
Reptile (.rt)
Language Reference Manual

Aileen Cano (ac4440), Aviva Weinbaum (aw3156), Lindsey Weiskopf (ltw2115), and Hariti Patel (hvp2105)

February 2021

Introduction

Reptile is a programming language that is intended to support libraries that streamline the process of
creating simply-coded graphics. As more children are learning computer science at a younger age, there is a
demand for simple programming languages that teach computer science principles in a digestible and visual
manner. Languages typically labeled for beginners like Scratch and Swift Playgrounds teach kids to code by
showing immediate visual results from code – whether that is a simple square or a complex environment
built upon existing code blocks. Further, libraries like Turtle graphics add novelty to simple image-building
operations by showing a turtle drawing the desired shape. The goal of Reptile is to build upon the success of
these “beginner” programming languages to provide immediate gratification to the coders through graphics.

1. Lexical Conventions

1.1 Comments

The characters /\ introduce a comment for a single line. For multi-line comments, each line must begin with
/\.

1.2 Identifiers (Names)

An identifier is a string of characters, both letters and digits, that can be used to name a variable, object, or
function. The first character of the identifier must be alphabetic. Upper and lower case characters may be
used along with underscores and digits to create the identifier.

1.3 Keywords

The following identifiers are reserved to be used as keywords, and cannot be used otherwise. The keywords
are case sensitive.

Keywords Description

if Enters block if condition statement is satisfied

else Enters block when if condition statement is not satisfied

for Continues to repeat up until specified condition is not satisfied

while Continues to repeat up until specified condition is not satisfied

true Boolean literal for 1

false Boolean literal for 0

1.4 Type Specifiers

The following are type specifiers with their descriptions and functions, if applicable. These type specifiers are
case sensitive.

1.5 Punctuators

function Specifies that the following block is a function

return Returns a value from a function

void Used for functions when nothing is to be returned

Type Specifiers Description Functions

int Any signed integer

float Any floating point decimal

boolean Boolean value of “true” or “false”

string Standard string myString.length()

RGB List of 3 color values ranging
from 0 to 255

List Standard array myList.length : length of myList

Canvas Two-dimensional array of pixels
which Pointers act on

myCanvas.x​ : length of myCanvas
myCanvas.y​ : height of myCanvas
myCanvas.close()​ : stop editing canvas and
generate SVG.
There will be as many SVGs produced as there are
.close() calls.

Pointer Pen used to draw pixels and
move around on Canvas

myPointer.x ​: x coordinate
myPointer.y​ : y coordinate
myPointer.color(RGB rgb)​ : set color for future
markings
myPointer.pixel(int x, int y) ​: mark pixel with
specified color; if no color is specified, default is
black [RGB (0, 0, 0)]; if no x and y are specified,
mark pixel at current location of myPointer
myPointer.point(int d)​ : point pen in direction d
and when instructed to draw, follow the angle d
specified

File Encapsulated file pointer for
outputting generated svg file

 A punctuator is a symbol which does not specify any specific operation to be executed, but instead, it has
syntactic value to the compiler to format and parse the code.

1.6 Operators

1.6.1 Arithmetic/Logical Operators

Symbols Description

; Statement terminator

, Separation of variables

{ } Block of statements

() Condition, function declaration, and parameter specifier

[] Used in list instantiation

Arithmetic/Logical Operators Description

= Assignment operator

+ Addition operator

- Subtraction operator

* Multiplication operator

/ Division operator

^ Exponentiation operator

% Modulo operator

== Returns true if values are equal, false otherwise

!= Returns true if values are not equal, false otherwise

++ Increment the value of variable on the left by 1

-- Decrement the value of variable on the left by 1

< Less than operator

> Greater than operator

<= Less than or equal to operator

>= Greater than or equal to operator

&& Logical AND operator

1.6.2 Operator Precedence

The following operators are presented in the order of their precedence from highest to lowest.

2. Syntax

2.1 Variable Declaration

Variables are defined using an identifier and an expression. Variable identifiers are strings for the name of the
variable which are used to later manipulate the variable. Identifiers are any uppercase or lowercase character
followed by any number of alphanumeric and underscore characters. If the variable identifier has not already
been declared, it must have its type name before.

int a = 3;

2.2 Statements

2.2.1 Termination

|| Logical OR operator

! Logical NOT operator

Operator Symbols Description

! Logical NOT operator

^ Exponentiation operator

++ -- Increment operator, decrement operator

* / % Multiplication operator, division operator, modulo operator

+ - Addition operator, subtraction operator

< > <= >= Less than operator, greater than operator, less than or equal to
operator, greater than or equal to operator

== != Equality operator, inequality operator

&& || Logical AND operator, logical OR operator

= Assignment operator

Statements are sequenced and terminated using the semicolon. Each line must end with a semicolon in order
for the next line to be taken as a separate statement, with the exception of control flow statements and loops,
which utilize curly braces.

2.2.2 Control Flow

Conditional statements are if and else. Control flow is initialized using the “if” keyword, a boolean expression
in parenthesis, and a code block enclosed in curly braces.

int foo = 3;
if (foo < 10) {

/\ block of code
} else {

/\ block of code
}

2.2.3 Loops

Reptile supports for and while loops.

