GRACL (.grc)

Defne Sonmez dys2109 System Architect
Eilam Lehrman esl2160 Language Guru
Hadley Callaway hcc2134 Manager

Maya Venkatraman mv2731 System Architect
Pelin Cetin pc2807 Tester

Table of Contents
. Introduction

. Constants

[l Primitive Data Types

V. Derived Types

V. Declarations
A. Object Declarators
B. Function Declarators

VI. Lexical Conventions
A. Comments
B. Identifiers
C. Keywords
D. Punctuators
VII. Operator Conversions
VIII. Expressions and Operators

A. Assignment Operator

B. Integer and Double Operators
C. Logical Operators

D. IntTable Operators

E. Double Table Operators

m

Precedence
IX. Scope
A. Block Scopes
B. File Scopes

X. Statements
A. Selection Statements
B. Iteration Statements
C. Function-Call Statements

XI. Concurrency
XII. Library Functions
A. NodelList Properties and Built-in Functions
B. Edgelist Properties and Built-in Functions
C. IntTable Properties and Built-in Functions
D. DoubleTable Properties and Built-in Functions
E. Node Properties and Built-in Functions
F. Graph Properties and Built-in Functions
G. Edge Properties and Built-in Functions
H. String Properties and Built-in Functions

I. General Library Functions and Constants
Xlll. Sample Programs

A. Graph Syntax

B. Concurrent DFS Graph Traversal
XIV. References

1. Introduction
This manual describes GRACL (GRAph Concurrency Language), a language aiming to
improve the efficiency of common graph algorithms while allowing programmers to
initialize and modify graphs easily with built-in data structures specific to our language.

The syntax is inspired by some of the past projects focused on graphs (such as GRAIL
from Spring 2017) with elements from Java, Python, and C. We plan to make the
following features available to the programmer: graphs, nodes, edges, integer and
double hash tables, edge lists, and node lists. GRACL focuses on directed graphs but the
user is able to create undirected graphs by calling directed edges twice.

2. Constants

Integer Denoted int. Mathematical integers, eg 10 .

Doubles Denoted double. Numbers that have a decimal point,
e.g. 3.42 or 3.5E-10.

Boolean constants Represented by the keywords True and False.

String literals Series of ASCII characters delimited by double
guotation marks.

3. Primitive Data Types

bool Boolean value (True/False).
int Integer.
double A double-precision floating-point.

4. Derived Types

String Array of ASCII characters.

NodelList A collection of Node types. Under the hood it is
implemented as a doubly linked list with O(n) lookup,
they have an associated implicit mutex.

EdgelList A collection of Edge types. Under the hood it is
implemented as a doubly linked list with O(n) lookup,
they have an associated implicit mutex.

IntTable Collection of key value pairs with Node keys and int
values. O(1) lookup time on keys, they have an
associated implicit mutex. Has dynamic capacity;
capacity doubles when the table is filled up. Uses the
hash function h(item) = item % len and linear probing
to resolve collisions.

DoubleTable

Collection of key value pairs with Node keys and
double values. O(1) lookup time on keys, they have an
associated implicit mutex. Has dynamic capacity;
capacity doubles when the table is filled up. Uses the
hash function h(item) = item % len and linear probing
to resolve collisions.

Node

An object that has a String data field and an EdgeList
representing connected edges, as well as an implicit
mutex, and a visited boolean.

Edge

An object that takes in two Node objects, represents
an directed Edge, has a double representing the
weight. A user may create two Edge objects to
represent one undirected Edge. They have an
associated implicit mutex.

Graph

A list of Node objects connected by directed or
undirected Edges representing a Graph data type.

void

The return type of functions that do not return
anything. A variable of type void cannot be declared.

