COMS W4115: Programming Languages and Translators Spring 2021

Project Proposal

Submitted to: Professor Stephen A. Edwards Submitted by: Wednesday, February 3, 2021

I. Introduction and Language Description

The name of the proposed language is “Cb " (pronounced “C FLAT”, alternatively written as
“C-flat”). Cb is not a general-purpose programming language; this language falls under the category of
computer music languages. The C b language is designed to enable ease in musical composition and
audio synthesis as though via a piano keyboard — directly from a computer keyboard.

The Cb language was designed to be intuitive for users with a broad range of music theory
knowledge. Favoring both flexibility and readability, Cb is a programming language that can be as
musically powerful and technically efficient as the coder and composer themself. The language is
statically scoped, strongly typed, statically typed, and complete with mutable and immutable, atomic and
composite data types. Upon compilation, every C b program generates a .WAV file that can be played and
replayed, with increasingly complicated musical features of the user’s choosing.

Users of the Cb language may write programs to construct notes which may form measures.
Measures may be arranged to form structural components of a song, or an entire song. The C b language
provides a full suite of data types, data structures, operators, and functions that allow for realistic control
over composition. With the exception of the rules of a time signature, there is no limit to creativity in C b .
Upon the creation of a simple melody, users have the ability to add liberally complex layers, shift keys, and
experiment with tempo.

Name of Language | C b

Group Members | Jasmine Valera (jav2182) — Team Manager
Katherine Kim (ksk2171) — Language Guru
Isabella Cho (isc2720) — System Architect
Jiayi Yvonne Chen (jc5349) — Tester

Il. Data Types, Data Structures, and an Introduction to Music Theory

e Note: The note is the most atomic data-type. In the C b language, every note is defined by its
tone, octave, and rhythm (the duration of the pitch).

o Tone: There are 12 tones in a single Western musical octave, represented by a letter (C, D, E,
F, G, A, B) and an accidental (5 b #). The 12 tones evenly divide an octave and are each
separated by a half-step. The C b language obeys this convention. To represent a tone, letter
names are modified by an accidental. The & (natural symbol) indicates the natural pitch of
the letter. The # (sharp symbol) raises the natural letter pitch by a half-step, and the b (flat
symbol) lowers the natural letter pitch by a half-step. The Cb language utilizes capital
letters A through G to represent tones, and "+" to represent a sharp, " —"to represent a
flat, and "." to represent a natural. The absence of any accidental assumes a natural, unless
a sharp/flat has been explicitly stated before it, for the same note in the same measure.

o Octave: The octave value acknowledges which octave a tone belongs to, which is important
because there are theoretically infinitely many notes for each of the 12 tones. The C b
language defines the octave value of middle C as 0. The first octave above middle C has an
octave value of +1. The second octave above would have an octave value of +2. And the first

octave below middle C would have an octave value of -1, and the second octave below
would have an octave value of -2. This pattern continues in both directions.

o Rhythm value: A note requires a rhythm value to indicate the amount of time a note is held.
The Cb language strays from conventional music theory in that it does not regard
traditional time signatures in the same way. (Instead, the programmer may be liberal with
measure “size” and tempo. See Measures.) In C b, users are able to select the length of a
note from an suite of rhythms — see table below — each associated with a set number of
beats. The selected rhythm for each note is expressed by a letter, shown below:

Ry |~ N) L L e

Number of Beats 0.25 0.5 0.75 1 1.5 2 3 4

Letter Syntax s e e. q qg. h h. w

o (Rest: Rests are special notes whose duration is specified in the same way as any note. The
rest tone is represented with an R. Applying an accidental +/—/. does not affect the rest.
Moreover, the octave of a rest is 0 by convention, but this also does not affect the rest. A
rest is simply the absence of a played tone for some beats. Rests mean silence.)

Thus, declaring a note in the C b language is done in the following way:

syntax: “note <note name> = (<tone> <octave> <rhythm>);”

note a = (C- 0 q); # Declaring a note with a flat

note b = (C+ 0 q); # Declaring a note with a sharp

note ¢ = (C. 0 qg); # Declaring a natural note

note ¢ = (C 0 q); # Also declaring a natural note (both work)

note cc = (C +1 qg); # Declaring the same note, but one octave higher
note ccc = (C -2 q); # Declaring the same note, but two octaves lower
note d = (R 0 q); # Declaring a rest

note x; # This default to: note a = (C- 0 q);

Additionally, the note data-type in the C b language possesses built-in methods which are shown below.
These methods may be used to access or reassign attributes of a note. Let a be the default note — note

a = (C- 0 q); — for which the following methods are executed to obtain the following return values:
Get Methods (accesses and returns) Set Methods (sets and does NOT return)
Method | Return Value | Return Type Method | Subsequent Expected Values
a.getTone () Cc- # Type char a.setTone (B-) A.getTone () == B- # Type char
a.getoct () |0 # Type int a.setOct (-1) | A.getoct () == -1 # Type int
a.getRthm() | g # Type char a.setRthm(s.) | A.getRthm() == s. # Type char

(For the Set methods, note that each method takes in type char or int, and corresponding Get methods
return the same type.)

e Measures: Measures are data types that contain notes. The only way to create a measure is for
the user to type out every note in it. Measures have two attributes — time signature and voices.

o Time Signature: The time signature of a measure must be declared when the measure is
created. A time signature is akin to a measure’s “size”; it constrains the total number of
beats allowed in the measure. Users may add/edit/delete notes from a measure. However, if
the inputted sum of rhythms in a measure is less than the measure’s time signature, the
remaining beats are filled with rests by default. Also, too many beats trigger an error.

o Voice: The voices of a measure allow for multiple notes to be played in a measure
simultaneously, enabling musicality such as harmonies. Voices abide by the same rules as
measure themselves, and their usage is dictated by the following methods. Users may utilize
the .addvoice or .setvoice method to add/assign a voice to a measure at a certain
index. By default, the initial content of a measure is the first voice. Note that voices are not a
unique data-type, only another (more extensive / scalable) attribute of a measure.

