Graphene Reference Manual

Ashar Nadeem
Shengtan Mao
Vasileios Kopanas

Matthew Sanchez

Table of Contents

1 Introduction

2 Data Types

3 Lexical Conventions

4 Expressions
5 Programs

6 Statements

7 Standard Library

8 Sample Code

an3056
sm4954
vk2398
mcs2307

1 Introduction

Graphene is an imperative programming language primarily used to easily implement
graph algorithms. Our language is at its core a subset of C with built in

graph support for algorithms. Graphene uses C syntax with specified operators for extra
built in data types and functions to make the manipulation of graphs easy. Graphene will
support all of the basic C arithmetic and logical operations as well as user-defined
functions. We will have a small library of built-in functions to complement the built-in
types and enable users to efficiently write, use, and analyze graph algorithms. The
language was inspired by looking at the CLRS Algorithms book, and trying to replicate
the different types of graph algorithms as efficiently as possible in a C syntax.

2 Data Types

Primitive Types

Integer

An integer is a sequence of decimal digits, always using decimal notation. We will
be treating integers as booleans, similarly to how C already does, 0 denotes false,

nonzero denotes true.
e.g. 32

Float
A float consists of an integer part, a decimal point, followed by a fraction part.
The integer and fraction parts both consist of a sequence of digits. None of these
can be missing. Again, strictly decimal.
e.g. 3.2

String
A string is a sequence of characters surrounded by double quotes. Strings are

immutable.

E.g. “32”

Built-in Types
These include functions which return objects of a given type and the following built-in
types. The built-in types wrap other types. Currently, user-defined classes and structs are

not available.

Node
A node contains a key of type int and a value of the declared type. Both the key
and value can be altered. It also holds a list of edges.
e.g. node<int>n = make (0, 1);
key access: node.key

val access: node.val

Graph
A graph is a collection of nodes that hold values of a declared type. Nodes within

the graphs are accessed using their keys, so all nodes in the graph must have
unique
keys. Nodes are accessed using .get().

e.g. graph<int>g;

3
Q.
(¢}

An edge behaves as a struct and holds a float type weight, a node, and an int type
indicating whether the edge is traversable. If traversable is 1, it means the edge is
directed towards the node that it holds; else it is 0. Edges cannot be directly

declared by the user, they are attributes of a node’s edgelist.

List
A list is a doubly-linked list that holds elements of a declared type, keyword: “list”

e.g. list<int>1;

3 Lexical Conventions

There are five kinds of tokens: keywords, identifiers, literals, expression operators, and

separators. Spaces, tab characters, and newline characters are ignored aside from

however they may separate tokens.

Comments
Multi-line comments: /* starts a comment, terminated by */

Single-line comments: // starts a comments, terminated by \n

Keywords
The following identifiers are reserved for use as keywords, and may not be used
otherwise:
void int float string
graph node edge list
if else for foreach
while return continue break
Literals
These include the three primitive data types. Integers must consist entirely of
decimal digits. Floats must consist of the decimal digits, a decimal, and the
fractional value, with no leading zeros. Strings must be enclosed in double quotes.
Identifiers

Identifiers are strings that reference types, they can be declared or assigned freely,
although types cannot be changed. Identifiers must start with an upper or lower
case letter, and this can be followed by any amount of letters, digits, or

underscores.

4 Expressions

Expressions are recursively built out of primary expressions and various operators, which

are the following:

Primary Expressions

4.1.1 Identifier

An identifier is a primary expression, provided it has been suitably declared. Its

type is specified by its declaration.

4.1.2 Literal

An integer, float, or string constant is a primary expression.

4.1.3 (expression)
A parenthesized expression is a primary expression whose type and value are

identical to those of the unadorned expression.

4.1.4 primary-expression (expression-list, ;...)
A primary expression followed by parentheses containing a possibly
empty, comma-separated list of expressions, is a function call. The primary
expression must be of type function, and the result of the function call
corresponds to the function type. All primitive and built-in types are passed by

value.

4.1.S node-id . id
An id expression followed by a dot followed by the name of a member of a
structure is a primary expression. This is only used to access keys and values of

nodes.

