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1 Introduction

PRIME is a language based off C, specifically created for the implementation of cryptography algo-
rithms. As a result, PRIME contains a number of features intended to facilitate the implementation of
encryption and decryption schemes. The types and operators included in PRIME are primarily oriented
around modular arithmetic and large number processing, given the relevance of these two topics in mod-
ern cryptography. Additionally, PRIME includes many basic features for general ease of usage.

Due to syntactical and functional similarities between PRIME and C, the C Reference Manual
(https://www.bell-labs.com/usr/dmr/www/cman.pdf) is a helpful resource in understanding PRIME
and its underlying mechanics.

The following manual covers the types, operators, and functionalities of PRIME, as well as quick usage
cases to help illustrate programming in PRIME. The language reference manual is also subject to update
pending further changes to PRIME and added language components.

1.0.1 CFG

The CFG for PRIME is dispersed throughout the document to help show system architecture. The CFG
is found at the end of a section (when applied to multiple subsection) or subsection (when specific to a
single subsection), depending on the specialization of elements.

It is ultimately heavily similar to the CFG in K&R’s C Reference Manual (2nd Edition). Please note
that the terminals in PRIME are: identifiers, strings, constants/literals.

When we call a different non-terminal (especially from the -expressions) it is akin to denoting the prece-
dence (low recurses to high).

The order in which the recursion occurs will denote the associativity eg: equality expr showing up
on the left of == denotes left-associativity.

A subscript of opt stands for optional. You will note that in the return statement a return value is
necessary. This is because PRIME has no void type. Unless specified otherwise (eg: by ”one of”), the
format of the CFG is nonterminal: followed by different productions on different lines.

2 Types

Types in PRIME are similar to that of C and C++ with a few others that are particularly useful for
cryptography operations. Note that in the below CFG, the term constant is used to refer to fundamental
literal types, which are then used to create all of the basic types in PRIME.

CFG:
type-specifier: one of

int char string pt lint poly ring

params:
parameter-declaration
params , parameter-declaration

parameter-declaration:
type-specifier identifier

program:
declarations EOF
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2.1 Initialization

In the absence of variable assignment, types are handled as literals (here ’constants’, in the CFG). Ini-
tializing variables in PRIME is similar across all types, and may or may not use the assignment operator
(described in detail below).

Examples:
type name;
type name = value;

CFG: declare-init:
type-specifier declarator;

declarator:
identifier
identifier = assign-expr
declarator(paramsopt)
declarator[assign-expr]

constant:
integer-list
char-lit
string-lit

2.2 int

Just as in C, an int can take signed 32-bit integer values ranging from−2, 147, 483, 648 to 2, 147, 483, 647.
ints can be declared with or without an original value. If it is declared without an original value, it is
automatically set to 0.

Examples:
int foo = 4;
int bar = foo;
int foobar;

2.3 char

The char can take 8-bit to represent ASCII characters. We denote char assignment by using apostro-
phes for literal characters. chars can be declared with or without an original value. If it is declared
without an original value, it is undefined.

Examples:
char foo = ’a’;
char bar;

2.4 string

A string is a datatype meant to hold a sequence of ASCII characters. We denote string assignment
by using quotations for literal sequences of characters. strings can be declared with or without an
original value. If it is declared without an original value it is set as the empty string.

Examples:
string foo = "hello";
string bar;
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2.5 pt

A pt is a datatype meant to represent a point in n-space. pts work similarly to one-dimensional arrays
in Java. When points are assigned a value, they must be defined with regards to a specific immutable
dimension of int n surrounded by brackets. Additionally, they may also specify coordinates of int
and/or lint types.

When a pt is initialized with a set of coordinates, a value must be given for every dimension. These
values must be enclosed in parenthesis and separated by commas. A pt declared without a dimension
and corresponding coordinates is undefined. pts that are initialized with a dimension but without spe-
cific coordinates are initialized to be the origin (0, 0, . . . , 0). When any of these rules are not obeyed, the
behavior is undefined.

Each dimensional coordinate within a pt is mutable and can be changed by using brackets to specify
the dimension of interest. pt accessing is zero-indexed. Accessing an invalid index will cause undefined
behavior.

