
QWEB: Language Reference Manual

Xabier Peralta, Tester
xp2159@columbia.edu

Ramisa Murshed, Language Guru
rm3508@barnard.edu

Kamrul Hossain, Systems Architect
kh2857@columbia.edu

Tamanna Hussain, Project Manager
th2704@barnard.edu

February 22, 2021

1

Contents

1 Introduction 4

2 Lexical Conventions 4

2.1 Comments . 4

2.2 Identifiers . 4

2.3 Operators . 5

2.4 Keywords . 5

2.5 Indentation . 6

2.6 Literals . 6

2.6.1 String Literals . 6

2.6.2 Int Literals . 6

2.6.3 Char Literals . 7

2.6.4 Boolean Literals . 7

2.6.5 Float Literals . 7

3 Data Types 7

3.1 Primitives . 7

3.1.1 int . 7

3.1.2 char . 8

3.1.3 float . 8

3.1.4 bool . 8

3.1.5 str . 8

3.2 Types . 8

3.2.1 rect . 9

3.2.2 circ . 9

3.2.3 tri . 9

3.2.4 sqre . 9

3.2.5 elps . 10

3.2.6 poly . 10

3.2.7 point . 10

3.2.8 line . 10

3.3 Collections . 11

3.3.1 list . 11

3.3.2 dict . 11

2

3.4 Objects . 11

4 Object-Oriented Programming 11

5 Statements and Expressions 12

5.1 Statements . 12

5.1.1 if-else . 12

5.1.2 for . 13

5.1.3 while . 13

5.1.4 output . 13

5.2 Expressions and Operators . 14

5.2.1 Assignment Operator . 14

5.2.2 Arithmetic Operators . 14

5.2.3 Logical Operators . 14

6 Standard Library 14

6.1 List Functions . 14

6.1.1 append . 14

6.1.2 remove . 14

6.1.3 length . 15

6.2 HTML Functions . 15

6.2.1 createHeader . 15

6.2.2 createParagraph . 15

6.2.3 createTable . 16

6.2.4 createUnorderedList . 16

6.2.5 createOrderedList . 16

7 Sample Program 16

3

1 Introduction

QWEB is an object-oriented, pseudocode-style website language inspired by
block-based visual programming languages such as Scratch and Snap, as well
as interactive visualization languages such as Processing.js. The purpose of the
language is to help both novel and experienced programmers design and develop
websites to run in their browser.

Although popular web programming languages such as HTML and CSS are
generally easy to learn and understand, QWEB fuses the two into one and
produces a language that is more intuitive, maximizes human readability, and
incorporates familiar programming constructs that are used in traditional high-
level programming languages. By replacing repetitive aspects of HTML and
CSS such as tags and selectors, QWEB makes use of control flow statements,
variable declarations, and objects instead. In essence, QWEB is to HTML and
CSS as Processing.js is to JavaScript.

2 Lexical Conventions

2.1 Comments

Comments are explanatory notes embedded within the code that are ignored by
the compiler. QWEB has both single-line and multi-line comments. Single-line
comments begin with a # symbol and multi-line comments begin and end with
triple double quotes.

1 # This is a single-line comment

2

3 """

4 This is a multi-line comment

5 """

2.2 Identifiers

Valid identifiers, or names, consist of a sequence of alphanumeric characters or
a single alphabetic character. Identifiers can contain an underscore, but they
cannot be a QWEB keyword. They are also case sensitive; in other words,
identifiers that differ in uppercase and lowercase letters are considered distinct.

1 SET x to 14 # x is a valid identifier because it is a single

alphabetic character

2

3 SET 1a to 10 # 1a is an invalid identifier because it begins with a

number

4

2.3 Operators

Relational operators are used to evaluate a boolean statement. QWEB uses the
following reserved operators:

1 + - < > <= >= != == * / = **

For example:

1 SET a to 1

2 SET b to 2

3

4 output a > b # false

5 output a < b # true

6 output a >= b # false

7

8 SET a to 2

9

10 output a <= b # true

11

12 SET A to [1,2,3]

13 SET B to [4,5,6]

14

15 output A == B # false

16 output A != B # true

2.4 Keywords

The list of identifiers reserved as keywords are below:

and or not
IF OTHERWISE IF OTHERWISE

ENDIF REPEAT UNTIL
SET FOR each ENDFOR

function length object
true false output

display pass continue
int str bool

float color rect
circ poly tri
sqre elps point

output object line

5

2.5 Indentation

Sequence control is indicated by writing one action after another on separate
lines and with the same indent. For control flow statements, however, QWEB
relies on brackets to indicate grouping. In other words, control flow keywords
like IF, OTHERWISE, OTHERWISE IF, REPEAT until, and FOR each must be
followed by a bracket with subsequent lines indented with a tab or four spaces
and enclosed with a closing bracket.

