting type of edge.

graph<> empty = {nodeset={}, edgeset = [], directed = true};
graph<city> cities = {nodeset={[‘new york’ :nyc], [‘boston’ :boston]},
edgeset = [], directed = false};

2.6 Nodes/Structs

Nodes are modeled on C structs and are created by the user such that they can
store various data types and can be customized to the user’s and graph’s needs. The
sample code below creates a struct known as ‘city’.

It has three properties: a name (String), population (int), and state (String) of
varying data types, but all of which will uniquely identify each node.

node city {
String name;
int population;
String state;
}i

The code below creates a sample city node. Here the city is named ‘nyc’, it has a
population of 8000000 and has a state ‘NY’.

city nyc = (“nyc”, 8000000, “NY”);

Node equality can be compared using == and !=.

2.7 Edges

Edges are connecting objects between two node objects. Graphs can either be
directed, where edges display a one-way relationship between nodes, or undirected
where edges are bidirectional and can be traversed both ways. All edges have
weights where the default weight, if not specified by the user, is 1 (a graph with all
edges having weight 1 works as an unweighted graph). The sample code below
shows the creation of an edge between two city nodes (boston and new york) that
already exist in the nodeset. It is a bidirectional edge with a weight of 8.

g.edgeset.add(g.nodeset[‘new york’] <-8-> g.nodeset|[‘boston’]);

The example below shows another edge being created between two city nodes that
is unidirectional and has a weight of 6. Note that the source node must be first and
the target second.

g.edgeset.add(g.nodeset[‘new york’] -6-> g.nodeset][‘philadelphia’])
//allowed

g.edgeset.add (g.nodeset|[‘new york’] <-6- g.nodeset[‘philadelphia’l])
//not allowed

Edges can be accessed later on using the syntax g.edgeset.get (nodel, node2).
This will cause an error if there is no currently existing edge between nodel and
node2. Users can also access the edge weight, source, and target nodes:

int w = g.edgeset.get(nodel, node2) .weight;
node s = g.edgeset.get(nodel, node2) .source;
node t = g.edgeset.get(nodel, node2).target;
setWeight (g, g.edgeset.get(nodel, node2), 5);

2.8 Functions

nodable declares functions in a similar way to the standard Python style, but uses
curly braces to determine scope.

nodable also requires the usage of semicolons at the end of each statement to
reduce confusion and ambiguity.

def add(x, y) -> int{
return x + y;

}
Functions have to be written above the main function where they're called

def main() {
add(2,7) ;

The function signature can specify the data types of the parameter list, as well as
the return type.

def count_empty(d: dict) -> int({
count = 0;
for v in d.values () {
if len(value) ==
count = count + 1;

}

return count;

2.9 Comments
e Single-line comments use //
e Multi-line comments use /* */

// this is a single-line comment
/* this is a

multi-line

comment

*/
3. Library Functions

3.1 Graph functions

def removeEdge (graph g, edge e) //deletes an edge from a given graph
def removeNode (graph g, node n) //deletes a node and all associated
edges from a given graph

def getChildren(graph g, node n) -> list<node> //returns the
children of a node in a directed graph. A node p is a child of n if
there is a directed edge from n to p, and no edge from p to n.

def getDegree (graph g, node n)->int //returns the number of neighbor
nodes for a given node in a graph

def getNeighbors (graph g, node n)->list<node> //returns the
neighbors of a node in an undirected/bidirectional graph

def getNodes (graph g) -> dict<string, node> //returns a dict of all
of the nodes in a graph with their node names

def getNodeNames (graph g) -> list<string> //returns a list of the
names of all the nodes in a graph

def getEdges(graph g) -> list<edge> //returns a list of the edges
def printGraph(graph g) //prints the nodeset and edgeset of g

def getNumNodes (graph g)-> int //returns number of nodes

def getNumEdges (graph g)-> int //bidirectional edges count as two
def getNumUndirEdges (graph g) -> int //returns number of edges in an
undirected graph, divided by 2

3.2 Node functions

def getData (node n) -> dict<str, >
//returns a dict with all of the data of the current node

3.3 String functions

String.equals(string s) -> boolean
String.length -> int

4. Examples

4.1 Hello World

print (“Hello world!”);

4.2 Lists

//initialize list
list<int> example = [4, 6, 2, 9, 0];
print (example) ; //print out elements of list

for int i in example { //iterate through list

print (i) ;

for int i in range(len(example)) { //using regular for loop
print (i) ;

example.append (10) ; //appends to end
example.add (3, 10); //inserts int 10 to the 3rd index

example.get(3); //returns element at 3rd index
example.replace(3, 10); //replaces element at index 3 with 10
example.remove (3); //removes element at index 3

len (example) ; //returns length of 1list

example.contains (10) ; //returns boolean value

4.3 Dicts

dict<string, int> apples = {[‘Bob’: 3], [‘Alice’: 10]};
apples.add([‘Eve’: 30]); //adds key, value pair to list
apples.contains(‘Eve’); //returns boolean value
apples.replace([‘Eve’ : 13]);

apples.get(‘Eve’) ;

apples.values(); //returns a list<int> of all values
apples.keys(); //returns a list<string> of all keys
len(apples); //returns int

4.4 Finding neighboring nodes in a graph

def getNeighbors (graph g, node src)-> list<node> {
list<node> neighbors = [];
for edge e in g.edgeset {
if (getSource(e) == src) {
neighbors.add (getTarget(e)) ;

}

return neighbors;

4.5 Creating a graph, nodes, and edges

//Defines a node type called ‘city’
node city ({

String name;

int population;

String state;
}i

//creates instances of ‘city’

city nyc = (“nyc”, 8000, “NY”);

city boston = (“boston”, 500, “MA”);

city philly = (“philadelphia”, 800, “PA”);

//creates graph g with nodeset containing instances of city
graph<city> g = {nodeset={[‘new york’ :nyc], [‘boston’ :boston]},
directed = true}; //edgeset initialized to empty list

g.nodeset.add ([‘philadelphia’ :philly]); //adds item to nodeset dict

g.edgeset.add (g.nodeset[‘new york’] <-8-> g.nodeset[‘boston’]);
//when working with edges and graphs, need to refer to nodes in the
context of the nodeset

g.edgeset.add (g.nodeset[‘new york’] -6-> g.nodeset|[‘philadelphia’l]);

g.edgeset.add (g.nodeset[‘philadelphia’] -6-> g.nodeset[‘new york’]);

10

4.6 Dijkstra’s algorithm

//continuing code from 4.5
dict<city, int> values;
dict<city,city> prior;
list<city> unvisited;

for city ¢ in g.nodeset

{

values.add([c, Integer.max()]);
unvisited.add(c) ;

city cur = g.nodeset][‘philadelphia’]; //starting in philadelphia

while (cur != g.nodeset][‘new york’])
{

unvisited.remove (cur) ;

i++;

for c in getNeighbors (g, cur)

{

if (unvisited.contains(c))

{
if (values.get(cur) +
getWeight (edgeset.get (cur, c) < values.get(c))
{

values.get(c) = values.get(cur) +
getWeight (edgeset.get (cur,c) ;
prior.replace([c:cur]);

}

int lowVal = Integer.max() ;
city lowCity; //all vars are null/empty string
for ¢ in unvisited

{
if (val[c] < lowVal)

{

lowVal = c;

}

cur = lowVal;

list<city> path;
cur = g.nodeset|[‘new york’];

11

while cur '= g.nodeset][‘philadelphia’]
{

path.appendFront (cur) ;

cur = prior[cur];
}
path.appendFront (g.nodeset[‘philadelphia’]) ;
return path;

12