Examples:
pt origin[3];
pt here[2] = [132, 1];
pt nowhere;
pt here[0] = 1;

CFG:
integer-list:

integer
integer-list, integer

2.6 lint

A lint or large integer is a very large integer. It is approximately 200 digits in length to conform with
current state-of-the-art cryptographic security requirements. Large integer types are usually used to hold
large primes for later use in computationally expensive products or exponents in practice.

Similarly to integers, lints can be declared without an initial value or with one. Since integers will by
definition be smaller than lints, they can also be assigned to each other. However, lints will only be
compared to other lints for computational efficiency.

Examples:
lint bigNumber;
lint anotherBigNumber = 2147483659;
int smallNumber = 51;
lint bigNumber = smallNumber;

if( bigNumber > anotherBigNumber ) { /* OK */
return 0;

} else if( bigNumber == smallNumber ) { /* ERROR */
...

}
return bigNumberˆsmallNumber;

2.7 poly

The poly defines a univariate polynomial function with respect to a positive lint modulus. The poly-
nomial function and modulus is defined within [] using a comma separated series of pt points in two
dimension space, where the first dimension denotes the coefficient, and the second dimension denotes
the exponent. Each point within a poly requires a unique value for the second dimension, as one
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coefficient can only be defined for a unique exponent. The last element within the brackets denotes a
modulus with type lint. The modulus of the polynomial should always be greater than or equal to zero.

Examples:
lint l = 4;
poly quadratic = [(2, 4), (1,2), (3,0), l];
/* Defines 2xˆ4 + xˆ2 + 3 with modulus 4 */

2.8 ring

The ring serves as the cornerstone of our cryptography-oriented language. A ring is modeled after
the mathematical concept of a ring from modern algebra. Our rings are built to support complex
expressions of modular arithmetic. Typically, a mathematical ring is defined as a set of elements, not
necessarily finite, under which two operators, often called addition and multiplication, are closed. The
set of integers from 0 to n mod n form a ring with modular addition and multiplication. Stemming from
addition and multiplication, other operations like subtraction and exponentiation can easily be defined.

A ring is defined with respect to an input type and modulus. Both of these specifiers are immutable
once the ring is initialized. A ring declared without an input type and a modulus will be null.

Once a ring is defined, it will support the computation of modular arithmetic expressions with re-
spect to its immutable modulus. int and lint moduli should always be greater than or equal to zero.
Computations within the ring are denoted by writing the name of the ring followed by .comp(). Where
an expression is written within the parentheses.

rings are built to automatically support a set of standard operations, discussed below, when the input
type matches the modulus type. The exception to this is with pts where rings will automatically support
operations between pts with an int or lint modulus. For less trivial combinations, for example a ring
that takes in pts and is defined with a poly modulus, the user must redefine the operators. The user
may overload an operator for any ring.

Operator overloading works similarly to that in C++. The name of the ring is written followed by
a colon :, an operator, and two obligatory variables encased within parentheses to represent the right
hand side and the left hand side of the expression. The new operator expression should be written within
curly braces and must return a value.

Examples:
ring nullring;
ring mod7 = (pt[2], 7);
pt newpt[2] = ring.comp((3,5) + (2,6)); /* newpt = (5,4) */

mod7:+(lhs, rhs){return lhs - rhs;} /* addition changed to subtraction */
newpt = ring.comp((3,5) + (2,6)); /* newpt = (1, 6) */

3 Operators

3.1 Unary Operators

Unary operators include ! and -. Unary operators take precedence above all other mathematical opera-
tors.

CFG:
unary-operator: one of

- !
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3.1.1 Not: !

! expression

The logical negation operator is used to obtain the logical opposite of a value. It works on ints and
lints. Since there are no booleans in PRIME, true and false may be represented by 0 and non-zero
integers respectfully. If the expression evaluates to a non-zero integer, ! expression will return a 0. If
the expression evaluates to zero, ! expression will return 1.

3.1.2 Negative: -

− expression

The negative unary operator is used to obtain the mathematical opposite of a value. It works on ints,
lints, pts, and polys. When performed on an int or lint, the opposite value will be returned. I.e.
1 becomes -1 and vice versa. When performed on an pt, each component of the point is multiplied by
negative one. When performed on a poly, each coefficient of the poly is multiplied by negative one.
The return type is the same as the expression type.

