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1 Introduction

Expressing an algorithm primarily through manipulation of matrices allows an
implementation to take advantage of parallel computation. Graphs are one of
the most important abstract data structures and graph algorithms underlie a
wide range of applications. Yet many implementations of graph algorithms rely
on sequential pointer manipulations that cannot easily be parallelized. As a
result of the practicality and theoretical implications of more efficient expres-
sions of these algorithms, there is a robust field within applied mathematics fo-
cused on expressing “graph algorithms in the language of linear algebra” [KG11].
BLAStoff is a linear algebraic language focused on the primitives that allow for
efficient and elegant expression of graph algorithms.

2 Language Detalils

2.1 Data Types
There is only one data type in BLAStoff, the matrix. Matrices can be defined

four ways: as a matrix literal, as a graph, as a number, or with a generator
function.

2.1.1 Matrix Literal Definition

A matrix literal looks as follows:

which sets M as the matrix

SN =
O = W
()



. The values given to M can be anything € RU=+oo. Here’s an example of using
values that aren’t just integers:

M = [1.2, inf;
-inf, -34];

which sets M as the matrix

1.2 00
—oco —34

2.1.2 Graph

The graph definition looks as follows:

G ={
0->1;
1->0;
1->2;
4;

};

This will set M as the adjacency matrix for the graph described, which in this
case would be:

01 0 00
101 00
00 0 0O
0 0 0 0O
00 0 0O

As we can see in this code example, each line in the graph definition can be an
edge a — b; defining a node between vertices a and b where a, b are non-negative
integers, or just a vertex c¢; where ¢ is also a non-negative integer, which just
defines that the vertex ¢ exists. The matrix created will be an n x n matrix,
where n is the highest vertex (in our case 4) defined plus 1. Thus, the graph
created will have nodes [0,n — 1]. Any vertices not mentioned in the definition
but in the range [0,n — 1] will be created, but not have any edges to or from it
(such as vertex 3 in this case). We could easily extend this syntax to allow for
bi-directional or weighted graphs, and will decide later whether to do this.

2.1.3 Number Definition

The number definition is quite simple, and looks like as follows:

M = 5;

This is how you would create a “scalar” in BLAStoff, but because the only data
type is a matrix, scalars are really 1 x 1 matrices. The above code is equivalent
to the following code:



M = [5];

which sets M as the matrix
[5]
A potential issue could be that not allowing scalars means you can’t have scalar

multiplication, but we define a convolution operator, which ends up working
like scalar multiplication if the right hand side is a 1 x 1 matrix.

2.1.4 Generator Function Definition

We also have a number of generator functions for commonly-used types of ma-
trices so that you don’t waste your time typing out a 50 x 50 identity matrix.
The first is the Zero function, which generates a matrix with all 0s. This takes
in one argument, which we will call z, a non-negative integer matrix of two
possible sizes. n can be a 2 x 1 positive integer matrix, and the elements of the
n matrix are the height and width of the zero matrix, in that order. n could
also be a 1 x 1 matrix, in which case the zero matrix will be square, with the
element in n as its height and width. Here is an example:

A
B

Zero(4);
Zero([3;2]);

This code would result in the following matrices:

00 00
00 00
A= 00 00
00 0 0
0 0
B=10 0
0 0

Note that A = Zero(4); is equivalent to A = Zero([4;4]);.

We also have an identity function, I, which takes in one argument, a 1 X
1 non-negative integer matrix, the width and height of the resultant square
identity matrix. Example:

M= 1I(3);

This would result in the following matrix:
1 00
M=1]0 10
0 01

The final generator function is the range function, which generates a column
vector that goes through an integer range, incremented by 1. Like Zero, it takes



in an integer matrix of size 1x 1 or size 2 x 1, which gives the bounds of the range
generated (inclusive lower, exclusive upper), or, in the 1 x 1 case, the exclusive
upper bound, and 0 is the default lower bound. Here are some examples:

A = range(3);
B = range(-2,2);

This code would result in the following matrices:

0
1
A= 2
3
-2
-1
B=1]0
1
2

If a range where the lower bound is greater than the upper bound given to
range, such as range([5;-1]), a 0 x 1 matrix will be returned.

2.1.5 Integers vs. Floats

You're probably confused now, because I said earlier that the only type in
BLAStoff is a matrix, but now I'm talking about integers and floats? So, while
in a perfect world we could just have everything be floats, as we’re defining our
linear algebra over the reals, consider the following code if (which makes use of
a few operators we will define below, but you can guess how it generally works
for now):

b = 25020359023950923059124;
a = 2;

M = [1,2;3,4];

a += b;

a -= b;

M = M a;

If this code has no floating point errors, than the final line is just a simple matrix
squaring. However, if some error is introduced to a, then we have a problem
where we're trying to calculate something like M 2:009901 which is a much more
difficult problem even if it would result in a numerically similar result. So, I
was lying a little. Though you don’t declare any types explicitly, each matrix is
implicitly a float matrix or an integer matrix depending on if it is defined with
any non-integers (you can only get float matrices with the literal definition).
Any operation (such as matrix addition or matrix multiplication) between a
float matrix and an integer matrix results in a float matrix, while an operation



between two matrices of the same type will result in a matrix of the same type,
except for something like matrix inversion.

2.2 Comments

Comments in BLAStoff use C style, with // for a single line and /* and */ for
multi-line comments. For example:

A=6; // I’m a comment!
B 5; /* I’m a comment also but

I'm longer!*/

2.3 Functions
Functions in BLAStoff are defined with a mix of Python and C style:

def foo(A, B) {
return A;

}

Because there is only one data type in BLAStoff, there is no need for argument
types or return types, everything is always a matrix! Even “void” functions
return matrices. Consider these two functions:

def bari1(A) {
return;

}

def bar2(A) {

)

}

These two functions both return the equivalent of Python’s “None” in BLAStoff,
a 0 x 0 matrix.

2.4 If statements

For and while loops also look similar to C. For example:

if (A > 2) {
A=17,;

} else if (A < -3) {
A =5;

} else {
A =0;

}



2.5 For/While Loops

For and while loops also look similar to C. For example:

B = 0;

for (A = [0]; A <5 ; A+=1) {
B+=1;

}

while (B > -1) {
B-=1;
}

We allow for loops, but they are not usually the ideal paradigm. The selection
operator should hopefully replace much of the use for loops.

2.6 Operations

Operations are where BLAStoff gets more interesting.
We aim to implement a large subset of the basic primitives described in |Gil|
(several of which can be combined) as well as a few essential semirings.

Semiring operators domain 0 1
[S2) ®
Standard arithmetic + X R 0 1
max-plus algebras max + {—0cUR} —o0 0
min-max algebras min  max ooUR>g [e9) 0
Galois fields (e.g., GF2)  xor and  {0,1} 0 1
Power set algebras u al P(Z) 1] U
Operation name Mathematical description
mxm C 0= A3.®B
mxv w O= A®.QV
vxm wl o= vT®.® A
eWiseMult C 6= A®B
w O= u®v
eWiseAdd C o= A®B
w O= udv
reduce (row) w O= EBJ. A7)
apply C 0= Fu(A)
w O= Fy(u)
transpose C o= AT
extract C o= A(i,))
w o= u(i)
assign C(i,j) 6= A
w(i) ©= u

Here are our operations, which implement those and more:



Name Usage
Assigmnent M=N
Selection M[A, B, c, dl
Matrix Multiplication M * N
Convolution M~N
Element-wise Multiplication M@N
Element-wise Addition M+ N
Exponentiation/Inverse/Transpose A™b or A°T
Size (M|
Vertical Concatenation M: N
Reduce Rows +$M or *$M
Semiring Redefinition <#semiringname> or <_>
Logical Negation <#semiringname> or <_>
Comparisons == 1= > >= < <=
Assignment Variants x= .= Q= += "= :=

Some of these operators’ behaviors are intuitive, but we will explained further
the two less intuitive ones:
2.6.1 Selection []

The BLAStoff selection operator can be applied to any matrix looks like one of
the following three forms:

M[A, B, c, dl;
M[A, B]
M[A];

where A, B are column vectors of non-negative integers (n x 1 matrices) and
¢,d are 1 X 1 non-negative integer matrices. ¢, d are optional and have a default
value of [1} B is also optional and its default value is [O] Abstractly, the way
this operator works is by taking the Cartesian product of A, B, R = A x B,
and for each (j,7) € R, we select all the sub-matrices in M with a top-left
corner at row j, column 4, height of ¢, and width of d. (BLAStoff is 0-indexed.)
This Cartesian makes the select operator a very powerful operator that can do
things like change a specific of indices, while also being general enough to allow
for simple indexing. Take the following code example:

M = Zero(4)
M[[0;2], [0;2]1] = 1;

This would result in the following matrix:

O~ O
o O O O
[ RS o R
(e R e R el en)



as in this case R = {(0,0),(0,1),(1,0),(1,1)}, so for every 1 x 1 matrix at each
point in R, we set the value to 1. Note that the matrix on the right hand
side must be of size ¢ x d. That was a relatively complicated use of the select
operator, but simple uses still have very easy syntax:

M = Zero(2);
M[1, 0] = 1;
N = Zero(3);

N[1, 1, 2, 2] = I(2);

This would result in:

The reason why 0 is the default value of B is to allow for easy column vector
access. Example:

v = [1;1;1];
v[1] = 2;

u = [1;1;1];
ul[0;2]1] = 2;

This would result in:

Now, perhaps it is clear why we included the range generator function. Exam-
ple:

v = Zeroes([5;1]);
v[range(5)] = 1;

This would result in:

4
Il
e el e

As you'd expect, trying to access anything out-of-bounds with the selection
operator will throw an error.



