Konig Programming Language Proposal

Jessica Ling Yan (jly2121), Matteo Sandrin (ms4911),
Delilah Beverly (db3250), Lord Crawford (Irc2161)

February 1, 2021

1 Overview

The Konig language is named after the “Seven Bridges of Konigsberg”, a famous math problem that
laid the foundations of graph theory. It also means “king” in German. The language is designed
to make defining and manipulating graphs easier and more enjoyable.

Konig is an imperative, statically typed language. The language’s syntax is similar to Java, but
with the addition of a number of operators specific to graph theory. Furthermore, a number of
arithmetic operators perform a dual function as both set operators on graphs, nodes and edges,
and as regular arithmetic operators.

Konig features a set of standard library functions, which allow the user to easily traverse and apply
modifications to a graph. Depth-first search and breadth-first search are implemented out of the
box, and can be readily used inside any loop.

2 Language Detalils

2.1 Types

The Konig programming language supports several primitive data types. Some of these data types
can be found in any programming language, such as int, bool, float and char. Other data types
are specific to graph theory, such as node, edge and graph. The language is statically and strongly
typed, so the type of each variable is explicitly specified at the time of declaration. For those data
types that contain another primitive, such as a node, the type of that primitive is specified between
angle brackets after the container’s type, in a Java-like fashion.


https://en.wikipedia.org/wiki/Seven_Bridges_of_Konigsberg

Data Type Description Example

int A 4 byte integer type int x = 4;

bool A 1 bit boolean type int x = false;

float An 8 byte floating-point type int x = 4.0;

list A variable-length list type list<int>x = list<int>{1,2,3};
node A single graph node type node<float>x = node{4.0};

edge A single graph edge type edge<int>x = edge{from, to, val};
graph A graph type graph x = graph{};

2.2 Operators

Konig implements a set of operators that are specific to graph theory, such as , ~> and >>. These
operators make it easy to create and compose graphs, both directed and undirected. In addition,
Konig implements all classic arithmetic operators, and a set of comparison operators.

Operator  Operands Description

. Creates a directed edge from a to b. It will fail
a is a node

a~>Db . if both a and b are not members of the same
b is a node
graph
. Creates an undirected edge between a and b. It
a is a node . -
a~Db . will fail if both a and b are not members of the
b is a node
same graph
i d
a>>g Z 1: Z gl?a;h Adds the node a to the graph g
a+b
a-b . . .
. ) Performs the corresponding arithmetic opera-
a/b a is an int, float . . s
* . . tion (sum, difference, float division, multiplica-
a*b b is an int, float . .
tion, increment, decrement)
a++
a
a >b
a <b a is any type
a =>b b is any type Performs the corresponding comparison opera-
a<=b Y WP tion, and returns a boolean value
o a and b have the same type
al=Db
a and b . . .
a is a bool Performs the corresponding boolean operation
aorb .
ot & b is a bool between boolean values




2.3 Keywords

The following keywords are reserved in Konig:

int, bool, float, char, graph, node, edge, list
for, if, else, else if, while
ko, return, true, false, and, or, not

2.4 Control Flow

Konig implements control flow in a standard manner:

if (exp) {
} else {
b

for (int i; i < 10; i++) {

while (exp) {

2.5 Functions

Functions in Konig are defined with the reserved keyword “ko”. The function arguments are
specified inside the parentheses and after the function name. The return type is specified after the
closing parenthesis.

ko add(int x, int y) int {
return x + y;



2.6 Comments

Comments are specified with a double forward-slash. Multiline comments use a forward slash paired

with an asterisk.

graph g

= graph{} // this is a comment

/* this is a multiline comment
and it keeps going
and going */

2.7 Standard Library

The Konig programming language features a rich standard library for creating and manipulating
graphs. The exact scope and breadth of this library is still under discussion, but we feel confident

that the following functions will be implemented:

Function signature

Description

ko

print(graph g) int

Visualize the graph g

ko

neighbors(node n) list<node>

Returns a list of all neighbors of the
node n

ko

edges(graph g) list<edge>

Returns a list of edges in the graph,
without any ordering guarantee

ko

nodes(graph g) list<node>

Returns a list of nodes in the graph,
without any ordering guarantee

ko

isNeighbor(node a, node b) boolean

Returns true if nodes a and b have
an edge connecting them

ko

dfs(graph g, node start) list<node>

Returns a list of nodes in the graph,
in depth-first search order

ko

bfs(graph g, node start) list<node>

Returns a list of nodes in the graph,
in breadth-first search order

ko

paths(node a, node b) list<list<node>>

Computes all the possible paths
from node a to node b

ko

fullyConnect(graph g)

Connects each node to every other
node in a given graph




3 Examples

3.1 Feature Showcase

graph g1 = graph{}; // initialize an empty, undirected graph
node<int> n@ = node{@}; // initialize a node with value @

ne >> gl // add a node to the graph gI

node n1 = node{1}; // initialize a node with value 1
node n3 = node{3}; // initialize a node with value 3
nl ~ n2; // create an undirected edge between nl1l and n2

nl "> n3; // create a directed edge from nl1 to n2

// create an undirected edge between nl1 and n2, labeled "amazing edge"”
edge el = edge{nl, n2, true, "amazing edge"}

graph g2 = Graph(); // initialize an empty, undirected graph
node{2} >> g2;

list<node> nodes = dfs(g3, n@); // traverse g3 with depth-first search
for (int i = @; i < length(nodes); i++) {
print(nodes[i]); // print the value of each node

// We'd like to link it with a graph visualization library
print(g3);



3.2 Algorithm Implementation

Calculate all the possible paths between two friends in a social network.

list<list<char>> names = list<list<char>>{
"John",
"Ann",
"Brian,
"Monica”

};

list<list<int>> friends = list<list<int>>{
list<int>{1, 3}, // John's friends
list<int>{@, 2, 3}, // Ann's friends
list<int>{1} // Brian's friends
list<int>{0, 1% // Monica's friends

};

graph g = graph{};

for (int i = @; i < length(names); i++) {
node n node{names[il}; // create new node n
n > g; // add node n to graph g

for (int i = 0; i < length(friends); i++) {
list<int> nbrs = friends[i];
for (int j = 0; j < length(nbrs); j++) {
if (not isNeighbor(glil, glnbrs[jJ1l) {
g[i]l ~ glnbrs[jl]; // create an undirected edge

}
}
}
list<list<node>> p = paths(gl@], g[3]1) // how many paths between John and Monica?
print(p);
/*
* =>
* list<list<node>>{
* list<node>{
* node{" John"},
* node{"Monica"}
* 3,
* list<node>{
* node{" John"},
* node{"Ann"3},
* node{"Monica"}
* }
* 3

>*
~



	Overview
	Language Details
	Types
	Operators
	Keywords
	Control Flow
	Functions
	Comments
	Standard Library

	Examples
	Feature Showcase
	Algorithm Implementation