3.2 Multiplicative Operators

Multiplicative operators include multiplication, division, and modulo.

CFG:
multiply-expr:

unary-expr
multiply-expr * unary-expr
multiply-expr / unary-expr
multiply-expr % unary-expr

3.2.1 Multiplication: *

expression ∗ expression

The multiplication operator will be used to obtain products of large primes mainly. It is one of the arith-
metic operators and will function on ints, lints, pts, and polys. ints and lints may be multiplied
to one another and will return the lint type.

If one of the expressions is type pt, the other expression must be an int or lint. In this case
each component of the pt will be multiplied by an integer value. This is akin to scaling a vector. If one
expression is a poly with base modulus n the other expression must also be a poly with base modulus n

Example:
lint one = 2147483659;
lint two = 1837641987193287;
one * two; /* is a lint */

int three = 3;
int four = 4;
three * four; /* is an int */

one * three; /* is a lint */

3.2.2 Division: /

expression / divisor expression

The division operator will be used to obtain the integer quotient of large primes mainly. It will function
on ints, lints, pts, and polys. ints and lints may be divided by one another and will return the
lint type. If the divisor expression does not divide the left hand side expression, the quotient will be
truncated in the appropriate way based on the type to provide integer values, components, or coefficients.
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Divisor expressions may not be of type pt. If the left hand expression is of type pt, then the divi-
sor expression must be of type int or lint. polys may only divide and be divided by other polys
with the same base modulus.

3.2.3 Modulo: %

expression % modulus expression

The modulo operator will be used to obtain remainder from integer and polynomial division. It will
function on ints, lints, pts, and polys. Expressions of type int, lint, or pt must have a modulus
expression that is either an int or lint. poly expressions with base modulus n must have a modulus
expression also of type poly with base modulus n. The return type will always be the same type as the
expression (on left hand side).

Example:
lint one = 2147483659;
int a = 1837641987193287;
one % a; /* is a lint */
a % one; /* is an int */

pt[3] q = (1, 3, 4);
int two = 2;
q % two; /* is a pt */

3.2.4 Exponent: ˆ

base expressionˆexponent expression

The exponent operator will be used to compute the repeated multiplication of integer values. It will
function on ints and lints. ints and lints may be raised to each other. The return type will be the
type of the base expression.

CFG:
unary-expr:

power-expr
unary-operator power-expr

power-expr:
postfix-expr
postfix-expr ˆ power-expr

3.3 Additive Operators

Additive operators include addition and subtraction.

CFG:
add-expr:

multiply-expr
add-expr + multiply-expr
add-expr - multiply-expr

3.3.1 Addition: +

expression + expression

The addition operator will be used to obtain integer sums. It will function on ints, lints, pts, and
polys. ints and lints may be added to one another and will return the lint type. pts of dimension
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n may only be added to other pts of dimension n. When pts of dimension n are added to one another,
their respective components are summed to return a new point of dimension n. polys of base modulus
n may only be added with other polys with the same base modulus n. When polys are added to other
polys, their sum is calculated by adding coefficients of the same degree mod n. The return type is a
polys of base modulus n.

3.3.2 Subtraction: -

expression - expression

The subtraction operator is used to obtain integer differences. It will function on ints, lints, pts,
and polys. ints and lints may be subtracted from one another and will return the lint type. pts
of dimension n may only be subtracted from other pts of dimension n. When pts of dimension n are
subtracted from one another, their respective components are subtracted to return a new pt of dimension
n. polys of base modulus n may only be subtracted from other polys of base modulus n. When polys
are subtracted from other polys, their difference is calculated by subtracting coefficients of the same
degree mod n. The return type is a polys of base modulus n.

3.4 Relational Operators

expression < expression

expression > expression

expression <= expression

expression >= expression

The relational operators (<, >,<=, >= ) denote less than, greater than, less than or equal to, and
greater than or equal to, respectively. These operators compare two expressions of type int or lint
and will return an integer value 1 (true) or 0 (false) based on a relational comparison in R. These
relational operators are equivalent in precedence and have a lower precedence than multiplicative and
additive operators.