4.1.6 primary-id . method (expression-list,,,,.;)
An id expression followed by a dot followed by the name of a method of its type
followed by the arguments for the method. The id expression has to represent a

special type since methods are not supported in general.

Operators

Operators act on expressions, and require a sensical value of the expressions. All operators

are listed in decreasing order of precedence.

4.2 Unary operators

Expressions with unary operators group right-to-left

4.2.1 ! expression
The result of the logical negation operator ! is 1 if the value of the expression is 0,
0 if the value of the expression is non-zero. The type of the result is int. This

operator is applicable only to ints.

4.2.2 - expression
The result of the arithmetic negation operator the value of the int or float it is

applied to, multiplied by -1.

4.3 Multiplicative
The multiplicative operators *, /, and % group left-to-right, all have the same

precedence.

4.3.1 expression * expression
The binary * operator indicates multiplication. Operands can be int or float, if at

least one of them is float, the result will be float.

4.3.2 expression / expression
The binary / operator indicates division. Operands can be int or float, if at least

one of them is float, the result will be float. Division by 0 will produce an error.

4.3.3 expression % expression
The binary % operator yields the remainder from the division of the first
expression by the second. Both operands must be int, and the result is int. The

remainder has the same sign as the dividend.

4.4 Additive

The additive operators + and — group left-to-right, all have the same precedence.

4.4.1 expression + expression
The result is the sum of the expressions. Operands can be int or float, if at least

one of them is float, the result will be float.

4.4.2 expression — expression
The result is the difference of the operands. Operands can be int or float, if at least

one of them is float, the result will be float.

4.5 Relational

The relational operators group left-to-right, all have the same precedence.

45.1 expression < expression

Returns 0 if the expression is false and 1 if the expression is true.

45.2 expression > expression

Returns 0 if the expression is false and 1 if the expression is true.

4.5.3 expression <= expression

Returns 0 if the expression is false and 1 if the expression is true.

4.5.4 expression >= expression

Returns 0 if the expression is false and 1 if the expression is true.

45.5 expression == expression

The == (equal to) operator, can act on any type.

4.5.6 expression && expression
e operator returns 1 if both its operands are non-zero, 0 otherwise.
The && t t 1if both it d 0 oth &&
guarantees left-to-right evaluation; moreover, the second operand is not evaluated

if the first operand is 0. This operator is applicable only to ints.

4.5.7 expression || expression
The || operator returns 1 if either of its operands is non-zero, and 0 otherwise. ||
guarantees left-to-right evaluation; moreover, the second operand is not evaluated
if the value of the first operand is non-zero. This operator is applicable only to

ints.

4.5.8 id = expression
This assignment operator groups left-to-right. The value of the expression
replaces

that of the object referred to by the id. The operands need to have the same type.

5 Programs

Programs consist of 0 or more of function declarations, and 0 or more variable declarations.

Variable Declarations
Form: type id ;
This is standard C, #ype denotes type and 7d will be the name of the variable.

Function Declaration

Form: type id (formals_opt) { vdecl_list stmz_list }

This is standard C, #ype denotes return type, 7d denotes the name of the

tunction, formals-opt is an optional list of formals, of the form type id, and stmz-list
denotes 0 or more statements. There is a special void type just for function declaration

where no value is returned.

Types

The types are

type:
int
float
string

node< type >

edge< type >

graph< type >
list< type >

6 Statements

6.1 Expression statement
Most statements are expression statements, which have the form
expression ;

Usually expression statements are assignments or function calls.

6.2 Conditional statement
The two forms of the conditional statement are
if (expression) statement
if (expression) statement else statement
In both cases, expression is evaluated, and the following statement will be evaluated
if it is true.
If there is an else and expression evaluates to false, the statement tollowing the else
will be evaluated. The dangling else problem will be solved by connecting an else

to the last elseless if.

6.3 while statement
The while statement has the form
while (expression) statement
expression is evaluated prior to each iteration, the loop is terminated when it
evaluates to false.

statement is evaluated during each iteration.

