Reptile (.rt)
Project Proposal

Aileen Cano (ac4440), Aviva Weinbaum (aw3156),
Lindsey Weiskopf (1tw2115), and Hariti Patel (hvp2105)

February 2021

1 Introduction

Reptile is a programming language that is intended to support libraries that streamline the process of creating
simply-coded graphics. As more children are learning computer science at a younger age, there is a demand
for simple programming languages that teach computer science principles in a digestible and visual manner.
Languages typically labeled for beginners like Scratch and Swift Playgrounds teach kids to code by showing
immediate visual results from code — whether that is a simple square or a complex environment built upon
existing code blocks. Further, libraries like Turtle graphics add novelty to simple image-building operations
by showing a turtle drawing the desired shape. The goal of Reptile is to build upon the success of these
“beginner” programming languages to provide immediate gratification to the coders through graphics.

2 Description

Reptile is a geometric figure drawing language built on a standard canvas and pointer data type. The lan-
guage is object-oriented, allowing for the creation of libraries to build on the existing language architecture
to create different kinds of graphics. It is procedural and imperative. The language will use java-like syntax
and is strictly typed.

To showcase the object-oriented nature and intended purpose of Reptile, we will create the library Tor-
toise. This library will use the canvas and the pointer provided by the language to create a tortoise object
with simple functions. Ideally, this would be easy enough for a beginner programming to use while yielding
a tangible image result.

Features of Reptile

Simple arithmetic and functional operations using objects
Creation of canvas with a movable pointer

Ability to mark pixels with different colors

Produce an SVG

Features of the Tortoise library

e Pixel manipulation within the canvas and all features from main language
e Functions to move the tortoise specifying pixels, angles, and colors
e Encapsulation of vector calculations to provide complex functions with simple calls

Other possible user-constructed libraries

e Lizard - Library for drawing simple shapes
e Snake - Library for creating curved shapes and lines
e Chameleon - Library for creating color gradients

3 Simple Data Types

Simple Data Type | Details Example
int any signed integer 3
float any floating point decimal | 0.3
boolean Oor1 0
string standard string ”hello”
4 Complex Data Types
Complex Data Description Constructor Functions
Type Parameters
List of 3 color values ¥nt r: ved value
RGB raneine from 0 to 255 int g: green value
) int b: blue value
List Standard array list.length()
canvas.X: length of canvas
canvas.y: height of canvas
Two-dimensional array | . . canvas.close(): stop editing
. . . int x: number of pixels long
Canvas of pixels which Pointers int v+ number of pixels hieh | CAEVAS and generate SVG.
act on y: P &% | There will be as many SVGs
produced as there are
canvas.close() calls.
pointer.x: x coordinate
Pen used to draw pixels Canvas c: canvas on which pgiﬁfzgi‘Z;lﬁrc(()lgéga:eb)'
. P pointer will draw p ’ gb):
Pointer and move around X . . set color for future
on canvas int x: starting x coordinate markines
v int y: starting y coordinate . 5 . .
pointer.pixel: mark pixel
with color
5 Keywords
Keyword | Example
if/else if(1) { }
for for (int i =051 < 5; i++) { }
while while(1) { }

6 Operators

Operator Usage Example

= Assignment inta=3

=== Equality a==>b

<, >, <=, >= | Comparison 2<3

+ %5/, % Addition, subtraction, multiplication, division, modulo | a + b

++, — Increment/decrement int by 1 at++

&&, ||, ! Logical AND, OR, NOT a&& b

/\ Comment /\This is a comment

7 Tortoise Library Functions

Function

Description

colors pizels number of pixels in the direction

draw(int pixels, int degrees, RGB rgb) | of degrees the RGB value. This function is useful

to minimize loops written in Reptile.

set(int x, int y)

changes Tortoise object’s coordinates to (x,y)

8 Sample Code

ged.rt

/\ Reptile retains basic Java functionality

int gecd(int a, int b) {

return gcd(b, a%b);

if (b==a) {
return a;
3
else {
}
}
main.rt

/\ Building basic shapes with Reptile

/\ make a canvas
Canvas canvas = new Canvas(100,200);
Pointer ptr = new
blue = new RGB(0,0,255);

RGB

Pointer(canvas,0,0);

/\ set color for drawing

ptr.

color(blue);

/\ point to the right and start drawing

ptr.

for

ptr.

for

ptr
for

ptr.

for

point (90);
(int i = 0; i
ptr.pixel(ptr.
ptr.x ++;

point (180);
(int 1 = 0; i
ptr.pixel();
ptr.y ++;

.point (270) ;

(int 1 = 0; 1
ptr.pixel();
ptr.x --—;

point (0);
(int 1 = 0; i
ptr.pixel();
ptr.y -—;

< 50; i++) {
x, ptr.y);

< 70; i++) {
< 50; i++) {
< 70; i++) {

}

/\ diagonal line:

ptr.x = 50;

ptr.y = O;

ptr.color(new RGB(255,0,0));
ptr.point(135);

for (int i = 0; i < canvas.x; i++) {
ptr.pixel();
ptr.x ++;
ptr.y ++;

}

canvas.close();

Output:

mainWithTortoise.rt

/\ This program accomplishes the same thing
import Tortoise;

Canvas canvas = new Canvas(100,200);
Tortoise tortoise = new Tortoise(canvas,0,0);

tortoise.draw(50,90,new RGB(0,0,255));
tortoise.draw(70,180,new RGB(0,0,255));
tortoise.draw(50,270,new RGB(0,0,255));
tortoise.draw(70,0,new RGB(0,0,255));

tortoise.set(50,0);
tortoise.draw(50,135,new RGB(255,0,0));

canvas.close();

Output:

