
COMS W4115: RJEC Language Proposal
Really Just Elementary Concurrency

Riya Chakraborty (rc3242), Justin Chen (jbc2186),
Yuanyuting (Elaine) Wang (yw3241), Caroline Hoang (cjh2222)

3 February 2021

1 Introduction

RJEC (Really Just Elementary Concurrency) is an imperative language with a
primary focus on concurrent programming. It is based on Go, and its syntax
and features are largely a strict subset of Go’s. Like Go, RJEC is imperative,
but may contain some features that enable some more functional style. We
plan to incorporate syntactical features and concurrency abstractions from Go
as language primitives. These features will enable somewhat higher-level, CSP-
style concurrency, which are useful in distributed systems applications.

2 Language Features

2.1 Basic Syntax

With RJEC, curly brackets ({}) are used to mark the scope of function defini-
tions. RJEC’s syntax enforces that the opening brace be on the same line as
the function header.

Statements in RJEC can be terminated by either semicolons or newlines. Id-
iomatically, statements should be terminated by newlines, with semicolons being
used for specific use cases only, such as separating the conditions of a for loop.
During the lexical analysis stage, when a terminating newline is detected at the
end of a statement, a semicolon will be automatically inserted by the lexer.

The syntax uses // for single line comments, and /* */ for multi-line com-
ments.

2.2 Data Types

RJEC is statically typed and strongly typed. The language will support five
basic types: int, float, bool, char and mutex. In addition, it will also support

1

COMS W4115 RJEC Language Proposal

four composite types: arrays, struct, chan and func. To this end, strings will be
represented as char arrays rather than as its own type.

Data Type Description Example

Basic:

int numeric integer type (4 bytes) var i int = 5

float floating-point numeric type (8 bytes) var f float = 5.1

bool

boolean type represented
by literals ’true’ and ’false’

This language does
not support ’truthy’ values.

(i.e. 0 != false)

var b bool = true

char character type (1 byte) var c char = ’a’

mutex represents a POSIX mutex var m mutex = make(mutex)

Composite:

array

fixed-length array type that
contains mutable elements

It is initialized with
a length parameter

(in the example, length = 10)

var a1 [10]int

var a2 [10]char

struct
fixed structure struct type
that contains mutable elements

type coord struct{
x float

y float

}
chan represents a channel object var m chan int = make(chan int)

func represents a function object
func add(x int, y int) int{

return x + y

}

2.3 Variable Declaration

Variables are declared and initialized with the following syntax:

var i int = 5

Each type has a “zero value”: 0 for numerics, false for bools, and '\0' for
chars. A variable that is declared without explicit initialization will be initial-
ized to its type’s zero value.

We plan to implement compile-time type deduction for declaring variables. This
feature is borrowed directly from Go, and is also similar to auto from C++11.

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 2

COMS W4115 RJEC Language Proposal

Unlike type inference in functional langauges, it is fairly basic and is just set-
ting the type of the newly-declared variable to the type of the value on the
right-hand-side:

i := 5 // equivalent to previous declaration

Arrays may be declared as follows:

var a [10]int // initializes an array of size 10 of all 0s

Or:

b := [5]int{0, 1, 2, 3, 4}

Structs may be defined as follows:

type coord struct {

x float

y float

}

And declared/initialized as follows:

c := coord{

x = 5.0,

y = 5.0,

}

Any struct element which is not explicitly initialized is set to its zero value.

Channels and mutexes are initialized and allocated resources using the make()

function:

c := make(chan int)

Variables only remain in scope, except for global variables, which are declared
outside of functions.

2.4 Type Conversion

RJEC enforces a strong typing system, which means the language doesn’t con-
duct implicit type conversions/casting. Operands on the two sides of binary
operators have to be of the same type, and failure to abide by the typing sys-
tem will lead to compiler errors. For example, 1 + 2.0 will lead to a compiler
error without casting either operand to the other operand’s type first.

Note that int and bool are treated as distinct types, which means statements
such as 1 == true will lead to errors as well.

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 3

COMS W4115 RJEC Language Proposal

Operator Example

+, -, /, *, % arithmetic operators

=, :=, +=, -=, /=, *=, %= assignment operators
++, -- increment and decrement operators

==, !=, >, <, <=, >= same type equality operators
&&, ||, ! logical AND, OR and NOT operators
->, <- channel send and receive operators

[] array selection and instantiation operator
. struct access operator

2.5 Operators

RJEC will support the operations displayed in the above chart. The precedence
of operators is dictated in the same ways as Go.

2.6 Reserved Words

1. Data types: int, float, bool, char, mutex, chan, struct, array, nil.

2. Control flow: if, else, for, break, continue, select, case, defer,
return.

3. Declarations: var, type, yeet (for opening a new concurrent routine/thread),
func.

4. Miscellaneous: range, main.

2.7 Control Flow

The main elements of control flow of RJEC are for, range, if/else, select,
defer.

The for loop works the way it does in Go.

