SOS Reference Manual

Terric Abella, Sitong Feng, G Pershing, Sheron Wang
February 25, 2021

Contents
1 Introduction 2
2 Lexical Conventions 2
2.1 Identifiers 2
2.2 Constantso 3
2.3 Comments L e 3
24 Symbols 3
3 Types 3
3.1 Basic Types e 3
3.2 Derived Types o e 3
3.3 Predefined Types 4
3.4 Type Conversions oo 4
3.41 bool 4
342 dint ... 4
343 float 4
3.4.4 point and vectoro 4
3.45 wvoid 5
3.5 Typeldentifiers L oL 5
4 Syntax and Expressions 5
4.1 Statements 5
4.2 Type Definition L oL 6
4.3 Declarations and Assignments L. 6
4.4 0perators 7
4.4.1 Logical Operators 7
4.4.2 Comparison Operators 7
4.4.3 Mathematical Operators 8
444 Sequencing 8
4.5 Function Application oo 8
4.6 Conditionals 9
4.7 Construction e 9
4.8 Variable Reference 10

4.9 Literals e 10

4.10 Parentheses 10
411 Scope 11
4.12 Importing Libraries 0oL 11
4.13 Comments e e e e 11
5 SOS Standard Library 11
5.1 Math e 12
52 Point 12
5.3 Shape 12
5.4 Color. s 12
5.5 Affine 13
5.6 Renderer. 13
6 Sample Program 13

1 Introduction

The SOS (Shape Open System) Language is an imperative language with some
functional elements designed to render 2D images, especially mathematically
interesting images. This manual describes the SOS syntax and the meaning of
SOS statements. It is intended to be a complete description of the language
features at time of writing.

2 Lexical Conventions

A program in SOS (Sad Oblique Shapes) is first interpreted by parsing it as a
string of tokens. The following sections describe exactly what tokens are allowed

in SOS.

2.1 Identifiers

Most tokens in SOS are identifiers, which refer to types, variables, and func-
tions. An identifier is a string containing only letters, numbers, and underscores,
beginning with a letter. The following identifiers are predefined and cannot be
overwritten:

int float bool array
void point vector affine

In addition, the following strings are keywords that can never be used for
identifiers:

if then else true false alias struct

Keywords, like identifiers, are treated as one token.

2.2 Constants

Any string consisting of only numbers and at most one decimal point is a numeric
constant. Constants are interpreted as a single token. In addition, either e or
E may be used to indicate an integer exponent for a number represented in
scientific notation.

2.3 Comments

/*, x/ and // are special tokens that are used to indicate comments. They are
not passed as tokens by the scanner, but rather denote a segment of text to be
ignored.

2.4 Symbols

All other characters are interpreted as symbols, like operators and delimiters.
With some exceptions, these are parsed individually. The following is the com-
plete list of symbolic tokens:

+ - x /Y% -
Vol k& = == 1=

()[]{i

)

3 Types

In SOS (Stylistically Observed Structures), every variable is strictly typed.
There are some options for casting between types. This section outlines what
types exist and what casts are possible.

3.1 Basic Types

SOS has three basic types: bool, int, and float. bool is a single bit represent-

ing either true or false. int represents a 32-bit integer. float represents a

32-bit floating point number. All other types are built using these three types.

In addition, the void type can be seen as the fourth basic type. Assignments

to void do nothing, but are sometimes required to form a complete expression.
All the basic types are stored as values and passed by value.

3.2 Derived Types

A new type can be created in three ways: as an array, as a struct, or as
a function. An array is a block of memory with many variables of a specific
type, along with an integer giving the length of the array. A struct consists
of some number of fields, each with their own identifier and type. This allows
associated information to be stored and processed together. A function is a

stored expression with one or more arguments that can be used within the
expression.

All the derived types are stored as pointers and passed as pointers. A simple
assignment will replace the initial pointer, instead of writing to the location of
the pointer. Depending on the type, there are ways to write the data directly.

3.3 Predefined Types

There are three predefined types in SOS: point, vector, and affine. These
are all structs that have additional built-in features, for convenience. The
point and vector types are both structs with an x and y field, both floats. The
affine type is a nine-tuple struct representing a 3 by 3 matrix.