N

We have shown the selection operator so far as a way of setting elements in
a matrix, but it’s also a way of extracting values from a matrix, as we will show
below:

This would result in:

1 2
Extraction is quite understandable when A and B are 1 x 1, as that results in
only one matrix, but it is a bit more complicated when they are column vectors.

In that case, we concatenate the number of resultant matrices, both vertically
and horizontally. I think an example makes this clearer:

A=1[1,2,3;
4,5,6;
7,8,9];
B = A[[0;2], [0;2] , 1, 1];
v = [1;2;3;4];
u = v[[0;2;3]];

This would result in:

2.6.2 Semiring redefinition <>

You may have noticed that though we have defined a number of operations on
matrices, we want a way to control which operations are used on the elements
of these matrices beyond standard arithmetic + and x. We want to be able to
use a number of semiring operators, such as those defined in [the image above]
BLAStoff allows for semiring redefinition in one of the following forms:

<#logical>
<#arithmetic>
<#maxmin>

< >

So what does this syntax actually do? Ignore the underscore case for now. The
other three are commands to switch the command to the one denoted in the
brackets. Let’s see an example:



a=2.1;

b = 3;

c = 0;
<#farithmetic>;

a + b; //returns
a * b; //returns
a * c; //returns

[@BNe) NN,
w =

<#logical>;

a + b; //returns 1: plus is now logical or; O is the only false value
and 1 is the default true value

a * b; //returns 1 as well: times is now logical and

a * c; //returns 0

<#maxmin>;

b + ¢; //returns 2.
a * b; //returns 3;
a * c; //returns 5.

1; plus is now minimum
times is now maximum

1

#arithmetic is the default, so that line was technically redundant, but included
for clarity. The example we gave was with 1 x 1 matrices, but the semiring
definitions work on matrices of any size:

A= [1,4;
6,3];
B = [5,2;
7,11;
C = A+B;

This would result in:
1 2
o5 7]

Semiring redefinition generally is reset back to the default arithmetic when you
call a function:

def add(x, y) {
return x + y;

}

a = 4;

b = 3;
<#logical>;

a + b; // will return 1
add(a, b); // will return 7

10



But we provide the <_> in order to solve this: calling that command will set
the semiring to whatever it was as this function was called (or to arithmetic as
a default if you're not in a function):

def semiringAdd(x, y) {
<_>;
return x + y;

}

a=4;

b = 3;
<#logical>;

a + b; // will return 1
semiringAdd(a, b); // will also return 1

2.6.2.1 Extensions

We can possibly add support for max-plus or Galois, but that will be a stretch
goal. Another, possibly loftier stretch goal, is to allow custom semirings:

<+, f1, i1>
<x, f2, i2>

where f1, fo is the name a function defined elsewhere that has exactly 2 ar-
guments, and i1,is are number literals. This would use fi(a,b) for a + b and
f2(a,b) for a x b. i1,1io are the new empty sum and product. We will determine
if this is easy/feasible/useful /reasonable.

2.7 Keywords
BLAStoff reserves the following keywords:

I, Zero, range, def, return, if, else, for, while, T

2.8 Memory

BLAStoff will use pass-by-reference and copy-by-value. Here’s an example of
how this will works:

def f(x){
x += 1;

}

a=1;

f(a);

a == 1; //TRUE
a == 2; //TRUE

11



10

11

12

b
c = b;
c +=1;
c == 2; //TRUE
b == 2; //FALSE
b == 1; //TRUE

BLAStoff will be garbage-collected.

2.9 Scope

BLAStoff has scope shared between blocks in the same function call, but not in
different function calls. Example:

a=1;
{
b=2+a; // valid

[}

c=b+1; // valid

def f(x){
return x * (b + ¢); // compile-time error

}

2.10 Libraries/Importing Functions

There will be a way to make/use a library and import functions, but we have
not settled on the syntax nor semantics.

2.11 I/0

There will be a way to use input and output, but we also have not settled on
the syntax nor semantics.

