Digo: distributed golang

Hanxiao Lu (h13424), Yufan Chen(yc3858), Sida Huang(sh4081), Wengian Yan(wy2249)
February 2,2021

1 Language Overview

Digo is an imperative, statically typed, compiled programming language inspired by Golang,
but with support for distributed routine. With Digo, we can easily create a master-worker model
program that the master can distribute tasks to worker nodes.

To define a task, we use async asthe keyword to create a new thread to execute a
function. There are two types of async functions: async func foo(...) isalocaltask,and
async remote func foo() isto define ataskthatis delivered to workers and execute
remotely. We also designed future object to define a task.

To fit the master-worker distributed model, the compiled executable has two modes:
master mode and worker mode, to specify when executing. An example to run with master
mode: ./a.out -h 10.23.2.2 -p 80 -m master .Andtorun code in the worker node,
we need to specify its master's port and mode in args: . /a.out -h 10.23.2.2 -p 80 -m

worker .

The following plot exhibits the whole underlying process to make the complicated process
clear:

:Master TO :Master T1 ‘Workerl
: H
init J L create '
>
start listening start listening
WorkerPool

Worker JOIN : <hostname>:<port>

+worker_id: int
. - add worker to pool
+hostname: string =

return

+port:int

user-defined :Master T2
code :

call an async remote function

Fut create :
uture : pick a worker
+id: hash(func_id + args_buf) Create ~ from pool

or wait for an
+func_id :int available one
+worker_id: int

send task

+args_buf: string
+resp_buf: string &__retumresult 1 J
+state : enum(INIT, REQUESTED, ABORTED,DONE) | | 1 writeresultintoresp_buf ||
A :
await future object X
wait for response [E

As shown in the plot, the master keeps two major threads (TO and T1): TO is the main thread
to execute the master function, and when it inits, it creates T1 to create and maintain a socket
sitting there and waiting for any connections from newly-added workers. When a worker
(workerl) is added and starts running, it firstly listens to a port and sends <hostname, port>
to the master. After the master(T1) receives this information, it records <worker_-id,

hostname, port> inWorkerPool. The worker can close the connection after it recieves ACK
from the master.

When executing the master function, everytime a future object is to be created by calling an
async remote function, a new thread (T2 in the diagram) is created with it to:

a. run scheduler to find a proper worker in the WorkerPool maintained by the master. If
there is no available worker, this thread will stuck in a loop until it gets one.
b. after it finds one worker to deliver the task to, it sends <function_id + serialized

parameters + future_object_id> totheassigned worker.

Note that, by design, we only pass values instead of pointers to async remote functions and do
not allow async tasks to access global variables.

When the worker receives task request from the master, it starts a new thread to look for the
function specified by the function_did itrecieved, and then execute the task. After it finishes
the function, it sends a response containing <result, future_object_id> backtothe
master. After the thread (T2) in the master receives the response from the worker, it copies
response to resp_buf inthe corresponding future object. When the master executes await
or gather ,the underlying function enters a loop to check if the resp_buf in the future object is
filled, otherwise it waits for its response in a blocking way.

An example of potential application is map-reduce model where tasks are computational
intensive. Please refer to our word count sample program in the later part.

2 Language Details

2.1 Language Features

Type Scope Static
Type Strengh Strongly Typed

Garbage Collection = Automatic

Type System Statically typed
Evaluation Strict evaluation
Type Inference Yes

2.2 Data Types

Data Type Operation Examples Passed by
value/reference

string +,=,==,>, <, >= <=, I= a:="helloworld" reference

*

int = ==+-,%,/,>,<,>=,<=, %, +=, -=, |5, a:==1 value

++

*

float =, ==+,-,% /,><,>=,<= %, +=, =, I=, a:=1.0 value

++

bool ===, 15, L &&, || a:=true value
future await, = a:= await gcd() reference
slice append(), len(), [begin:end] a:=[lint{1,2,3} reference

2.3 Built-in Functions

Function Signature
append(<slice>, <element>)
len(<slice>)

gather(<future-slice>)

2.4 Keywords

Go

append(a, 4)
b :=a[0:2]

Description

append a new element into a slice

get the length of a slice

await all future objects in a slice. All future

objects in the slice should return the same
type of value.

1 for, if, else, func, return, await, async, remote,

2 var, string, int, float, bool, continue, break

2.5 Control Flows

for loop

1 for i := 0; i < 100; i++ {
2}
3
4 for {}
5
6 for i < 100 {
7 i+=1
8 continue
9 1}
If-else
Go
1 if a>b {
2 } else if a == b{
3 } else {
4 }

2.6 Functions

The normal function looks like Golang.

Go

1 func foo() {
2}

The function named master will be treated as the entry function of the master:

Go

1 func master() {

2}

Function with the async keyword will be treated as an async function to create a new thread
to execute. When the master await <async function> ,the master will check res_bufin
future object and wait for the completion of this thread.