5. Declarations

Declarations in a program are of the following grammar:

program: declarations eof

declarations: declarations var_dec | declarations fun_dec | €

a. Object Declarators

Each type has its own declarator, formatted in the following way:

inti;

bool b;
double d;
String s;
NodelList nl;
EdgelList el;
IntTable it;
DoubleTable dt;
Node n;
Edgee;
Graph g;

Variables can also be declared and initialized at the same time.

double e =2.718;

Object declarations are of the following grammar:

type: int | bool | double | void | string | graph | node | edge | inttable | doubletable |
nodelist | edgelist
var_dec: type id ; | type id = expression ;

b. Function Declarators

Every function declaration starts with first indicating the return type of the
function, followed by its name and the arguments it will take in parentheses.
Multiple arguments are separated by commas within the parentheses.

The scope of the function is indicated by curly brackets, starting with { and
ending with }. Each function ends with a return statement right before the end of
its scope.

GRACL will look for a function named main whose return type is an int to begin
parsing the program.

returnType functionName (type arg1, type arg2, ...){
//This is the scope

return statement;

}

Function declarations are of the following grammar:

type: int | bool | double | void | string | graph | node | edge | inttable | doubletable
| nodelist | edgelist

formals_opt: formal_list | €

formal_list: type id | formal_list, type id

func_body: func_body var_dec | func_body statement | €

fun_dec: type id (formals_opt) { func_body }

6. Lexical Conventions

a. Comments

GRACL has two types of comments: multiline comment with /**/ and single-line
comment with //.

The /* characters introduce a comment; the */ characters terminate a comment.
They do not indicate a comment when occurring within a string

literal. Comments do not nest. Once the /* introducing a comment is seen, all
other characters are ignored until the ending */ is encountered.

The // characters don't need characters to terminate the comment. As soon as
the user moves on to the next line, the comment will be terminated.

b. Identifiers

An identifier, or name, is a sequence of letters, digits, and underscores (_). The
first character cannot be a digit. Uppercase and lowercase letters are distinct.
Name length is unlimited. The terms identifier and name are used

interchangeably.

c. Keywords

All data types, for, while, if, else, return, True, False, hatch, and synch are
keywords. Functions with the same headers as functions in the standard library
cannot be declared. Keywords cannot be used elsewhere.

d. Punctuators

A punctuator is a symbol that has semantic significance but does not specify an
operation to be performed. The punctuators [], (), and { } must occur in pairs,
possibly separated by expressions, declarations, or statements.

7. Operator Conversions

String doubleToString(double a)

Takes in a double and returns a corresponding String.
For example, doubleToString(14.7) would return “14.7"
on success. Program breaks on failure.

double intToDouble(int d)

Takes in an int and returns a corresponding double. For
example, intToDouble(14) would return 14.0 on
success. Program breaks on failure.

8. Expressions and Operators
a. Assignment Operator

Assignment for all types.

b. Integer and Double Operators

-+

Additive for types int and double.

*/ %

Multiplicative for types int and double.

c. Logical Operators

Equality comparison for types int, double, bool, String.

Relational comparisons for types int and double.

Logical not for Boolean expressions.

&&

Logical and for Boolean expressions.

Logical or for Boolean expressions.

d. IntTable Operators

table[Node key] = int value

Adds a new key-value pair to the IntTable.

table[Node key]

Returns the value corresponding to the key.

e. DoubleTable Operators

table[Node key] = double value

Adds a new key-value pair to the DoubleTable.

table[Node key]

Returns the value corresponding to the key.

f. Precedence

The rows are ordered from highest to lowest precedence.