3 Sample Code

3.1 Some Standard Library Functions

As we have discussed, we intend to provide a standard library that should
have include a good number of the other Linear Algebra operations that aren’t
primitives. Here are some examples:

3.1.1 One

One works exactly like Zero, but has all 1s in the matrix:

12



0

def One(size){
A = Zero(size);
m = size[0];
Alrange(size[0]), range(size[1])] = 1;
return A;

3.1.2 Horizontal Concatenation

We don’t include this as an operator because it is quite easy to write as a
function using vertical concatenation and transpose:

def horizontalConcat(A, B){
return (A"T:B"T)"T;
}

3.1.3 Plus/Times Column Reduce

Column reduction follows similarly:

def plusColumnReduce(A){
<_>;
return ((+$4)°T)"T;
}

def timesColumnReduce (A){
<_>;
return ((*$A)"T)"T;

3.1.4 Sum

sum gives you the sum of all the elements in the matrix. There are two simple
O(N) implementations (where N is the total number of elements in the matrix),
and I'll provide both options as an example:

def sum(A){
<_>;
return A~One(|A]);
¥
def sum(A){
<_>;
return plusColumnReduce (+$4);
¥

13



3.1.5 Range From Vector

rangeFromVector takes in a column vector and returns a vector of the indices

that have non-zero. For instance:

rangeFromVector(

= O = = O
SN—
I
=N =

This will come in handy in the BFS algorithm that we will write:

def rangeFromVector (v){

<#logical>;

vlogic = v71;

<#arithmetic>;
= plusColumnReduce(v); // the number of non-zero values
u = Zero(n, 1);

=}
|

j=0;
for (i =0; i < |vl[0]; i += 1) {
if (v[i]) {
ulj]l = i;
jt++;
}
}

3.2 Graph Algorithms: Breadth First Search

Here we demonstrate how pseudocode from a 2019 presentation by John Gilbert
describing BF'S in linear algebraic terms [Gil] can be expressed in BLAStoff

1 Input: graph, frontier, levels

2 depth <+ 0

3 while nvals(frontier) > 0:

depth < depth + 1

levels[frontier] < depth

frontier<—levels,replace> <+ graph! @.® frontier
where ®&.® = @.Q)(LogicalSemiring)

Our correspondong code for BFS looks like the following:

~N N W B

def BFS(G, frontier){
<#logical>;
N = |G| [0];
levels = Zero(N, 1);
maskedGT = G°T;
depth = 0;
while (sum(frontier)) {

14
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12

15

16

18

<#arithmetic>;
depth += 1;
<#logical>;
levels[rangeFromVector(frontier)] = depth;
mask = ! (frontier"T) [Zeroes(N), 0, 1, N];
maskedGT @= mask;
frontier = maskedGT*frontier;

}

<#arithmetic>;

return levels + (One(|levels|)~(-1));

}

Let’s look at how this code works. (Note: the cited slides can be helpful for
understanding the linear algebra aspects of the algorithm.). It takes in an n x n
adjacency matrix G and a column vector frontier of height n as well, where
each entry is 0 or a true value, to denote whether that vertex is in the starting
list. On line 4, we then create levels, a vector of the same size as frontier.
This will be our output vector, as it levels[i] will contain the closest distance
from vertex i to a vertex in frontiers, or —1 if its unreachable. You'll notice that
we initialize levels with Os as we will decrement on line 17. We then make a
new variable maskedGT on line 5, which is just the transpose of G. We do this
because we are going to be modifying this matrix, but we don’t want to change
the original G. We take the transpose because that’s what allows for part of
the algorithm, which I’ll explain in a second, and we don’t want to do that on
every iteration. We then set a variable depth to 0 on 6. This will keep track of
our iterations.

Then we start the while loop, which keeps going as long as there is one
non-zero value in frontier; that is, we still have vertices we want to look at.
We then increment depth on line 9, switching quickly to arithmetic for this
one line, as otherwise depth would never go above 1. Using our range-from-
vector function defined in the standard library, line 11 essentially sets levels][i]
equal to the current depth if frontier[i] is non-zero. That way, all the vertices
that we’re currently searching for have their distance in levels as the current
iteration in our while loop. This will be one more than the level, but we’re
going to decrement on line 17. The key portion of this code is line 14, which
multiplies maskedGT and frontier. Because of the way the adjacency matrix
is constructed, this will give us a vector in the same format as frontier, only
now with the vertices reachable from the vertices in the original frontier, and
we will overwrite frontier with this new frontier. With all that I've explained
so far, the algorithm would be give you the correct reachable nodes, but would
run over paths to vertices for which we’ve already found a closer path, so depths
would be wrong.

To account for this issue, on lines 12 and 13 we remove all the edges to the
nodes in frontier, so that as we continue in BFS, we add a previously visited
node. We generate a mask by taking our frontier, transposing it, concatenating

15



it down N times, and negating it. Here’s an example:

frontier =

e — |
_ o O = = O

—
o
—_
—

OO OO OO
= e e e
[ i e
OO OO oo ()
SO OO OO o
= e s

= e e
OO O OO
OO O OO

O S gy sy

e T
OO O OO

1 00 0

In this map, all the ones denote edges not to items in frontier, and thus edges
we can keep. So, if we do element-wise multiplication between this mask matrix
and our ongoing, masked, GT, we will keep removing those edges and ensure we
never revisit!
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