3.4 Type Conversions

Many inbuilt types will automatically be converted to a different type when
required. This will always happen as late in any calculation as possible. In
each of the following sections, all the possible conversions from a given type will
be listed, as well as their meanings. User-defined structs and arrays are never
converted. In most cases, such as variable assignment or function application,
one statement will expect a certain type, and the required cast will be clear.
The only exception is comparisons, where in general float is preferred over int
which is preferred over bool, and point is preferred over vector.

3.4.1 bool

A bool can only be cast to an int, by the map false — 0 and true — 1.

3.4.2 int

An int can be cast to a bool, where 0 maps to false and all other values map
to true.
An int can also be cast to a float by the injection z — .

3.4.3 float
A float can be cast to a int by truncation. This is not to be confused with
the floor operation. For instance, 0.5 and —0.5 both truncate to 0.

3.4.4 point and vector

A point casts trivially to a vector and vise versa, although this is generally
discouraged. In most cases, code is more readable and understandable by mak-
ing a clear distinction between points and vectors. The underlying function of
such a cast is that the memory is simply re-interpreted.

3.4.5 void

All types can be cast to void, meaning that their types are simply discarded.
void cannot be cast to any type besides itself.

3.5 Type Identifiers

The names bool, int, and float are all the identifiers for their respective types.
Similarly, point is the identifier for a point, likewise for all the other derived
types.

A struct type is referred to by the name given in its struct definition, and
struct itself is not used as an identifier.

The string array type-name is the identifier for an array of a certain type.
This can be nested, for example array array int is an array of integer arrays.

A function type is represented by (arg-type-1, ...) => return-type, which
is the type of a function with argument(s) of the specified type(s) and the
specified return type. This notation is not commonly used, but is required to
use a function as the argument in another function, for instance. The arguments
can also optionally be named using the format arg-type-1 arg-name-1,

4 Syntax and Expressions

An SOS (Shapes of Sorrow) program is formed by a series of statements. This
section outlines all possible SOS statements and their meanings.

4.1 Statements

There are two forms of statements in SOS: type definitions and starting expres-
sions. The distinction is that a type definition is a purely structural statement,
whereas an expression has a value. Many expressions can contain other expres-
sions, while type definitions are always concrete. Only a starting expression
may form a statement, all other expressions can only be used within a starting
expression.

Throughout this section, the production rules for the SOS grammar will be
listed in the following format:

symbol:

production ...

Italic characters represent another symbol, typewriter strings and symbols
represent specific tokens. Here is the production rule for a statement:

statement:
type-definition
starting-expression

In addition, the following production rule is important:

expression:
starting-expression

Meaning any starting expression may be used in any place that calls for an
expression.

4.2 Type Definition

The only type of statement that is not an expression is a type definition. As
such, these statements do not include any expressions and cannot be included
in any other expressions.

There are two ways to make a new type identifier:

type-definition:
alias new-type-name = old-type-name
struct struct-name = { prop-type-1 prop-name, ...}

The first format defines a new type name that is an alias for an existing
type name. Internally, this means that every instance of the new type name
will simply be treated as the old type name. It is possible for old-type-name to
be a combination of types, like an array or a function type.

The second format defines a new struct type with the given fields.

alias year = int
struct person = {int identifier,int age}

4.3 Declarations and Assignments

In SOS, there is no such thing as a declaration without an assignment. That is
to say, when a variable is introduced it must also have a value attached. Any
declaration defines a name by which a variable can be referred to, the type of
the variable, and the wvalue of the variable. Value here is used quite loosely,
variables can be functions or other complicated objects that may not have a
7value” per se.

Declarations take one of two forms:

starting-expression:
type-name variable-name = expression
type-name function-name (arg-type-1 arg-name-1, ...) = expression

These statements should be seen as essentially the same, with the second
differing more as a convenience of notation than for any structural reason. Im-
portantly, while in the first statement, the specified variable will have the spec-
ified type, the second variable will have type (arg-type-1, ...) — type-name,

that is to say a functional type. In both cases, the expression itself will have
the same type and value as the variable that is defined. The inner expression
must have the same type or a type that can be converted to the specified type.

If a variable or function has already been declared, it can be re-assigned as
follows:

starting-expression:
variable-name = expression

Which acts the same as the first type of declaration. A function may be
assigned this way, where the arguments and argument names remain the same as
the first declaration. This is generally discouraged as it will not be immediately
clear what these arguments refer to.

int varl = 3
int pow (int n, int x) = n’x
varl = pow(3,2)

4.4 Operators

The main tools for building meaningful expressions from other expressions are
operators. The type of an operator expression depends on the types of the ex-
pression(s) it acts upon, which will be specified later. All operator expressions
are of one of two forms:

expression:
unary-operator erpression
expression binary-operator erpression

4.4.1 Logical Operators

The logical operators are !, ||, and &&. ! is a unary operator which takes a
bool and returns its negation. || and && are binary operators on two bools
representing logical OR and AND, respectively. They are both left associative.

4.4.2 Comparison Operators

The comparison operators are ==, !=, <, > <= and >=. All are binary operators
that take two expressions of the same type that return a bool. == returns true
if the expressions have the same value, false otherwise; != does the opposite.
On ints and floats, the other four operators represent less than, greater than,
less then or equal, and greater than or equal.

4.4.3 Mathematical Operators

The mathematical operators are +, —, *, /, % and ~; their meanings depend on
the types given (all unshown combinations are invalid in SOS):

basic arithmetic: in order, addition, subtrac-
int (op) int tion, multiplication, division, modulo, and ex-
ponentiation. Returns an int.

same as int, except for %, which is undefined.
Returns a float.

+ and - are component-wise addition and sub-

float (op) float

point (op) point traction, which gives a vector, and * is the
dot product, which gives a float.

vector (op) vector same as point.
same as point, but returns a point for ad-

point (op) vector dition and subtraction. Likewise if the argu-
ments are given in the other order.

float * point, vector uniform scale.

[point or vector] [* or /] uniform scale.

float
affine application. This is the main case where

affine * point, vector point and vector give very different mean-
ings.

affine * affine matrix multiplication.

In addition, - can be a unary operator, which returns the negation of an int,
float, point, or vector. All the mathematical operators are left associative.
If one of the arguments to a mathematical operator is an array, the operation
is automatically applied element-wise on the list.

4.4.4 Sequencing

; is a special binary operator that allows for sequencing. Both expressions are
evaluated, and the value of the second expression is kept as the value of this
expression. This is left associative.

int x = 2345; O

4.5 Function Application

Perhaps the most important expression is function application. This comes in
two forms:

starting-expression:
function-name (expression-1, expression-2, ...)
function-name (paramater-name: expression, .. .)

With the first syntax, the arguments are applied to the parameters in the
order specified in the original declaration. With the second syntax, the argu-
ments are applied by name, in any order. The two styles cannot be mixed. Not
all arguments need to be specified; the type of this expression will depend on
exactly which arguments were specified.

int pow (int n, int x) = n’x
int varl = pow(2,3)
int var2 = pow(n:2,x:3)

4.6 Conditionals

The conditional expression is formated as follows:

starting-expression:
if expression-1 then expression-2 else expression-3

Where expression-1 must resolve to type bool, and expression-2 and expression-
8 must resolve to the same type. The whole expression will have this second
type, and it will have the value of expression-2 if expresion-1 is true, and the
value of expression-3 otherwise.

int x = 100
int var3 = if x>0 then 1 else O

4.7 Construction

An array can be created using the array construction expression:

expression:
[expression-1 , expression-2 , ...]

Where each expression must resolve to the same type. The whole expression
will then be a list of that type.
A struct can be created using either struct construction expression:

expression:
struct-name{expression-1, ...}
{expression-1, ...}

The first version will always work and create a struct of the given name.
The second version will determine the type it needs to be based on context.
Whenever this is ambiguous, the first version is required.

array arr = [1, 3+5, 7, 9]
struct person = {int id, int age}
person tom = {12345, 45}

4.8 Variable Reference

Variable reference is always a terminal expression. It is notated simply as:

expression:
variable-name

And has the same type as the specified variable. In addition, the fields of a
struct can be referenced with dot notation:

expression:
struct-name. field-name

An element of an array can be accessed by index, where index 0 represents
the first element. The syntax is as follows:

expression:
array-name [expression]

Both struct access and array access can also be used in place of variable-name
in an assignment expression.
starting-expression:

struct-name. field-name = expression

array-name [expression] = expression

4.9 Literals

Numeric literals are terminal expressions. They are expressed in base 10. With-
out a decimal point or scientific notation exponent, they will be interpreted as
ints, otherwise they will be interpreted as floats. Commas cannot be used in
any way, either for separating thousands or for the decimal point.
expression:

numeric-literal

4.10 Parentheses

Parentheses can be used to clarify or alter the order of operations. A paren-
thetical expression is as follows:

exrpression:
(expression)

The whole expression has the same type as the inner expression.