Operator Associativity
OI1. Left to Right.
I - (unary) Right to Left.
*/ % Left to Right.
+ - Left to Right.
hatch synch Nonassociative
<<= Left to Right.
== Left to Right.
&& Left to Right.
| Left to Right.
= Right to Left.
9. Scope

a. Block Scopes

The scope of an identifier is limited to the block in which it is defined. Each block
has its own scope. No conflict occurs if the same identifier is declared in two
blocks. If one block encloses the other, the declaration in the enclosed block
hides that in the enclosing block until the end of the enclosed block is reached.
Blocks are defined by {}.

if('gracl_is_great) {
int die=1;
} else {
intlive=1;
}

die=0; // This will not compile.

b. File Scopes
Identifiers appearing outside of any block, function, or function prototype, have
file scope. This scope continues to the end of the file.

int x;

if (plt_is_the_best_class) {
X=x+1 // This is allowed.
}

10. Statements

Statements are of the following grammar:
statement_list; statement_list statement |

statement: expression ; | return expression_opt ; | { statement_list }

| if (expression) statement else statement | for (node id in id) statement
| for (edge id in id) statement | while (expression) statement

| hatch expression id (args_opt) statement | synch id { statement_list }

expression_opt. expression | €

expression: literal | func_literal | binary_literal | string_literal | id

| expression + expression | expression - expression | expression * expression

| expression / expression | expression % expression | expression = expression

| expression < expression | expression s expression | expression && expression

| expression || expression | - expression | ! expression | id = expression | id (args_opt)
|id . call_chain |id [id] | id [id] = expression | (expression)

call_chain: id (args_opt) | call_chain . id (args_opt)

args_opt: args_list | €

args_list. expression | args_list, expression

a. Selection Statements

; Signifies the end of a statement.

if(condition){ statements } | Conditional statement; curly braces only required for
if(condition){ statements } multiple statements.
else{ statements }

b. Iteration Statements

for(Node/Edge id in Loops; curly braces only required for multiple
NodeList/EdgelList) statements. The for...in loop goes over all elements of
{ statements } a Nodelist or an EdgeList.

while(condition){ statements }

c. Function-Call Statements

functionName(args_list); The function-call statement is used when a defined
function is called. Parameters in args_list can be any
of the primitive types or objects or expressions that
evaluate to those types or objects.

11. Concurrency
There are two keywords that deal with concurrency, hatch and synch. hatch takes an
integer, a user-defined function and its parameters. It creates however many threads are
specified by the integer and passes function(parameters) as the thread start routine. The
curly braces following the hatch call denote code executed by the parent process before
it begins to wait for the threads to terminate. The parent process may not execute code
after the final curly brace until all child threads have been reaped.

Here is an example:

// Spawns 6 threads that execute startRoutine.
// The arguments that the function takes may all be of different types.

hatch 6 startRoutine(arg1, arg2, arg3, ...) {

// Code executed by the parent thread before threads joined.
}
// Code executed after threads reaped.

hatch takes in a positive integer for the number of threads

synch takes the implicit mutex (created by the compiler) for an object and within the
curly braces following synch, holds the lock associated with the object. Only after the
second curly brace is the lock released. This helps to prevent user deadlocking since
every synch call includes release of the lock.

Here is an example, the curly braces are required no matter how many statements:

synch visited {

}

12. Library Functions

// locks before access of shared data
for (Node n in visited) {
print(‘visited’);

// unlocks after shared data access is complete

Note: the .func(params) notation indicates that the given function is called like
object.func(params) for the given referred to object

Note: If a function errors in a non-recoverable way, the program breaks

a. NodelList Properties and Built-in Functions

int .length()

Returns the length of the list as an int on success.
Returns -1 on failure.

bool .empty()

Returns True if the list is empty and False if it is not.

int .remove(Node n)

Removes the passed-in item from the list. Returns 0
on success and -1 on failure.

Node .removeFirst()

Removes the first item from the list. Returns the
removed node. Program breaks if .removeFirst() is
called on an empty NodelList.

Node .removelast()

Removes the last item from the list. Returns the
removed node. Program breaks if .removeLast() is
called on an empty NodelList.

int .append(Node n)

Appends the passed-in Node to the end of the list.
Returns 0 on success and -1 on failure.

int .prepend(Node n)

Prepends the passed-in Node to the beginning of
the list. Returns 0 on success and -1 on failure.

b. EdgelList Properties and Built-in Functions

int .length()

Returns the length of the list as an int on success.
Returns -1 on failure.

bool .empty()

Returns True if the list is empty and False if it is not.

int .remove(Edge e)

Removes the passed-in item from the list. Returns 0
on success and -1 on failure.