1 # Example using indentation and brackets in a for each loop

2 FOR each key in data {

3 FOR each val in key {

4 table.append(val)

5 }

6 }

7 ENDFOR

2.6 Literals

Literals represents strings or one of QWEB’s primitive data types: int, char,
float, and boolean.

2.6.1 String Literals

A string literal is a sequence of alphabetic characters enclosed in single or double
quotation marks. Examples of string literals include:

1 "QWEB"

2 ’Websites’

2.6.2 Int Literals

An integer literal is any sequence of integers between 0 and 9. Examples of
integer literals include:

1 12

2 25

3 62

4 34

5 97

6

2.6.3 Char Literals

A character literal consists of a single letter from the alphabet. Examples of
char literals include:

1 a

2 v

3 c

4 d

5 e

2.6.4 Boolean Literals

Boolean types are represented by the True and False keywords.

1 True

2 False

2.6.5 Float Literals

A float literal is a number with a whole number, optional decimal point, a
fraction, and an exponent. Examples of float literals include:

1 10

2 11.5

3 5.25

4 6e+2

5 0.005

3 Data Types

3.1 Primitives

In QWEB, there are four primitive data types available: int, char, float,
bool, and string.

3.1.1 int

int represents integers and consists of one or more characters in the range 0-9.
Examples of declarations are:

1 int b

2 SET b to 23

7

3 SET int c to 45

3.1.2 char

char represents characters like symbols and letters (A-Z). In order to use char,
the char element must be written in between single quotes and can be declared
as the following:

1 char n

2 SET n to ’X’

3 SET char m to ’$’

3.1.3 float

float represents floating point numbers and consists only of numbers that have
a decimal point. Declaration is as follows:

1 SET float a to 10.5

2 float b

3 SET b to 50.0

3.1.4 bool

bool can only represent a boolean value of either true or false. An example of
a declaration is:

1 SET bool a to false

2 bool b

3 SET b to true

3.1.5 str

str represents a sequence of characters stored in a character array. Declaration
is as follows:

1 SET x to "language"

3.2 Types

QWEB also offers data types that are combinations of different data types and
allows users to create and edit 2D structures. These data types are: rect,

8

circ, tri, sqre, ellipse, poly, point, line, and size.

3.2.1 rect

The rect datatype can be used to create rectangles. The syntax for this
datatype consists of a comma-separated list of four integers representing the
distance in CSS pixels from the sides of the image to the sides of the rectangle
and the height and width. An example of this is:

1 SET rect x to [20, 20, 150, 100]

The first two values of the parameters refers to the positioning of the rectangle
within the page and the last two values refer to the length and width respectively.

3.2.2 circ

The circ datatype is used to create circles. The syntax for this datatype consists
of a comma-separated list of three numbers representing the distance in CSS
pixels from the edges of the image to the center of the circle and the radius must
be given. An example of this syntax is:

1 SET circ x to [50, 50, 40]

The first two values of the parameters refers to the positioning of the rectangle
within the page and the last value represents the radius of the circle.

3.2.3 tri

The tri datatype is used to create triangles, which is essentially a plane con-
nected by three points. As such, using tri datatype requires six arguments in
which the first two refer to the x and y coordinates of the first point, the middle
two refer to the x and y coordinates of the second point, and the final two refer
to the last x and y coordinates of the third point. An example of this is:

1 SET tri x to [50, 40, 100, 78, 54, 58]

3.2.4 sqre

The sqre datatype can be used to create squares. In order to create squares, a
comma-separated list of three numbers representing the positioning of the upper
left corner of the square and the length of each side must be used. An example
of this is:

1 SET sqre x to [20,20,16]

9

The first two values refer to the x and y coordinates of the upper left corner of
the square and the last value represents the length of each side of the square.

3.2.5 elps

The elps dataype can be used to create an ellipse, which are circles with unequal
width and height. In order to create ellipses, a comma-separated list of four
numbers that represent the location, width, and height of the ellipse must be
used. An example of this is:

1 SET elps x to [50, 50, 16, 19]

The first two values refers to the x and y position of the center of the ellipse
and the last two refer to the width and height respectively.

3.2.6 poly

The poly datatype can be used to create polygons, which are shapes consisting
of at least three straight sides that are not already featured in the QWEB
library. The poly datatype consists of a comma-separated list of at least six
integers that represent coordinates and points of the polygon. An example of
this is:

1 SET poly x to [200, 10, 250, 190, 160, 210]

Each pair of arguments refers to the x and y coordinate of a point that connect
to the other points given.

