Graphene

Ashar Nadeem an3056
Shengtan Mao sm4954
Vasileios Kopanas vk2398
Matthew Sanchez mcs2307

1 Introduction

Graphs have become one of the most common ways to store and represent data and information in
Computer Science, being used in nearly every application from social media platforms to mapping
services such as Waze. The norm with these graphs, and their algorithms, is needing to deal with messy
implementations with lots of code and moving pieces. There is an unequivocal need to create a
language which accurately allows programmers to create, represent and manipulate graphs while
abstracting and simplifying these functions. The motivation for our language arose from the complex
nature of graphs employed in representing and resolving the most intricate problems. The purpose of
our language is to create graphs and implement commonly used graph algorithms as smooth and
seamless as possible, while still allowing flexibility in customization. The basis and flow of the language
was inspired by looking at pseudocode within CLRS, and trying to implement them as closely as

possible in a syntax similar to the C++ programming language.

2 Data Types

Type Description

int 32-bit integer

double Double precision floating point
string Text

bool Boolean

graph<T1, T2> Graph with of type T1 and edge weight type T2

node<T> Node of type T
array<T, n> Array of type T with size n
list<T> Linked list of type T

tuple<> Tuple with heterogeneous elements

3 Keywords

Keywords

Description

if, else if, else
for, while
return
continue

break

<type> <name> (<parameters>) {}

{

Conditional statements

For-loops, while-loops

Exit function and return value

Skip to the next iteration of the loop
Exist the loop

Function declaration

End of statement

Initialization list, scope declaration

4 Operators

Operations Description

= Assignment

+,-/, % Integer/double arithmetic

==, <, <=,>,>=, = Integer/double comparison

||, &&, ! Logical operators

-(w)>, Create a directed edge with weight w between two nodes

-> Create a directed edge with weight 1 between two nodes
-(w)- Create an undirected edge with weight w between two nodes

- Create an undirected edge with weight 1 between two nodes

S Built-in Functions

Built-in Functions

Description

node<T> n {k, v}

n.edges()

g.add(node<T> n)
glk]

g.del(k)

ali]
L.push_front(T e)
L.push_back(T e)
l.pop_front()
L.push_back()

Create a node with a key of type int and a value of type T

Return an array containing tuples {weight, node pointed to,
traversable} for the edges of a node

Add a node to a graph; Can create node within the function
Access a node within a graph by its key

Delete a node within a graph by its key

Access an element in an array by its index

Add an element of type T to the front of a list

Add an element of type T to the back of a list

Remove and return the element at the front of the list

Remove and return the element at the back of the list

6 Sample Code

// Declare a graph
graph <int> g,

Adds nodes to the graph
for(int 1 = 0; i < 10; i++){
g.add(i,2*1i)

// Create an edge of weight i from root node to every other node
for(int i = 1; i < 10; i++){

gl0] -(i)> gl[i]

// Overwrite edge from g[0] to g[2] with weight 10
gl0] -(10)> g[2]

// BFS search example (Takes in graph and destination)

bfs (graph<type> g, node<type> n) {

list<type> q;
graph<type> d;

gq.push_back(g.root());
while(!q.empty ()) {
node<type> m = q.pop_front() ;

if(m == n){

return m;

for (node<type> e : v.edges()) {
if (!/discovered.contains (v)) {

q.push_back (e)