Declaring a measure in the C b language is done in the following way:

syntax: “measure <measure name>[<time signature>] = [<note 1, note 2, ..., note n>];"

Declaring a simple 4/4 measure with 4 quarter notes
measure M[4] = [(C- 0 q), (C- 0 q), (C- 0 q), (C- 0 a)];

The following measure defaults to 4 beats of rest
measure X[4];

The measure data-type in the C b language possesses built-in methods which are shown below. For
instance, let M be the measure M from the sample code above:

Method | Return Type

M.getVoice (int 1) | returns i-th voice: type measure

M.setVoice (int i, measure m) | returns None (in place modifier)

M.addVoice (measure m) | returns None (in place modifier)

M.numVoices () | returns number of voices in measure: type int

M.numBeats () | returns time signature of measure: type int

Char and Int: The Cb language supports the existence of type char and int, which are
frequently used in defining attributes of C b -specific data-types.

Sections (Arrays): The C b language supports arrays which can hold any type of element. Arrays
of measures can be used to define common song structures — intro, verse, chorus, etc. Cb
arrays are 0-based, accessible by index, and can be dynamically grown using the + and =*
operands.

Built-in Functions, Creating Functions, and Additional Language Features

Control Flow: C b contains familiar control statements — if-else statements and for loops.
Built-in Functions: C b features a built-in, overloaded function — p1ay () — allowing the program
to render a playable .WAV file of the function’s argument. While p1ay () renders the music at a
default tempo of 120 BPM, bplay () allows the user to specify the tempo of the rendered music.
Creating Functions: (See examples of creating functions in part IV. Sample Code.)

Keywords and Identifiers: Keywords in C b include note, measure, char, int, bool, if, then,
for, do, while, break, continue, and capital letters A through G, as well as capital R. None of
these words or symbols can be used as identifiers. Identifiers must start with a letter or
underscore.

IV. Sample Code

* This program creates the song
of Beer on the Wall’
Then, implements functions to “changeKey” and
“octify” the song. Then, plays '99 Bottles of
Beer on the Wall’ in various ways. *)\

'99 Bottles

”

def make99bottles() {

Defining notes

note g = (G 0 q); # G one beat
note g3 = (G 0 h.); # G three beats
note d = (D 0 q); # D one beat
note d3 = (D 0 h.); # D three beats
note a = (A 0 q); # A one beat
note a6 = (A 0 w.); # A six beats
note e = (E 0 q); # E one beat
note £ = (F 0 q); # F one beat
note f2 = (F 0 h); # F two beats
note £f3 = (F 0 h.); # F three beats
Defining measures

measure three g[3] = [g, g, gl;
measure three d[3] = [d, d, d];
measure hold g[3] = [g3];

measure three a[3] la, a, al;
measure three e[3] = [e, e, el;
measure hold a6[6] = [a6];
measure £ f[3] = [f2, f];
measure hold f[3] = [£3];
measure three f[3] = [f, £, f];
measure rise([2] = [d, e, f];

Initialized to 6
beats of rests

measure rest[6];

Creating sections of the song

measure[] linel =

three g + three d + three g + hold g;
measure[] line2 =

three a + three e + hold a6;
measure([] line3 =

f £ + hold f + three f + hold f;
measure([] lined =

three d + rise + three g + hold g;

Piecing together 99 bottles song
measure[] 99%vottles =
linel + line2 + line3 + line4 + rest;
return 99%ottles;
}

def measure[] changeKey(measure[] song, int x)
char notes[1l2] =
[A, A+, B, C, C+, D, D+, E, F, F+, G, G+];
int newTone;
for (m in song) {
for (n in m) {
if n.getTone != R {

newTone = notes|[(notes.indexOf
(n.getTone ())+x) %$12];
n.setTone (newTone) ;
}
}

} return song;

in G Major (from scratch).

{

def measure[] octifies (measure[] song)
for (m in song) {
Creates copy of measure
measure oct m[m.numBeats ()] = m;
for (n in oat_m) {
if n.getTone != R {
Sets octave one higher
n.setOct (n.getOct () + 1);
}

}
m.addVoice (oct m); # Adds higher

Octave
}
return song;

}

def main() {

measure[] og 99%bottles =
make99%bottles () ;

measure[] octified 99%bottles =
octified(og 99%bottles);

measure[] changekey 99%ottles =
changeKey (og 99%bottles, 5);

Plays original 99 bottles in G
Major, 99 times
for i in range(99) {
play(og 99bottles);
}

Plays faster tempo

for i in range(99) {
bplay (og 99bottles, 160);

}

Plays octified

for i in range(99) {
play(octified 99bottles);

}

Plays in C Major (key change!)
for i in range(99) {

play (changekey 99bottles);
}

Plays 99 bottles FOREVER
while true {

play(og 99%ottles);
}