3.2.7 point

The point data type can be used to create a single pixel that pertains to a
coordinate in space. To use the point data type, a comma-separated list of two
integers is needed to represent the x and y coordinates of the point. An example
of this is:

1 SET point x to [5, 6]

3.2.8 line

The line data type can be used to draw a line, which is a direct path between
any two points. In order to construct a line, a list of four integers that represent
the two endpoints of a line must be provided. An example of this is:

1 SET line x to [7,8,12,15]

10

The first two arguments refer to the x and y coordinates of the first endpoint
and the last two refer to the x and y coordinates of the second endpoint.

3.3 Collections

In QWEB, there are two types of collections: list and dict.

3.3.1 list

A list is represented by a sequence of comma-separated elements enclosed in
two square brackets, []. The index of a list starts at zero and the position of
each element can be accessed using their position along the list. Lists can only
contain one data type of either primitives and objects. If a list consists of one of
the primitive data types, all of the elements that are added must be of the same
type (i.e., a list of only integers or a list of only floats). The methods available
for a list in QWEB are append, remove, and length. An example of lists being
used is shown below:

1 SET list to ["Apples", "Bananas", "Pears", "Oranges", "Grapes"]

In this example, a list is created to hold five string elements.

3.3.2 dict

Dict or dictionaries are represented by a series of element pairs that include
different data types. This collection type can be used to store data in key
value-pairs. An example of this is shown below:

1 SET data to:

2 "Firstname": ["Jill", "Eve"],

3 "Lastname": ["Smith", "Jackson"],

4 "Age": [50, 94]

In this example, a dict called data is being created to hold some basic informa-
tion about two different people.

3.4 Objects

In QWEB, objects acts as as container for different or similar data types and
can be used to create more intricate structures.

4 Object-Oriented Programming

QWEB supports objected-oriented programming without inheritance and allows
for multiple data types and functions to be nested within a single class. Classes

11

have to be defined within the global scope. An example of creating an object is
shown below:

1 object Orange{

2 function constructor(length, width){

3 SET this.length to length

4 SET this.width to width

5 }

6

7 function area(){

8 output this.length * this.width

9 }

10 }

This is an example of how to instantiate an object in a program:

1 # prints the area of an Orange object

2 SET object Orange(12,4) to clementine

3 SET areaOfClementine to clementine.area()

4 display areaOfClementine

5 Statements and Expressions

5.1 Statements

QWEB supports the use of statements in order to iterate or perform repetitive
actions. All statements are executed sequentially.

5.1.1 if-else

QWEB supports the use of conditional statements, including Pythonic if-else
statements. In QWEB, if is denoted by an all-caps IF, elif is denoted by
OTHERWISE IF, and else is denoted by OTHERWISE. Each statement is separated
by curly braces to denote the end of the statement. If an IF statement evaluates
to the boolean false, then OTHERWISE IF is evaluated. If this statement also
evaluates to false, then OTHERWISE is executed.

1 IF (x == 5) {

2 output "x is 5"

3 } OTHERWISE IF (x == 3) {

4 output "x is 3"

5 } OTHERWISE {

6 output "x is not 5 or 3"

7 }

8 ENDIF

12

5.1.2 for

The usage of for loops is also supported by QWEB. They serve a similar func-
tion as for loops in Python and are denoted by the keywords FOR each. These
loops iterate through elements in a structure such as a list and allow for the re-
peated execution of a block of code, for which beginning and ending is indicated
by curly braces. Iteration begins at 0.

1 FOR each element in list {

2 output element

3 }

4 ENDFOR

5.1.3 while

QWEB also supports the use of Pythonic while loops, which are indicated in
QWEB by the keywords REPEAT until. These loops repeatedly execute a block
of code (contained in the curly braces) until the boolean statement that follows
REPEAT until no longer evaluates to true.

1 SET int x to 0

2

3 REPEAT until (x > 6) {

4 output "Hello World"

5 SET x to x + 1

6 }

5.1.4 output

QWEB denotes return statements with the keyword output. This can be
used in any function in QWEB and is not constrained to any particular type.
Whenever an output statement is called, the program exits out of the current
loop and returns the value denoted after the keyword output.

1 def incrementX (int x) {

2 SET result to x + 1

3 output result

4 }

13

5.2 Expressions and Operators

5.2.1 Assignment Operator

The assignment operator in QWEB is denoted by the keyword SET...to, which
assigns a value to a variable. The value directly after the keyword to is assigned
to the variable indicated between the keywords SET and to.

1 SET A to [1, 2, 3, 4]

2

3 SET x to "Hello World"

5.2.2 Arithmetic Operators

QWEB supports the use of the arithmetic operators + (to add or concatenate
values), - (to subtract values), * (to multiply values), / (to divide values), and
% (to perform modulo operations).

5.2.3 Logical Operators

QWEB also makes use of the logical operators and, or, and not, providing an
identical function to that of its usage in Python.

