
The Matcat Language Proposal

Davit Barblishvili, Mariam Khmaladze, James Ryan, Sarah Huang

1 Overview of Language - Sarah

The Matcat language is an imperative, mathematically-inclined language whose goal is to

aid in the writing and computation of linear algebra operations. The implementation of these

functions will occur in similar ways to the Wolfram language (see

https://reference.wolfram.com/language/guide/MatricesAndLinearAlgebra.html​). Matcat aims to

mimic functionality from Java and C.

Our primary goals are:

● To simplify operations on matrices. Examples of these include row reduction, computing

transformations, finding eigenvalues/eigenvectors, diagonalizing/transposing a matrix,

performing the Gram-Schmidt process to find orthogonal bases, and others.

● To achieve Java-like syntax

● To allow users to write readable code; matrix/vector structures and the operators must

mirror mathematical symbols and read intuitively

● Compile time optimizations (static typing)

https://reference.wolfram.com/language/guide/MatricesAndLinearAlgebra.html

2 Language Details - Davit and James

● Data Types and Operations

Matcat will include the core data types of Java - int, char, float, string, boolean. In

addition, the data types matrix and vector will be implemented in order to help programmers

perform linear algebra and optimize their operations at compile time. See table below for

description of operations. In line with Java, Matcat will be explicitly typed.

Data Type Description Operations Examples

int 4 byte integer =, ==, !=, +, -, *, /, %, ++, –,

>>, <<, +=, -=, <, >, =<, >=

4+5 → 9

9 == 9 → True

9 =< 1 → False

2 << 1 → 4

int x = 16;

char 1 byte data type

holding character

=, ==, !=, +, ++, –, <, >, =<,

>=

‘A’ == ‘A’ → True

‘A’ + 32 → ‘a’

boolean 1 byte, evaluates to

True/False

=, ==, !=, !, &&, || True || False → True

True && False → False

string Array of chars =, ==, !=, <, >, =<, >=, + “Hello” > “World” → True

“a” + “b” → “ab”

float A 8-byte floating =, ==, !=, +, -, *, /, %, ++, –, 3 + 4.0 = 7.0

● Keywords

The following words are reserved in Matcat and can not be used for any other purpose

outside of their defined functionality → {while, for, if, else, return, true, false, int, float, char,

point number bytes +=, - =, <, >, =<, >=

vector Analogous to array -

holds a list of int or

float; immutable size

once instantiated, but

indexes can be

reassigned

+ Vector addition

- Vector subtraction

* Vector Multiplication

.​ Dot product

x Cross Product

*​.​ Product with a scalar

+​.​ Addition by a scalar

== Vector equality

[1, 0] + [0, 1] → [1 1]

[2, 3] ​.​ [3, 4] → 18

[1, 2, 3] x [4, 5, 6] → [-3, 6, -3]

5 + [10, 5] → [15, 10]

Indexing

v[0]

matrix Essentially a 2D

array, composed of

vectors; immutable

dimensions after

declaration

* Product of two matrices

* Product with a vector

*​.​ Product with a scalar

+​.​ Addition by a scalar

+ Matrix addition

- Matrix subtraction

== Matrix equality

[[1, 2], [3, 4]] *

[[5, 6], [19, 22]] →

[[19, 22], [43, 50]]

[1, 2] *v [[6, 7], [2, 3]] → [20, 8]

m[0] → returns vector

bool, string, new, print}. In addition to these typically reserved words, we are going to add a few

new keywords that would be useful to efficiently manipulate the matrices → {inverse, transpose,

scalar, dim, det, rref}

Keyword Description Example

inverse A function that is going to take a matrix data type

and return a new matrix in inverse form.

inverse(matrix1) → matrix2;

transpose A function that is going to take a matrix data type

and return a new matrix in its transpose form.

transpose(matrix1) → matrix2;

scalar A function that is going to take two arguments - a

scalar, and matrix - and perform scalar

multiplication and return a new matrix.

scalar(matrix1, 3) → matrix2;

dim A function that takes one argument - a matrix -

and returns a dimension of it.

dim(matrix1) → 2X3.

det A function that takes one argument - a matrix -

and returns a determinant value of it.

det(matrix1) → -4;

rref A function that takes one argument - a matrix -

and returns boolean value {true/false}. rref

determines whether or not a matrix is in rref form.

rref(matrix1) → True;

● Control flow

- The following keywords are reserved for control flow, and work like in Java:

if...else, while, for().

● Function/function declaration

- Matcat supports function declaration in the following syntax:

- We are going to allow the returning multiple data types; explicit order of the

return types is going to be in the function declaration. Means of capturing

multiple return types:

- Previously declared x can be assigned, while y must be explicitly typed. This order must

match that of the function declaration.

● Comments

- Single line comment → // This is a comment line

- Multi line comment → /* this is a comment line but over multiple lines */

● Memory

- The Matcat language will be ”pass by reference,” as in Java, and we are going to

implement a memory management system that will be handled internally by a

simple garbage collector (just like in Java).

- To allocate data on the heap, we are going to use a keyword → new.

● User Defined Types
- Matcat will allow for lightweight structs, similar to C. Example:

3 Examples - Mariam

