Improv Language Reference Manual

improvisation music language

Alice Zhang (ayz2105)
Emily Li (c12895)
Josh Choi (jc4881)

Natalia Dorogi (ngd2111)

February 24, 2021
Programming Language and Translators
Professor Edwards
Columbia University

Improv

Language Reference Manual

Contents

I Motivai [Tntroduction

2 Type System|

2.1 Primitive Types|. oo oo
2.2 Structures

3.5 Operators|
[3.5.1 Note Operators|

[3.5.2 Integer Operators|.
[3.5.3 DBoolean Operators|
[3.5.4 String Operators|

[3.5.5 Array Operators|

3.9.0 ap Operators|

[Standard Library Functions|

B.l render_wav|

. print| e e e

[6__Sample Programs|

6.1 mazing Gracel

7 _Team Roles
[B_References|

NN NN

U O OU U i s W www

ot ot Gt

[or e«

o oD

Page 1 /E

AN

4

Improv Language Reference Manual

1 Motivation and Introduction

Improvisation, made simple, is founded upon arranging notes from the pentatonic scale of a song’s key over
its instrumental. We are building the Improv language to synthesize the music file of an improvised solo
based on the user’s inputs and specifications.

Improv language is used to synthesize the music file of an improv solo based. The user first sets a key,
e.g. C major, and a tempo in BPM (beats per minute), e.g. 86 BPM. The declared key dictates the notes
that the user has access to, namely those from the key’s pentatonic scale, e.g. C major includes C, D, E, G,
and A notes. The user is then able to design melodies with these notes and set to the specified BPM; the
use of the pentatonic scale guarantees that the progression of notes harmonizes well over any instrumental
with the corresponding key and BPM. Additionally, the user can choose to specify a particular style for the
improvised solo, which slightly changes the bank of notes for the key. The default style includes solely the five
notes in the pentatonic scale, but for example, if the user wants to create a blues-style solo, Improv inserts
the “blues” note, e.g. D/Eb for C major. Other specifications the user can set include varying note lengths,
e.g. eighth, quarter, half notes, and different rhythm patterns, e.g. repeated note lengths.

2 Type System

2.1 Primitive Types

Basic data types
Boolean: bool is a 8-bit boolean variable that may be true or false
Integers: int is literal 32-bit signed

String: string sequence of ASCII characters, enclosed by " "

, such as "hello world!"

Decorator metaprogramming

Key: key of the solo for the scope of the function, specified to be CMAJ, CMAJ, EBMAJ, and so on
Beats per minute: bpm of the solo, values range from 40-218 with default value of 80

Style: style of the solo, including BLUES, JAZZ, etc. If no style is selected, the default is DEFAULT

Music specific data types

Tone: tone is the pitch of a note, represented by integers 0-6, where 0 is a rest and 1-6 map to different
tonalities on the penatatonic scale of the specified key. For example, if the key is defined to be CMAJ, then 1
maps to C, 2 maps to Eb, and so on

Rhythm: rhythm is the duration of a note, with wh = whole note, hf = half note, gqn = quarter note,
el = eighth note, sx = sixth note

Note: note is a struct-like data type encompassing tone and rhythm, e.g. if the key is CMAJ, (1 wh) represents
a whole note in C

2.2 Structures

Array: arr represents an array of the same type and is immutable. These are literals enclosed in square
brackets [1. Empty arrays must specify a type. Arrays may be accessed using indexing: arr[index] Array
examples include

note[] this_is_a_riff = [(6 qr), (6 qr), (5 qr), (6 qr), (4 qr), (3 qr), (2 gqr), (6 qr), (1
hf), (6qr)l;

string[] these_are_strings = ["this", "is", "an", "arr", "of", "string"l;

int [] empty_array = [];

this_is_a_riff[3] // prints (6 qr);