6 Standard Library

6.1 List Functions

6.1.1 append

append is a static function that adds an item to the end of a list. It takes in a
value or object compatible with the type of elements contained in the list it is
appending to and does not return anything.

1 SET list to [1, 2, 3, 4]

2

3 list.append(5)

4 display list # [1, 2, 3, 4, 5]

6.1.2 remove

remove is a static function that removes an item from a list, given the value or
the index of the item in the list. It takes in a value or object that exists in the
list it is appending to and does not return anything.

14

1 SET list to [1, 2, 3, 4]

2

3 list.remove(3)

4 display list # [1, 2, 4]

5

6 list.remove(list[1])

7 display list # [1, 4]

6.1.3 length

length is a function that computes the length of a given list. It returns a value
of type int.

1 SET list to [1, 2, 3, 4]

2

3 SET len to list.length()

4 display len # 4

6.2 HTML Functions

6.2.1 createHeader

createHeader is a function that returns an HTML header. It takes in two
values: the first being a string that contains the text to be put in the header, and
the second being an optional parameter of type int from 1 to 6, inclusive, that
specifies which size the header should be. If the second parameter is omitted,
then it defaults to <h1>.

1 SET headerText to "This is a header."

2

3 SET head to createHeader(headerText, 2)

4 display head #prints "This is a header." header in size h2

6.2.2 createParagraph

createParagraph is a function that returns an HTML paragraph. It takes in a
string that contains the text to be put in the paragraph.

1 SET paragraphText to "This is a paragraph."

2

3 SET par to createParagraph(paragraphText)

4 display head #prints "This is a paragraph." paragraph

15

6.2.3 createTable

createTable is a function that returns an HTML table. It takes in a 2D array
containing each value to be put into each cell of the table.

1 SET tableArrays to [[1, 2, 3, 4], [a, b, c, d]]

2

3 SET tab to createTable(tableArrays)

4 display tab # produces a 2D array in table form

6.2.4 createUnorderedList

createUnorderedList is a function that returns an HTML unordered list. It
takes in a list that contains all of the values to be put into the unordered list.

1 SET ulList to [a, b, c, d]

2

3 SET ul to createUnorderedList(ulList)

4 display ul # prints out an unordered list of ulList elements

6.2.5 createOrderedList

createOrderedList is a function that returns an HTML ordered list. It takes
in a list that contains all of the values to be put into the ordered list.

1 SET olList to [x, y, z]

2

3 SET ol to createOrderedList(olList)

4 display ol # prints out an ordered list of olList elements

7 Sample Program

The following program illustrates an example of how to use Object-Oriented
programming in QWEB:

1 # define a ShoppingList object

2 object ShoppingList {

3 # the constructor is defined with arguments

4 function constructor(str item, int quantity, float price) {

5 SET self.groceries to {}

6 SET this.item to item

7 SET this.quantity to quantity

8 SET this.price to price

16

9 }

10

11 # functionality

12 function addToList(str itm, int quantity, float price) {

13 SET totalPrice to price * quantity

14 SET groceries[itm] to totalPrice

15 }

16

17 function removeFromList(str itm) {

18 FOR each fruit in groceries {

19 IF itm == fruit {

20 groceries.remove(itm)

21 }

22 ENDIF

23 }

24 ENDFOR

25 }

26

27 function display() {

28 # uses the built-in createTable function to return the

structure of the table

29 SET table to createTable(len(groceries), 2)

30

31 # uses a nested for loop to add the data to the cells in the

table

32 FOR each fruit in groceries {

33 FOR each price in fruit {

34 table.append(price)

35 }

36 ENDFOR

37 }

38 ENDFOR

39

40 # returns the table to display on webpage

41 output table

42 }

43 }

44

45 # declare a ShoppingList object called myShoppingList

46 SET object ShoppingList(Oranges, 13, 1.33) to myShoppingList

47 myShoppingList.addToList(Apples, 5, 1.32)

48 myShoppingList.addToList(Tomatoes, 3, 1.89)

49

50 # print myShoppingList object

51 display myShoppingList

In contrast, the following program in HTML would require users to manually
populate and remove elements from the table:

17

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 <meta charset="UTF-8">

5 <title>Shopping List</title>

6 </head>

7 <body>

8 <table border = "1">

9 <tr>

10 <th>Item</th>

11 <th>Price</th>

12 </tr>

13 <tr>

14 <td>Oranges</td>

15 <td>23.94</td>

16 </tr>

17 <tr>

18 <td>Apples</td>

19 <td>6.60</td>

20 </tr>

21 <tr>

22 <td>Tomatoes</td>

23 <td>5.67</td>

24 </tr>

25 </table>

26 </body>

27 </html>

18