We would also like to support range for loops for arrays and channels, which
can be used as following:

for i, v := range arr {}

This allows for iteration through an array, with the first variable i as the index
and the second variable v as the value.

for v := range channel {}

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 4

COMS W4115 RJEC Language Proposal

This allows for iteration through that which is received via a channel - it also
blocks until next value is received in said channel.

if/else statements must contain boolean conditions, do not have parenthe-
ses and must use cuddled else clauses:

if 7%2 == 0 {

...

} else {

...

}

select blocks and waits on multiple channels and acts on the first one it receives:

select {

case c <- x:

x, y = y, x+y

case <- quit:

return

}

defer is used to defer the execution of certain statements until right before the
current function returns. Just as in Go, defer can be used to ensure a mutex
will be unlocked immediately before its associated function returns:

func sample(data int) {

lock(mu)

defer unlock(mu)

if data... {

return ...

}

if data... {

return ...

}

// do more stuff

return ...

}

break, continue, return are all reserved words that can be written alone
inside of the contents of a for loop (as an example). They have the usual
functionality that we associate with them.

2.8 Functions

All functions in RJEC are pass-by-value and may return more than one value.
That is, there are no pointers to change a pre-existing object’s contents directly

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 5

COMS W4115 RJEC Language Proposal

via a function.

Function declaration syntax is as follows:

func add(x <parameter_type1>, y <parameter_type2>) <return_type>{

return x+y

}

It is also possible to pass functions as parameters for other functions.

func compute(fn func(int, int) int) int {

return fn(3, 4)

}

2.9 Built-in Functions

RJEC includes existing built-in functions which support various useful and com-
mon operations on arrays and mutexes.

Arrays are fixed-length but mutable, and the associated RJEC functions are:

• length(arr) - we note that arrays in RJEC do not dynamically resize

Mutexes are also included as a key aspect of how concurrency works in RJEC:

• lock(mu) - a lock mechanism for the mutex, ensures exclusive access to
data (this avoids data read/modification conflicts)

• unlock(mu) - unlock or free mutex such that data is again openly acces-
sible by a RJEC routine

Printing is supported in two contexts:

• printf("%d\n", x) - formatted C-like print

• println(x) - print x, inserting a new line at the end

We also support:

• typeof(x) - to determine the data type of variable x

Finally, for allocating or deallocating resources:

• make(chan int) - to create new channel or mutex

• close(ch) - to close/destroy channels or mutexes

2.10 Standard Library

Some functions specified above, such as the print function, may be contained
in the standard library instead.

Furthermore, we intend to write some basic concurrent algorithms useful for
distributed programming, such as MapReduce and Paxos. If we can make them
general enough, we intend to include them in our standard library.

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 6

COMS W4115 RJEC Language Proposal

2.11 Concurrency

RJEC has threads, based off Go’s goroutines but implemented as POSIX threads.
A thread running a given function foo is started with the following:

yeet foo(2, 4)

And terminates when the function terminates.

Mutexes are used for lower-level locking. Mutexes can be initialized as follows:

mu := make(mutex)

And can be locked/unlocked as follows:

lock(mu)

unlock(mu)

As is standard, a lock() waits until the lock is released if another thread is
holding the lock.

RJEC also offers channels for higher-level concurrency abstraction. Channels
basically work as queues to send/receive information between threads. Channels
hold a particular type, and are initialized as follows:

c := make(chan int)

The sending thread follows this syntax:

c <- 5

And the receiving thread follows this syntax, which blocks until receiving a
value:

i := <- c

Channels are by default unbuffered, which means they can hold an unbounded
number of values at a time. Bounded channels, which hold a specified maximum
number of values, can also be declared as follows:

c := make(chan int, 10)

Mutexes and channels can be closed as follows:

close(mu)

close(c)

In terms of implementation details, channels should contain a pointer to some
shared memory for communication purposes. However, no pointer logic is ex-
posed to the programmer.

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 7

COMS W4115 RJEC Language Proposal

2.12 Extra Features

We have discussed the potential of adding a few other features that we thought
may be interesting to implement. Here are some of the options that we came
up with:

1. sync library - similar to Go’s sync, we could potentially add greater sup-
port for concurrency features.

2. interfaces - Go interface

3. higher order functions - pass and return functions into/from other func-
tions

3 Example Code

3.1 Euclid’s Algorithm

func gcd (a int, b int) int {

for b != 0 {

t := b

b = a % b

a = t

}

return a

}

3.2 Single Producer-Consumer

func producer (data chan int, quit chan int) {

i := 0

for {

i ++

select {

case data <- i:

case <- quit:

close(data)

return

}

}

}

func main () {

data := make(chan int)

quit := make(chan int)

// producer

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 8

COMS W4115 RJEC Language Proposal

yeet producer(data, quit)

// consumer, terminates when i reaches arbitrary value

for i := range data {

print(i)

if i == 5 {

quit <- 1

close(quit)

}

}

return

}

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 9