Go

1 async func task() int {
2}

Function with the async remote keyword will be treated as a remotely-executed async
function. When the master await <async remote function> ,internally the program will
pick a worker and let this worker execute this function, and wait for it's response.

Go

1 async remote func task() int {

2}

2.7 Futures

The return result of an asynchronous function is of future type. When a future object is
awaited, the program will blockingly wait for the response of the worker that actually executes
the function.

The layout of a future object looks like:

C

typedef enum {INIT, REQUESTED, ABORTED, DONE} state_t
typedef unsigned int did_t

struct future {
id_t 1id
id_t func_id

© 0o N o b~ W N

id_t worker_-id

=
@

string args_buf

=
=

string resp_buf
state_t state

= e
w N
—

2.8 Comments

Go

1 // inline comment
2 /* comment block */

3 Sample Program

Go
1 // word-count
2
3 // The workers execute this ‘async remote' function.
4 /J/ Calling an ‘async remote' function returns immediately
5 // after the job 1is dispatched to a worker. It does not
6 // wait for the job to finish.
7 // An ‘async remote’ function does not return with return values
8 // defined in the function prototype.
9 // Instead, it returns a future object, on which
10 // user can call await/gather to get the actual return values.
11 async remote func worker_count_word(words []string) ([]string, []int) {
12 // we count the words by first sorting them.
13 Sort(words)
14 resultWord := []string{}
15 resultCount := []int{}
16 if len(words) == 0 {
17 return resultWord, resultCount
18 }
19 word := words[0]
20 resultWord = append(resultWord, word)
21 resultCount = append(resultCount, 1)
22 for i := 1; i < len(words); i++ {
23 if words[i] == word {
24 resultCount[len(resultWord)-1]++
25 } else {
26 word = words[i]
27 resultWord = append(resultWord, words[i])
28 resultCount = append(resultCount, 1)
29 }
30 }
31 return resultWord, resultCount

w
N
[

J
J

S
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

// The master executes this ‘async’ function in a new thread.

// Calling an ‘async’ function returns immediately with

// a implicit future object.

async func count_word(workerWords [][]string) map[string]lint {
futures := []future{}

for

var

for

}

i 1= 0; i < len(workerWords); i++ {

// Calling the ‘async remote worker_count_word function
// will automatically send the task to a worker.

// It does not block.

futures = append(futures, worker_count_word(workerWords[i]))

words map[string]int

i := 0 ; 1 < len(workerWords); i++ {

// Here, we are explicity waiting for the remote task
// worker_count_word(workerWords[7])

// to finish.

resultWord, resultCount := await futures[i]
words[resultWord] += resultCount

return words

func split_file(file string, workerCount int) [J[]string {

reader := FileReader(file)

workerWords := make([][]string, workerCount)

rotate := 0

for

}

{

// Reads until the first occurrence of delim ' ' or '\n'
word, err := reader.ReadString([]Jstring{" ", "\n"})
if err !'= nil && err != EOF {
panic("cannot read file")
}
// Dispatch words to workers evenly
worker := rotate % workerCount
workerWords [worker] = append(workerWords[worker], word)
rotate++
if err == EOF {
break

return workerWords

77 func word_count_entry() {

78 futures := []future{}

79 workerWords := split_file("bookl.txt")

80 futures = append(futures, count_word(workerWords))
81 workerWords = split_file("book2.txt")

82 futures = append(futures, count_word(workerWords))
83 workerWords = split_file("book3.txt")

84 futures = append(futures, count_word(workerWords))
85

86

87

88

89 results := gather(futures)

90

91

92 print("Word Count result of bookl.txt")

93 print(results[0])

94 print("Word Count result of book2.txt")

95 print(results[1])

96 print("Word Count result of book3.txt")

97 print(results[2])

98 }

99

100 func master() {

101 word_count_entry()

102 }

After having compiled this code, we will get an executable. In order to run this executable, we
need to pass three required arguments:

Bash

1 -m [master|worker] specifies whether this is a master or a worker
2 -h <string> hostname of the master
3 -p <int> port of the master

4 Potential Application

Per the design of Digo, it can divide a complicated and computation-intensive task into separate
parts and the master can assign each of them to available workers. Applications of our language
include but do not restrict to the following examples in a ditributed way:

- Image processing: The master wants to know the information about a given picture, it
commands several workers to convolve with different kernels to do object recognition,
object classification and etc.

- Language processing: The master wants to parse different ngrams on a given text, it
commands different workers to do different ngram tasks. First worker to parse unigram,
Second worker to parse bigram and etc.

- Matrix Multiplication: Matrix multiplication is often expensive. But with our language, master
could command each worker to calculate each cell of the output. If task of matrix A*B is given
to master, master commands the first worker to calculate A[0,:] * B[:,0] , second worker to
calculate A[0,:] * B[:,1] and etc