10

4.11 Scope

Scope specifies where identifiers are visible inside an application. The variable
can be seen and referred to once they are declared within the program. But the
parameters that are declared as a part of a function, can only be used within
the expression that follows which defines the function, and lose visibility once
the function declaration ends. The variables n in the following block should not
be identified as the same as the parameter n inside the parentheses:

int pow (int n, int x) = n’x
int n = pow (3,2)

4.12 Importing Libraries
SOS has only one preprocessor directive: a line with the form
import filename.extension

is replaced by the file filename.extension. The characters in the name of filename
must not include newline or /*. Before scanning the files in OS, SOS will first
try to find if there is any standard library with the filename. Even though the
file imported is usually a *.sos file, extension is still required.

As we are going to replace the line, declaring a new variable that is already
in imported file is prohibited, but you could override it when needed. Also, the
import graph cannot contain a cycle, for example, import A in file B and import
B in file A is prohibited.

4.13 Comments

Any text written between the symbols /* and */ will be ignored. Comments
can be nested this way. Additionally, any text between the symbol // and the
next newline will be ignored.

// a single line comment
/* a multi line /* nested */ comment x*/

5 SOS Standard Library

The library functions are written with the SOS (SOS Object System) language
in separate files which can be used with import. Certain library functions em-
ploy the external OpenGL library for its graphics utilities, and support extensive
graphical operations. This section is not an exhaustive list of the library, but
can be taken as a holistic sample of all library functions. All of the following
files can be imported at once with the statement import stdlib.

11

5.1 Math

The file math.sos contains useful mathematical functions.

sqrt : float -> float
Computes the square root of a number.

sin, cos, tan : float -> float
Compute the trigonometric functions sine, cosine, and tangent for an angle
in radians.

asin, acos, atan : float -> float
Compute the inverse trigonometric functions, returning an angle in radians.

toradians : float -> float
Converts an angle from degrees to radians.

5.2 Point

The file point.sos contains functions for dealing with points and vectors.

distance : vector -> float
Determines the distance of a vector (or distance of a point to the origin).

project : vector * vector -> vector
Projects one vector onto another.

5.3 Shape

The file shape . sos contains functions for dealing with collections of points, such
as lines, curves, and shapes.

alias path = point array
alias shape = point array

append : path * path -> path
Appends one path onto another.

reverse : path -> path
Reverses a given path.

5.4 Color

The file color.sos contains functions for dealing with color.

12

struct color = {float r, float g, float b, float a}

hsv : float * float * float -> color
Creates a color with the given hue, saturation, and value.

5.5 Affine

The file affine. sos contains functions for manipulating affine transformations.
scale : float -> affine
Returns an affine represent a uniform scale by the given factor.

trans : float * float -> affine, vector -> affine
Returns an affine representing a translation by the given vector.

rotate : float -> affine
Returns an affine representing a counterclockwise rotation, with the angle
given in radians.

5.6 Renderer

The file renderer. sos contains the main functions for interfacing with OpenGL.
render : path -> (vector -> color) -> void
Renders a path using the given color map.

6 Sample Program

// renders the dragon curve fractal
import stdlib

// set up affine transformations

affine A = scale(sqrt(2.0)) * rotate (45)

affine B = trans (0.5, 0.5)*scale(sqrt(2.0))*rotate
(135) *trans (-1, 0)

// recursively defines the dragon curve
curve dragon (int n) =
if n == 0
then [{0, 0}, {1, 0}]
else d = dragon (n-1) ;
/* affine application pointwise to a curve */
append(A * d, B * reverse(d))

// interpolates a color along the line a-b

13

color rainbow (point a, point b, vector position) =
// hsv color picker
hsv (position * (b-a) / (b-a) * (b-a), 1, 1)

render (translate (60, 200) * scale(360) * dragon (10)
, rainbow ((0, 240), (480, 240)))

14