CFG:
relation-expr:

relation-expr < add-expr
relation-expr > add-expr
relation-expr <= add-expr
relation-expr >= add-expr

3.5 Equality Operators

expression == expression

expression ! = expression

The equality operators (==, !=) denote equals and not equals, respectively. These operators compare
two expressions of type int, lint, pt, or poly. The == operator returns an integer value 1 (true) if
the two expressions are equivalent in R, and 0 (false) otherwise. The != operator returns an integer
value 1 (true) if the two expressions are not equivalent in R, and 0 (false) otherwise. These equality
operators are equivalent in precedence and have a lower precedence than relational operators.

CFG:
eq-expr:

relation-expr
eq-expr == relation-expr
eq-expr != relation-expr
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3.6 Logical Operators

expression && expression

expression || expression

The equality operators (&&, ||) denote logical and and logical or, respectively. These operators compare
two expressions of type int. The && operator returns an integer value 1 (true) if the two expressions
are nonzero, and 0 (false) otherwise. The || operator returns an integer value 0 (false) if the two
expressions are zero, and 1 (true) otherwise. These logical operators are evaluated from left to right,
equivalent in precedence and have a lower precedence than equality operators.

CFG:
logic-OR-expr:

logic-AND-expr
logic-OR-expr || logic-AND-expr

logic-AND-expr:
eq-expr
logic-AND-expr && eq-expr

3.7 Assignment Operators

variablename = expression

The equals operator is the assignment operator in our language. Once the right hand expression has
been evaluated, it is stored in the variable expression. The expression to the left of the equals sign must
be a variable expression.

CFG:
assignment-operator:

=

assign-expr:
logic-OR-expr
unary-expr assignment-operator assign-expr

4 Precedence

Precedence in PRIME is defined as follows. If two operators of equal precedence are present, they will
be parsed from left to right within a line and top to bottom if longer than a line.

1 ( )
2 - (Unary Operator), !
3 *, /, %
4 +, - (Subtraction)
5 <, <=, >, >=
6 ==, !=
7 ˆ
8 &&, ||
9 =

5 Lexical Conventions

5.1 Key Words

PRIME has several keywords that are reserved in the language to prevent ambiguity.
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5.1.1 Type Related Keywords

• int

• lint

• pt

• poly

• ring

• string

• char

5.1.2 Statement Related Keywords

• if

• else

• for

• while

• return

5.2 Variable Names

Variables must be named starting with a letter a through z lower or uppercase followed by any number
of alphanumeric characters or underscores.

5.3 Comments

comments in Prime are initiated using the character sequence /* and concluded using */. All text
between the /* and the */ will be ignored by the compiler. This commenting format applies to both
single line and multiline comments.

6 Statements and Expressions

The following CFG components are included in this document to illustrate how handling general struc-
tural elements (i.e. statements that are not confined to a specific section above or may be employed
in multiple cases) occurs in PRIME. This includes processing statements and expressions (which could
occur in functions, loops, conditionals, or any other part of a program), and managing argument lists.

CFG:
stmt:

expr-stmt
sequential-stmts
control-flow-stmt
loop-stmt
return-stmt

expr-stmt:
expropt;

sequential-stmts:
{declarationsopt stmtsopt}

expr:
assign-expr
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expr, assign-expr

primary-expr:
identifier
constant
( expr )

args-exprs:
assign-expr
args-exprs, assign-expr

7 Program Structure

The following structural elements dictate the control flow of a program in PRIME.

7.1 Conditionals

Conditionals in PRIME come in two forms, both of which begin with an if statement:

if (expression) statement
if (expression) statement else statement

In each of the above cases, the expression following the initial if statement is evaluated and if the
value returned is nonzero, the following statement is executed. The else keyword allows for an alterna-
tive statement to be executed if the expression evaluates to zero. Each else will be paired to the last
encountered if that is not already paired with an else.

CFG:
control-flow-stmt:

stmt-dangling
stmt-nodangle

stmt-dangling:
if(expr) stmt
if(expr) stmt-nodangle else stmt-dangling

stmt-nodangle:
if(expr) stmt-nodangle else stmt-nodangle
expr-stmt
loop-stmt
sequential-stmts
return-stmt

7.2 Loops

Loops are used for iteration in PRIME. They may be implemented as while or for loops, described in
detail here.

CFG:
loop-stmt:

while(expr) stmt
for(expropt;expropt;expropt) stmt
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7.2.1 While

While loops in PRIME are of the form:

while (expression) statement

This functions similarly to an if statement, except for the fact that the statement following a while
statement will be repeatedly executed for as long as the expression following the while evaluates to
a nonzero value. For this reason, it is essential that the expression be updated at some point over the
course of the while loop, to prevent infinite iteration. The evaluation and check of the expression occurs
at the beginning of each iteration.

7.2.2 For

For loops in PRIME are of the form:

for ( expression1 ; expression2 ; expression3 ) statement

expression1 is executed prior to the first iteration of the loop. expression2 is evaluated prior to ev-
ery iteration of the loop, and the loop is entered if expression2 evaluates to true. expression1 is executed
prior to every iteration of the loop. statement is executed during every iteration. Note that each of the
expressions is optional as dictated by the CFG above.

7.2.3 Loop Equivalence

As an example of loop equivalence between while and for loops in PRIME, the following implementations
are identical in functionality:

expression1 ;
while (expression2 ) {
statement ;
expression3 ;
}

for ( expression1 ; expression2 ; expression3 ) statement

CFG:
loop-stmt:

while(expr) stmt
for(expropt;expropt;expropt) stmt

7.3 Functions

Functions in PRIME are of the form:

return-type function-name (parameters) statement

Note that all functions in PRIME must return some value, and the statement (i.e. the function body)
must therefore contain some return line. The return statement is the keyword return followed my a space
and the return expression followed by a semicolon.

return expression;

CFG:
function-definition:

type-specifier declarator sequential-stmts
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return-stmt:
return expr;

8 Scope

8.1 Curly Brackets

Scope is generally denoted as space between curly braces. Variables declared there will be accessible
within that scope. ”constants” or variables that should be treated as such should be declared in the
main function of a particular program rather than outside/at the top of the program. Additionally, in
the below examples of conditionals, functions, and loops, it should be noted that statement is usually
contained within curly brackets, so as to denote the scope of the statement.

Example:
main() {
/* declare your constants here and pass them */
int n = 57; /* OK */
n = 58; /* Also ok */
int n = 59; /* ERROR */
lint n = 60; /* ERROR */

}

8.2 Semicolons

A semicolon character denotes the end of an expression and the start of the next (since whitespace will
be ignored). This applies to loops, declarations, if statements etc.

Example:
int n = 3;
int n2 = 4 + 3
/* still going... */
+2; /* done */

9 Input and Output

PRIME will support input and output through the normal channels of stdin, stdout, and stderr.
These components are not yet included in the parser, but are set to be added in the next iteration of
added features as building the language progresses.

9.1 print()

The print(string out) function takes a single string and writes it to stdout. print() returns a 1
upon success, and a 0 otherwise.

9.2 scan()

The scan()) function reads from stdin and returns a string.

10 Additional Notes on Cryptography

The basis for all modern cryptography is mathematical trapdoor functions. That is, mathematical oper-
ations that are easy to do in one direction but very difficult to do in the backwards (inverse) direction.
Modular arithmetic using large primes is at the heart of many trapdoor functions used in industry today
so our language will focus on making this kind of arithmetic easy to implement.

The mathematical theory behind cryptography comes from abstract and modern algebra and the study
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of group theory. A mathematical group is a set of elements that are closed under some operator, say
addition or multiplication. Furthermore, there exists an identity element in the group where every ele-
ment * the identity element will return the original element. Lastly, for every element in the group, there
exists an inverse element where the element * the inverse element will return the identity element. A
group could be defined as the set of all integers under addition. In this case the identity element would
be 0. The inverse of an element would just be the negative (opposite) version of itself e.g. 2 and -2.

Our language incorporates the idea of a mathematical ring which is similar to a group with two ex-
ceptions. First, the ring is closed under two operations as opposed to just one. These operations are
often denoted as + and *. Second, not every element must have an inverse in the ring. For modular
arithmetic, this more generous description of a set lends itself well for PRIME’s use cases. For instance
the set of all integers modulo 20 with operation multiplication would have identity element 1. But then
even integers don’t have an inverse in the set. So it is necessary to use a looser more inclusive algebraic
space. From the two operators a ring is defined under, typically addition and multiplication, additional
operators can be defined like subtraction or exponentiation.
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