
Photon - Programming Language

Proposal

Akira Higaki (abh2171) - Manager
Calum McCartan (cm4114) - System Architecture
Franky Campuzano (fc2608) - Language Guru

Phu Pham (pdp2121) - Tester

February 1, 2021

1 Introduction

Photon is a language that is centered around modifying and editing images,
similar to the functionality of Adobe Photoshop. The language is inspired by
workflows in the visual effects industry, especially the node-based software Nuke.
We aim to be able to provide functionality similar to that of Photoshop through
a C-like syntax. The end goal is to have users upload JPG images (or multiple
JPGs for videos) and put it through an automated and efficient editing pipeline
through our language to output simple editing procedures quickly.

2 Language Structure

2.1 Primitives

Type Description
Int An integer

Float A floating-point number
String A sequence of characters

Boolean True or False values
Pint A special type of Int whose value can only range from 0 to 255
Null Primitive that holds nothing

2.2 Structures

Type Description
Array A single unit of multiple grouped values
Pixel A group of four Pint values
Image A matrix of pixels

1

2.3 Keywords

Name Description
this Refers to the current instance of the class
func Starts a function declaration

return Sends the function result back to the caller

2.4 Operators

Type Description
+ Appends primitives or images (point-wise)
- Subtracts primitives or images (point-wise)
∗ Multiplies primitives; images (point-wise with constants, images)
/ Divides non-zero primitives or images (point-wise)

==, <=, >=, <, > Compares primitives
[] Array creation and element calling

2.5 Functions

Name Description
load(String filepath) Loads an image into the program

output(String filename) Saves an image
flip(Image sample) Reverses the image along the horizontal axis

rotate(Image sample) Rotates the image 90 degrees to the right

2.6 Flow Control

Type Description
if, elif, else Conditional statements
for, while Iterative Statements

3 Language Features

3.1 Pint

The ’pint’ primitive type (pixel-integer) is an unsigned 8-bit integer with a range
of 0-255. This is ideal for efficiently storing each of the four RGBA components
of a pixel. In addition, we would like to automatically prevent integer overflow
on the pint type (eg. 200 + 60 = 255). This will be useful for the operations
that are performed on pixels.

3.2 Pixel

The ‘pixel’ type is made up of 4 components: red, green, blue, and alpha
(RGBA). The alpha layer will allow us to combine images in more powerful
ways. It will be possible to combine pixels using the ‘+’ and ‘-’ operators, but

2

this will not add the components of the image in the same was as normal matrix
addition. Instead, the colour components will be added using:

red1 * (alpha1/255) + red2 * (alpha2/255)

The alpha values will be combined using:

alpha1 + alpha2

Our ‘pint’ type will ensure that the resulting values are clamped between 0 and
255.

3.3 Image

The ‘image’ type is a 2D array (matrix) of pixels. It will be possible to combine
images using the ‘+’ and ‘-’ operators, and this will combine each pixel in the
images as described above.

3.4 Types

All variables must be declared with their type (static typing). When using op-
erators on two variables they must both be of the same type, with the following
exceptions:

• Any numeric types can be used together, and will return the more precise
type (eg. int + float = float)

• A string and numeric type will be concatenated when used with the ‘+’
operator

3.5 Syntax

• The end of a statement is denoted by a semicolon

• The language is not sensitive to indentation

• A line comment is denoted using the # symbol

3

4 Example Code

4.1 Maximum of an array

This is a simple subroutine that finds the largest element in an array.

func int maxElement(inArray) {

int max = 0;

for (int i = 0; i < inArray.length; i = i + 1) {

if (inArray[i] > max) {

max = inArray[i];

}

}

return max;

}

4.2 Flipping an image

Below is a subroutines that uses one of the built-in functions to flip an image.
This demonstrates loading/saving in an image.

func string flipImage(filePath) {

image testImage = load(filePath);

testImage = flip(testImage);

returnPath = output(testImage);

return returnPath;

}

4.3 Image addition

Below is a subroutine that uses the alpha values to combine two images together.

func image halfHalf(image1, image2) { #600x600 pixel image, alphas = 255 by default

for (int i = 0; i <= 300; i = i + 1) {

for (int j = 0; j <= 600; j = j + 1) {

image1[i,j].alpha = 0;

image2[i+300,j].alpha = 0;

}

}

image3 = image1 + image2;

return image3; #left side of image1, right side of image 2

}

5 References

VSCOde - Fall 2018 Project
Coral - Fall 2018 Project
Nuke - Video Editing Software

4

http://www.cs.columbia.edu/~sedwards/classes/2018/4115-fall/proposals/VSCOde.pdf
http://www.cs.columbia.edu/~sedwards/classes/2018/4115-fall/proposals/Coral.pdf
https://www.foundry.com/products/nuke

	Introduction
	Language Structure
	Primitives
	Structures
	Keywords
	Operators
	Functions
	Flow Control

	Language Features
	Pint
	Pixel
	Image
	Types
	Syntax

	Example Code
	Maximum of an array
	Flipping an image
	Image addition

	References