Page 2 /E

Improv

Language Reference Manual

Map: map represents a mapping of keys of the some type to values of some type and is mutable. Maps
are delineated by curly brackets, with the key and value separated by a colon and different key-value pairs
separated by commas. Keys and values can be each literals of any data type. An example of a map with

keys of type string and values of type notel[] is

map <string , note[]l> song_map = {"s

3 Lexical Conventions

3.1 Syntax

High level view of improv syntax:

[(1 wh),

(2 gr)l, "riffi":

Entrypoint | main method func main()
literals c
variables X
Expressions assignment -
function call func()
if else if {} else {}
for {}
note note
Primitive tone tone
Types rhythm rhythm
integer int
boolean bool
string string
Structures | Y I
map 0

3.2 Identifiers

Identifiers may be any combinations of letters, numbers, and underscores for function and variables. For

example,

I my_improv
> fun_thing_2
3 99 _bottles

Identifiers may not start with an int, use a dash (-), nor start or end with an underscore (_)

3.3 Keywords

The keywords that are reserved, and may not be used as identifiers. These include:

Page 3 /E

this_is_a_riff }

Improv Language Reference Manual

Data types | note, tone, rhythm, int, bool, string, none
Boolean
. and, or, not, true, false
logic
Program . . .
main, func, in, if, else, for, return
structure
Structures
. ’ arr, map, length, add, delete, update, render_wav
operations

3.4 Comments

The syntax of comments draw from Java. A single-line comment is marked by //, and a multiline-comment
by /* */. Nested multi-line comments are not supported, but single-line comments may be nested in a
single-line or multi-line comment.

// This is a single-line comment.
int x = 5;

3 /* This is a

multi-line comment.

5 // Nested single-line comment.

*/

3.5 Operators

The following subsections outline rules pertaining to operators in Improv. Arithmetic operators (+, -, *, /)
are left-to-right associative with * and / having highest precedence.

3.5.1 Note Operators

$ Concatenation note $ note — note]]

Q@ Binding (noteltone) Q (note|lrhythm) — note
- Duplication note — note]

tone Tone note — tone

rhythm Rhythm note — rhythm

3.5.2 Integer Operators

+ Addition int +int — int

- Subtraction int —int — int

* Multiplication int xint — int

/ Division nt/int — int

> Greater than int > int — bool
>= Greater than or equal int >=1int — bool
< Less than int < int — bool
<= Less than or equal int <=1int — bool
== Equality int == int — bool
= Not equality int ! =int — bool

Page 4 /E

Improv

Language Reference Manual

3.5.3 Boolean Operators

and Conjunction bool and bool — bool
or Disjunction bool or bool — bool
not, Negation bool not bool — bool

3.5.4 String Operators

’ == Equality

string == string — bool

3.5.5 Array Operators

$ Concatenation (type|type[]) $ (type|type[]) — type]]

Q@ Binding (note[]|tone[]) Q (notel]|rhythm]]) — note]]
) Duplication (type|type[]) — type[]

tone Tone note[] — tone]

rhythm Rhythm note[] — rhythm|]

length Length type[] — int

3.5.6 Map Operators

keys Keys map < typel,type2 > — typel][]

values Values map < typel,type2 > — type2[]

length Length map — int

add Add map.add(typel: type2) — map

delete Delete map.delete(typel) note — map
update Update map.update(typel: type2) note — map

4 Control Flow

4.1 if else

Reserved keywords "if" and "else" are used for conditional statements and selection, and execute if the con-
ditioned boolean expression evaluates to true. Expression body is enclosed by curly brackets such that:

if expr {
statement ;

5 } else {

statement;

5 }

4.2 for

Iteration is conducted using reserved keyword "for" and "in":

for expr {
statement;
}

for x in my_arr {

Page 5 /E

Improv

Language Reference Manual

statement ;

5 Standard Library Functions

5.1 render_wav

Renders a .wav file of the music altered or created that users can play.

5.2 print

This prints whatever expression is enclosed.