2.2.3.1 For Loops

For loops require an initializer variable, a boolean conditional expression, and a variable expression, followed
by a code block enclosed in curly braces to be executed during each iteration of the loop until the boolean
expression is not true. An example of the syntax is as follows:

for (int i = 0; i < 5; i++) {

/\ block of code
}

2.2.3.2 While Loops

While loops consist of the “while” keyword followed by a boolean expression in parenthesis that is evaluated
each time the loop is executed. When the expression is false, the loop will stop executing. An example of the
syntax is as follows:

int foo = 3; int bar = 4;
while (foo < 10) {

/\ block of code
}

2.3 Functions

2.3.1 Function Declarations

Functions are declared using the “function” keyword, a return type, an identifier, and any number of
arguments enclosed in parenthesis. The function body contains a block of code, and must return a value of the
type specified using the keyword “return”. An example of the syntax is as follows:

function int foo(int a, int b) {

/\ block of code
return 3;

}

2.3.2 Function Calls

Functions are called with the function identifier and the number of arguments required. Because a value is
returned, the outcome of a function call can be saved in a variable. An example of the syntax is as follows:

int bar = foo(5,10);

2.4 Arrays

Arrays are fixed-size, ordered data structures that hold a single data type.

2.4.1 Declaring

Arrays are instantiated with their type and a length. The array length function can be used to access the
length of an array at any time.

int array[3] = [3,4,5];
int len = array.length; /\ this variable has value 3

2.4.2 Accessing
Array elements can be accessed with their index using brackets and the array identifier. If the specified index
is out of bounds of the array, an error will be thrown.

int second = array[1]; /\ this variable has value 4

3. Standard Library Functions

3.1 Canvas Manipulation

3.1.1 Canvas instantiation
The canvas is the drawing slate for all external libraries and pixel manipulation in Reptile. Canvas are
initialized like any other object in the language, with the pixel parameters as the width and height of the
canvas. The dimensions of the canvas are immutable after instantiation.

Canvas canvas = new Canvas(80, 100);

3.1.2 Canvas instance variables

The canvas object holds the length and width of the canvas as instance variables ​x​ and ​y​.

3.1.3 Canvas terminate

The canvas must be closed after use through the following function. Closing the canvas will terminate the
writing to file process.

canvas.close();

3.2 Pointer Manipulation

The pointer is critical to the instantiation of any drawing object created from Reptile. The pointer can “flip”
or change the color of one pixel at a time.

3.2.1 Pointer instantiation

The pointer can be instantiated with the following code where canvas is the canvas object and the integer
parameter represent the placement of the pointer starting from the top left corner of the canvas:

Pointer p = new Pointer(canvas, 0, 0);

3.2.2 Pointer instance variables

The pointer object carries the following instance variables.

3.2.3 Pointer functions

Name Type Meaning

x int number of pixels from left of canvas

y int number of pixels from top of canvas

color RGB color of pixel pointer as an RGB value

angle int angle from first quadrant in degrees

Function Return Type Purpose

p.pixel(int x, int y) or p.pixel() none “flips” the pixel at the current (x,y) or moves to

3.3 File I/O
The user must specify to have their drawing written to an svg file. The canvas object must be passed into the
file when opening. When the canvas is closed, the file is automatically closed and saved to the user. A file can
be opened with the following function:

File f = new File(“image.svg”, canvas);

4. Semantics

4.1 Scope

4.1.1 Blocks

In Reptile, a block is defined by any segment of code defined within a set of curly braces. A block could be a
class, a function, or segment of a control sequence. Curly braces can also be arbitrarily placed to define a block
within a program.

4.1.2 Blocks and Scope

The scope of a variable is always available to and limited by its innermost curly braces. The only exception to
this rule is instance variables defined in the standard library or belonging to objects created by the user.

4.2 Recursion

Recursion is extremely useful in graphics, especially when there are repeated patterns being drawn.
Recursion can be used by calling a function within the function itself. See the gcd algorithm for an example.

5. Sample Code

gcd.rt
int gcd(int a, int b) {

if (b==a) {
return a;

}
else {

return gcd(b, a%b);

parameter (x,y) and “flips”

p.color(RGB rgb) none changes the default color of the pointer

p.point(int a) none adds parameter a (angle change) to angle variable

}
}

main.rt
/\ make a canvas
Canvas canvas = new Canvas(100,200);
Pointer ptr = new Pointer(canvas,0,0);
RGB blue = new RGB(0,0,255);

/\ set color for drawing
ptr.color(blue);

/\ point to the right and start drawing
ptr.point(90);
for (int i = 0; i < 50; i++) {

ptr.pixel(ptr.x, ptr.y);
ptr.x ++;

}
ptr.point(180);
for (int i = 0; i < 70; i++) {

ptr.pixel();
ptr.y ++;

}
for (int i = 0; i < 50; i++) {

ptr.pixel();
ptr.x --;

}
ptr.point(270);
for (int i = 0; i < 70; i++) {

ptr.pixel();
ptr.y --;

}

/\ diagonal line:
ptr.x = 50;
ptr.y = 0;
ptr.color(new RGB(255,0,0));
ptr.point(135);

for (int i = 0; i < canvas.x; i++) {

ptr.pixel();

ptr.x ++;
ptr.y ++;

}

main.rt
/\ This program accomplishes the same thing
Canvas canvas = new Canvas(100,200);
Tortoise tortoise = new Tortoise(canvas,0,0);
tortoise.draw(50,90,new RGB(0,0,255));
tortoise.draw(70,180,new RGB(0,0,255));
tortoise.draw(50,270,new RGB(0,0,255));
tortoise.draw(70,0,new RGB(0,0,255));

tortoise.set(50,0);
tortoise.draw(50,135,new RGB(255,0,0));

Output​:

