Konig — Language Reference Manual

Jessica Ling Yan (jly2121), Matteo Sandrin (ms4911), Delilah Beverly (db3250), Lord Crawford (Irc2161)

Konig — Language Reference Manual

1. Introduction
2. Lexical Conventions
2.1 |dentifiers
2.2 Comments
2.3 Separators
2.4 Literals
2.4.1Boolean Literals
2.4.2 Integer Literals
2.4.3 Float Literals
2.4.4 String Literals
3. Data Types
3.1 Primitives
3.2 Lists
3.2.1 List Functions
3.3 Nodes
3.4 Graphs
3.5 Edges
4. Operators
4.1 Arithmetic Operators
5. Graph Semantics
5.1 Graphs
5.2 Nodes in Graph
5.3 Edges in Graph
6. Keywords
7. Control Flow
7.1 While Loop
7.2 For Loop
7.3 Conditionals
8. Functions
9. Standard Library
10. Sample Code

© 0 00 00 00 N 4 OO O o1 0 otol DDA DMPWWDNNNA

= L 2 s s

1. Introduction

Graphs have an important role in a number of applications including networks, data processing,
databases and everything in between. The Konig programming language is aimed at making the

creation and manipulation of graphs easier and more enjoyable.

Konig is an imperative, statically typed language. The language's syntax is similar to C, but with
the addition of a number of operators and functions specific to graph theory. Furthermore,

Konig uses a syntax for generic types similar to Java.

The language is named after the "Seven Bridges of Konigsberg", a famous math problem that

laid the foundations of graph theory. It also means "king" in German.

2. Lexical Conventions

The following conventions are used to specify the context free grammar behind Konig:

Label Description

ID An identifier. It can be either a variable name
or a function name

EXP An expression, which returns a value

STMT A statement, which does not return a value

if, and, for .. Any lowercase word is understood to
represent the corresponding reserved
keyword

2.1 ldentifiers

Identifiers in Konig are made up of any lowercase or uppercase ASCII letter, any decimal number,
or the underscore character. However identifiers must start with a lowercase or uppercase ASCII
letter.

int one two = 0;
int two33 = 0;
int OneTwoTree = 0;

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

int ltwo = 0;
int two =0
int !'@# = 0;

Identifiers therefore match the regular expression [a-zA-Z] [a-zA-Z0-9]*
Grammar: TYPE ID = EXP

2.2 Comments
Comments are specified with a double forward-slash. Multiline comments use a forward slash

paired with an asterisk as a starting token, and an asterisk paired with a slash as an end token.

graph g = new graph{}

Grammar: TYPE ID = new TYPE{EXP, EXP, ..}

2.3 Separators

Konig uses semicolons to separate expressions, curly braces to separate blocks of expressions,
and parentheses to isolate expressions that take precedence, and override the default
preference order.

int x = 0;
x =x + 1;
if (x) |
X = 2;
}
Xx = (x + 1) * (x + 2)

Grammar: { STMT; STMT; STMT ... }

2.4 Literals

2.4.1 Boolean Literals

The boolean literal is represented in Konig by the keywords true and false.

bool x = true;

2.4.2 Integer Literals
The integer literal is represented in Konig by an arbitrary length sequence of digits each between
0 and 9.

int x = 1234;

2.4.3 Float Literals

The floating point literal is represented in Konig as either pair of integers joined by a period,
accompanied by an optional exponent indicated as following:

float x = 12.34;
float y = 1.234e+1;
float z = 123.4e-1;
float w = 1.234el;
float j = 1234.e-2;
float k = .1234e+2;

Floating point literals therefore match the following regular expression:
[0-91\.[0-9]* ([eE] [\+-12[0-9]+)7

2.4.4 String Literals

A string literal in Konig is a shorthand for a list of characters. The string literal is defined by an
arbitrary sequence of characters contained within double quotes.

list<char> x = "Hello World";

Grammar:

TYPE =

int

bool

float

char
1ist<TYPE>

3. Data Types

The Konig programming language supports several primitive data types. Some of these data
types can be found in any programming language, such as int, bool and float. Other data
types are specific to graph theory, such as node, edge and graph. The language is statically
and strongly typed, so the type of each variable is explicitly specified at the time of declaration.
For those data types that contain another primitive, such as a node, the type of that primitive is

specified between angle brackets after the container's type, in a Java-like fashion.

3.1 Primitives

Data Type Description Example

int A 4 byte integer type int x = 37

bool A 1 bit boolean type bool x = false;

char A 1 byte ASCII character list<char> x = "Hello
world";

float An 8 byte floating-point type float x = 1.234;

void A reference to a null-like type float x = void;

3.2 Lists

The list in Konig is identified by the keyword 1ist followed by the type of its contents in angle
brackets. All elements of a list must be the same type as declared at initialization.

list<int> x = [1, 2, 31;

Lists can be accessed and modified through the square bracket syntax:

int v = x[2];

x[2] = 4;
Grammar:
TYPE IND = [EXP, EXP, ..]

IND[EXP] EXP

3.2.1List Functions

A number of functions are built into the standard library to manipulate lists. Each function never
modifies the list directly, and instead returns a copy of the list.

Function signature Description

ko 1ist<T> append(list<T> lst, T elem) Appends elem to the end of the list, and
returns a new list

ko 1ist<T> pop(list<T> lst) Removes the last element of the list and
returns a new list

ko int length (1ist<T>) Returns the length of the list

3.3 Nodes

A single node in Konig is identified by the keyword node. When initialized, a node can be passed
an optional data member, which will default to void if not specified. Nodes are initialized with
the keyword new.

node x = new node{"hello world"};
A node’s data member can be accessed by:

list<char> y = x.val;

3.4 Graphs

A graph in Konig is identified by the keyword graph. When initialized, a graph does not take any
arguments.Graphs are initialized with the keyword new.

graph x = new graph{};

3.5 Edges

Edges cannot be directly initialized by the user. However, an edge object will be returned by the
operations that manipulate edges.