6.4 for statement
The for statement has the form:
for (exprexxz’onop, sexpression,,,, ;exprexxz’onop,) Statement

The first expression is evaluated upon entering the loop for the first time.

The second expression is evaluated prior to each iteration, terminating the loop
when evaluating to false.
The third expression is evaluated after each iteration completes.

statement is evaluated every iteration.

6.5 foreach statement
The foreach statement has the form
toreach (declaration : id-expression) statement
The id expression must represent a container, which is a graph or a list. The type
of the declaration must match the type of the elements inside the container. The
for statement iterates through the container’s elements, and the identifier is set to

the corresponding element at each iteration.

6.6 break statement
The statement
break ;
causes termination of the smallest enclosing while, for, or foreach statement.

Control passes to the statement following the terminated statement.

6.7 continue statement
The statement
continue ;
causes the current loop iteration to terminate and prompts the next iteration,

performing any tests for loop termination.

6.8 return statement
A function returns to its caller with a return statement, which has the form
return (expression) ;
The value of the expression is returned to the caller of the function, this must

match the function return type.

7 Standard Library
The standard library features special types that support the usage of graphs.

7.1 edge . member-of-structure
An edge holds the weight, accessed by w; the node, accessed by n; and traversable,

accessed by t.

7.2.1 node.edges ()
Returns the list of edges associated with the node.

e.g. list<edge> edge_list = n.edges() ;

7.2.2 nodeA ~(weight)>> nodeB
Adds a directed edge between nodeA and nodeB, with a defined weight. Weight

can be of any primitive data type, to be declared within parentheses.

7.2.3 nodeA ~>> nodeB
Adds a directed edge between nodeA and nodeB of default weight 1, as an integer.

7.2.4 nodeA ~(weight)~ nodeB
Adds an undirected edge between nodeA and nodeB, with a defined weight.

Weight can be of any primitive data type, to be declared within parentheses.

7.2.5 nodeA ~~ nodeB
Adds an undirected edge between nodeA and nodeB of default weight 1, as an

integer.

7.3 graph.get (key)
Returns the node with the specified key. Accessing a nonexistent node through
this operator is undefined behavior.

e.g. node<int>n = g.get(5);

7.3.1 graph.in (key)
Returns 1 if this graph contains the node with the specified key. Returns 0

otherwise.

7.3.2 graph.add (node)
Adds the specified node to this graph if it is not already present. The graph and
node must contain the same type of value. Returns 1 if the new node is added, 0

otherwise.

7.3.3 graph.add (key , value)
Automatically constructs the node from key and value and adds the node to the

graph asin 7.3.2.

7.3.4 graph.del (key)
Removes the node with the specified key from this graph if it is present. Returns 1

if the node is removed, 0 otherwise.

7.4.1 list.empty ()

Returns 1 if the list is empty, 0 otherwise.

7.4.1list.push_front (e)
Adds the element to the beginning of the list. The element must be the same type

declared to be contained by the list. Returns 1 if the element is added, 0 otherwise.

7.4.2 list.push_back (e)
Adds the element to the end of the list. The element must be the same type

declared to be contained by the list. Returns 1 if the element is added, 0 otherwise.

7.4.3 list.pop_front (e)
Removes the element at the beginning of the list and returns it. Undefined

behavior is list is empty.

7.4.4 list.pop_back (e)
Removes the element at the end of the list and returns it. Undefined behavior is

list is empty.

8 Sample Code

// Declare a graph
graph <int> g;

// Adds nodes to the graph
for(inti=0;i< 10;i++){

g.add(i, 2");

// Create an edge of weight i from root node to every other node
for(inti=1;i < 10; i++){

g.get(0) ~(1)>> g.get(i);

// Overwrite edge from g[0] to g[2] with weight 10
g.get(0) ~(10)>> g.get(2);

// BES search example (Takes in graph and destination)
void bfs(graph<int> g, node<int> n){

list<node<int>> g

graph<int> discovered;

q-push_back(g.root());

while(!q.empty()){

node<int>m = q.pop_front();

if(m == n){

return m;

}

foreach(node<int> e : m.edges()){
if(!discovered.contains(e)){

q.push_back(e);

