
Reptile (.rt)

Project Proposal

Aileen Cano (ac4440), Aviva Weinbaum (aw3156),
Lindsey Weiskopf (ltw2115), and Hariti Patel (hvp2105)

February 2021

1 Introduction

Reptile is a programming language that is intended to support libraries that streamline the process of creating
simply-coded graphics. As more children are learning computer science at a younger age, there is a demand
for simple programming languages that teach computer science principles in a digestible and visual manner.
Languages typically labeled for beginners like Scratch and Swift Playgrounds teach kids to code by showing
immediate visual results from code – whether that is a simple square or a complex environment built upon
existing code blocks. Further, libraries like Turtle graphics add novelty to simple image-building operations
by showing a turtle drawing the desired shape. The goal of Reptile is to build upon the success of these
“beginner” programming languages to provide immediate gratification to the coders through graphics.

2 Description

Reptile is a geometric figure drawing language built on a standard canvas and pointer data type. The lan-
guage is object-oriented, allowing for the creation of libraries to build on the existing language architecture
to create different kinds of graphics. It is procedural and imperative. The language will use java-like syntax
and is strictly typed.

To showcase the object-oriented nature and intended purpose of Reptile, we will create the library Tor-
toise. This library will use the canvas and the pointer provided by the language to create a tortoise object
with simple functions. Ideally, this would be easy enough for a beginner programming to use while yielding
a tangible image result.

Features of Reptile

• Simple arithmetic and functional operations using objects
• Creation of canvas with a movable pointer
• Ability to mark pixels with different colors
• Produce an SVG

Features of the Tortoise library

• Pixel manipulation within the canvas and all features from main language
• Functions to move the tortoise specifying pixels, angles, and colors
• Encapsulation of vector calculations to provide complex functions with simple calls

Other possible user-constructed libraries

• Lizard - Library for drawing simple shapes
• Snake - Library for creating curved shapes and lines
• Chameleon - Library for creating color gradients

1

3 Simple Data Types

Simple Data Type Details Example
int any signed integer 3
float any floating point decimal 0.3
boolean 0 or 1 0
string standard string ”hello”

4 Complex Data Types

Complex Data
Type

Description
Constructor
Parameters

Functions

RGB
List of 3 color values
ranging from 0 to 255

int r: red value
int g: green value
int b: blue value

List Standard array list.length()

Canvas
Two-dimensional array
of pixels which Pointers
act on

int x: number of pixels long
int y: number of pixels high

canvas.x: length of canvas
canvas.y: height of canvas
canvas.close(): stop editing
canvas and generate SVG.
There will be as many SVGs
produced as there are
canvas.close() calls.

Pointer
Pen used to draw pixels
and move around
on canvas

Canvas c: canvas on which
pointer will draw
int x: starting x coordinate
int y: starting y coordinate

pointer.x: x coordinate
pointer.y: y coordinate
pointer.color(RGB rgb):
set color for future
markings
pointer.pixel: mark pixel
with color

5 Keywords

Keyword Example
if/else if(1) { }
for for (int i = 0; i < 5; i++) { }
while while(1) { }

6 Operators

Operator Usage Example
= Assignment int a = 3
==, ! = Equality a == b
<, >, <=, >= Comparison 2 < 3
+, -, *, /, % Addition, subtraction, multiplication, division, modulo a + b
++, – Increment/decrement int by 1 a++
&&, ||, ! Logical AND, OR, NOT a && b
/\ Comment /\This is a comment

2

7 Tortoise Library Functions

Function Description

draw(int pixels, int degrees, RGB rgb)
colors pixels number of pixels in the direction
of degrees the RGB value. This function is useful
to minimize loops written in Reptile.

set(int x, int y) changes Tortoise object’s coordinates to (x,y)

8 Sample Code

gcd.rt

/\ Reptile retains basic Java functionality

int gcd(int a, int b) {

if (b==a) {

return a;

}

else {

return gcd(b, a%b);

}

}

main.rt

/\ Building basic shapes with Reptile

/\ make a canvas

Canvas canvas = new Canvas(100,200);

Pointer ptr = new Pointer(canvas,0,0);

RGB blue = new RGB(0,0,255);

/\ set color for drawing

ptr.color(blue);

/\ point to the right and start drawing

ptr.point(90);

for (int i = 0; i < 50; i++) {

ptr.pixel(ptr.x, ptr.y);

ptr.x ++;

}

ptr.point(180);

for (int i = 0; i < 70; i++) {

ptr.pixel();

ptr.y ++;

}

ptr.point(270);

for (int i = 0; i < 50; i++) {

ptr.pixel();

ptr.x --;

}

ptr.point(0);

for (int i = 0; i < 70; i++) {

ptr.pixel();

ptr.y --;

3

}

/\ diagonal line:

ptr.x = 50;

ptr.y = 0;

ptr.color(new RGB(255,0,0));

ptr.point(135);

for (int i = 0; i < canvas.x; i++) {

ptr.pixel();

ptr.x ++;

ptr.y ++;

}

canvas.close();

Output:

mainWithTortoise.rt

/\ This program accomplishes the same thing

import Tortoise;

Canvas canvas = new Canvas(100,200);

Tortoise tortoise = new Tortoise(canvas,0,0);

tortoise.draw(50,90,new RGB(0,0,255));

tortoise.draw(70,180,new RGB(0,0,255));

tortoise.draw(50,270,new RGB(0,0,255));

tortoise.draw(70,0,new RGB(0,0,255));

tortoise.set(50,0);

tortoise.draw(50,135,new RGB(255,0,0));

canvas.close();

Output:

4