4. Operators

4.1 Arithmetic Operators

Konig implements a set of operators that are specific to graph theory, such as >, ¥ and >>. These

operators make it easy to create & compose graphs, both directed and undirected. In addition,

Konig implements all classic arithmetic operators, and a set of comparison operators.

Operator Operands Return type Description
a @g aisa node graph Adds the node a to the graph g
gisa graph

a'lg Removes the node a from the
graph g

a+t+b aisan int, |int, float Performs the corresponding

a - b float arithmetic operation (sum,

a /b pisan int, difference, float division,

a *b float multiplication, increment,
decrement)

a>b a is any type bool Performs the corresponding

a <b b is any type comparison operation, and returns

a =>>b a boolean value

a<=b a and b have

a==0>= the same type

a and b aisa bool bool Performs the corresponding

a or b bisa bool boolean operation between

not a

boolean values

5. Graph Semantics

5.1 Graphs

Initialize an empty graph and assign it to a variable g1:
graph gl = new graph{};

Combine two already existing graphs gl and g2

combineGraphs (gl, g2);

5.2 Nodes in Graph

Initialize a node n0 with a value of 0:

node n0 = new node{0};

Add a node n0 to the graph g1:
n0 @ gl;
Delete node n0 from graph g1:
n0 ! gl;
Return list of nodes from graph g1:
nodes (gl) ;
Return list of all nodes that can be accessed from node n1:

neighbors (nl) ;

5.3 Edges in Graph

Create an undirected edge between n0 and n1 with weight value O:
setEdge (n0, nl, 0);
Create a directed edge from n1 to n2 with weight value 5:

setDirEdge (nl, n2, 5);

Update edge weight from n1 to n2:
updateEdge (nl, n2, 15);
Delete edge from n1 to n2:

deletekdge (nl, n2);
Access edge object between nl and n2 :
edge e = getEdge(nl, n2);

Get edge type, returns int O for undirected edges and int 1 for directed edges:

e.type
getEdge (nl, n2).type

Get edge weight:

e.weight
getEdge (nl, n2).weight

6. Keywords

The following keywords are reserved in Konig:

ko else
bool while
float return
char true
graph false
node and
edge or
list not
for int

if void

new

10

7. Control Flow

7.1 While Loop
The while statement has the form:
while (EXP) { STMT; STMT; ... }

The statements inside the code block are executed multiple times. After each execution of the
code block, the expression in parenthesis is evaluated, and if returning t rue the statements
inside the block are executed again.

7.2 For Loop

The for statement has the form

for (EXP; EXP; EXP) { STMT; STMT; ... }

The first expression specifies initialization for the loop. The second expression specifies a test,
evaluated before each iteration, which terminates the loop once it evaluates to false. The third
expression is evaluated at every iteration. It usually contains an increment.

7.3 Conditionals
There are two forms of conditional statements in Konig:
if (EXP) { STMT; STMT; ... }
if (EXP) {STMT; STMT; ... } else { STMT; STMT; ... }

In both forms, if the expression within parentheses evaluates to true, then the code block is
executed. The second form of conditional also features a second code block, followed by the
keyword else. This code block is executed if the expression evaluates to false.

11

8. Functions

Functions in Konig are defined with the reserved keyword ko. The function arguments are

specified inside the parentheses and after the function name. The return type is specified after
the closing parenthesis.

ko int add(int x, int y) {

return x + y;

Grammar:
ko TYPE ID (TYPE ID, TYPE ID, ...) { STMT, STMT; ... }

9. Standard Library

The Konig programming language features a rich standard library for creating and manipulating

graphs.

Function signature Description

ko edge setEdge (node a, node b, float weight) {} Constructs an undirected edge between
two nodes with a weight to the edge.
Users can define a default weight of O or
NULL.

Returns an error if given nodes do not
exist or are not in the same graph.

ko edge setDirEdge (node a, node b, float weight) {} Constructs a directed edge from node a
to node b with a weight to the edge.
Users can define a default weight of O or
NULL.

Returns an error if given nodes do not
exist or are not in the same graph.

ko edge getEdge (node a, node b) Returns the edge object between node a
and node b

ko edge updateEdge (node a, node b, float weight) {} Updates the weight of the edge between
node a and node b

ko edge deletekdge (node a, node b) ({} Deletes the edge between node a and b

ko list<node> neighbors(node n) {} Returns a list of all neighbors that node n
can reach: nodes that node n has a
directed edge to or an undirected edge

12

with. This will be listed by order of edge
weight.

ko list<node> nodes (graph g) {}

Returns a list of nodes in the graph,
without any ordering guarantee

ko bool isConnected(node a, node b) {}

Returns true if nodes a and b have an
edge connecting them

ko list<char> viz(graph g) {}

Visualize the graph g

ko graph combineGraphs(graph gl, graph g2)

Returns a new graph with all the nodes
and connections in graph g1 coupled with
that of graph g2’s nodes and connections.

10. Sample Code

graph gl = new graph{};

node n0 = new node{0};
n0 @ gl;

node nl = new node{l};
nl @ gl;

node n2 = new node{2};
n2 @ gl;

setEdge (n0, nl, 0);
setDirEdge (nl, n2, 0);

list<node> nodes = neighbors (n0);

for (int 1 = 0; i < length(nodes); i++)

print (nodes[il]);

viz(gl);