6 Sample Programs

6.1 Amazing Grace

The first part of Amazing Grace is a melody that uses only the pentatonic scale; we can recreate it using

Improv

% descriptor
note[] amazing_grace() {
note [] amazing_grace = [(5 qr), (2 hf),
note[] how_sweet_the_sound = [(3 qr),
note[] that_saved_a_wretch_like_me =
(4 hf), (3 qr), (5 wh)l;

note[] i_once_was_lost = [(4 qr), (5 hf), (5 ei), (4 ei),

(4 ei), (2 ei),
(2 hf), (1 qr),
[(6 qr), (2 hf),

(4 nf)]
(5 hf)]
(4 ei),

>
>

(2 ei),

(2 hf)];

note[] but_now_im_found = [(5 qr), (1 wh), (2 ei), (1 ei), (5 hf)l;
note[] was_blind_but_now_i_see = [(5 qr), (2 hf), (4 ei), (2 ei),
(4 hf), (3 qr), (2 wh)]l;
note[] melody = amazing_grace $ how_sweet_the_sound $ that_saved_a_wretch_like_me §$

i_once_was_lost $ but_now_im_found $ was_blind_but_now_i_see;

return melody

}

5 func main() {

map<string, note[]l> song_map = {};

note [] amazing_grace = amazing_grace(FMAJ, 90, DEFAULT)

song_map . add (amazing_grace

for name, song in song_map {
render_wav (song, name);
}
}

amazing_grace);

6.2 Sunshine of Your Love - Cream

3

This is a song with a guitar riff that primarily uses the pentatonic scale with the addition of the blues note

(blues example)

% descriptor
note[] sunshine_of_your_love () {
note[] riff = [(6 qr), (6 qr), (5 qr),
qr)1;

return riff;

5 }

func main () {

(6 qr), (4 qr),

(3 qI‘) >

(2 qr),

(6 qr) >

(1 hf),

(6

Page 6 /E

Improv Language Reference Manual

8 map<string, note[]> song_map = {};

10 note [] sunshine_of_your_love = sunshine_of_your_love (DMAJ, 104, BLUES);
11 song_map.add (sunshine_of_your_love: sunshine_of_your_love);

13 for name, song in song_map {
14 render_wav (song, name);

15 }

16 ¥

6.3 Another One Bites the Dust

Another very popular riff that only uses the pentatonic scale

1 % descriptor

> note[] another_one_bites_the_dust () {

3 note[] riff = [(3 qr), (2 qr), (1 qr), (1 qr), (1 gr), (1 gr), (1 qr), (1 qr), (2 qr), (1

qr), (3 qr)l;

4 return riff;

5 }

6

7 func main() {

8 map<string, note[]> song_map = {};

9

10 note [] another_one_bites_the_dust = another_one_bites_the_dust (EMIN, 112, DEFAULT);
11 song_map.add (another_one_bites_the_dust: another_one_bites_the_dust);

13 for name, song in song_map {
14 render_wav (song, name) ;

15 }

16 ¥

1o TYPE3[] -> [TYPE, TYPE, TYPE]

7 Team Roles

Project Manager: Natalia Dorogi
Language Guru: Josh Choi
System Architect: Emily Li
Tester: Alice Zhang

8 References

Java Reference Maual
Sick Beets

Page 7 /E

https://docs.oracle.com/javase/specs/jls/se7/html/index.html
http://www.cs.columbia.edu/~sedwards/classes/2017/4115-spring/lrms/Sick-Beets.pdf

	Motivation and Introduction
	Type System
	Primitive Types
	Structures

	Lexical Conventions
	Syntax
	Identifiers
	Keywords
	Comments
	Operators
	Note Operators
	Integer Operators
	Boolean Operators
	String Operators
	Array Operators
	Map Operators

	Control Flow
	if else
	for

	Standard Library Functions
	render_wav
	print

	Sample Programs
	Amazing Grace
	Sunshine of Your Love - Cream
	Another One Bites the Dust

	Team Roles
	References