Edge .removeFirst()

Removes the first item from the list. Returns the
removed edge. Program breaks if .removeFirst() is
called on an empty EdgelList.

Edge .removelLast()

Removes the last item from the list. Returns the
removed edge. Program breaks if .removeLast() is
called on an empty EdgelList.

int .append(Edge e)

Appends the passed-in Edge to the end of the list.
Returns 0 on success and -1 on failure.

int .prepend(Edge e)

Prepends the passed-in Edge to the beginning of the
list. Returns 0 on success and -1 on failure.

c. IntTable Properties and Built-in Functions

NodelList .keys()

Returns a list containing all Node keys in the
hashtable.

int .delete(Node n)

Deletes the key-value pair with the passed-in Node
as the key from the IntTable. Returns 0 on success
and -1 on failure.

bool .includes(Node n)

Returns a bool as to whether or not a key exists in
the IntTable.

d. DoubleTable Properties and Built-in Functions

NodeList .keys()

Returns a list containing all Node keys in the
hashtable.

int .delete(Node n)

Deletes the key-value pair with the passed-in Node
as the key from the DoubleTable. Returns 0 on
success and -1 on failure.

bool .includes(Node n)

Returns a bool as to whether or not a key exists in
the DoubleTable.

e. Node Properties and Built-in Functions

String .data()

Returns data stored in the Node object.

NodelList .neighbors()

Returns a list of neighbor Nodes.

bool .visited()

Returns a boolean representing if the Node has
already been visited.

int .updateData(String data)

Updates the data field on the Node to be the new
data passed in and returns 0 on success. On failure,
returns -1.

int .updateVisited(bool tf)

Updates the visited field on the Node to be the new
bool passed in and returns 0 on success. On failure,
returns -1.

bool .equals(Node n)

Compares the two Node objects. Returns True if
they are the same and returns False if they're not
the same. Under the hood, this is implemented by
comparing the implicit id associated with the Node
object.

f. Graph Properties and Built-in Functions

NodeList .nodes()

Returns a list of Node objects in the graph.

EdgelList .edges()

Returns a list of directed Edges in the graph.

Node .createNode(String data)

Creates a new Node, setting its data. It returns a
pointer to a Node object that the user can save in a
Node variable.

int .removeNode(Node n)

Removes the passed-in Node from the graph and
deletes corresponding Edges. Returns 0 on success

and -1 on failure.

Edge .addEdge(Node source,
Node dest, double weight)

Adds the Edge e to a Node's EdgeList, and returns
that Edge.

int .removeEdge(Edge e)

Removes the given Edge e and returns 0, returns -1
if the passed in Edge does not exist in the graph.

g. Edge Properties and

Built-in Functions

void .updateEdge(double a)

Updates the directed Edge to have a new weight.

double .weight()

Returns the weight of the Edge object.

h. String Properties and Built-in Functions

int .length()

Returns the length of the String.

bool .equals(String s)

Returns True if both strings represent the same
array of characters, False otherwise.

Note: String creation should be done by assigning a String literal to a String
variable, similar to how primitive types are initialized. For example: String s =

“GRACL";

i. General Library Functions and Constants

void print()

Print function that prints String objects.

infinity

Double type constant representing infinity. Useful
for graph algorithms that have infinite edge
weights.

Graph createGraph()

Creates and returns an empty Graph.

NodelList createNodeList()

Creates and returns an empty NodelList.

EdgeList createEdgeList()

Creates and returns an empty EdgelList.

IntTable createlntTable()

Creates and returns an empty IntTable with Node
keys and int values.

DoubleTable
createDoubleTable()

Creates and returns an empty DoubleTable with
Node keys and double values.

14. Sample Programs
a. Graph Syntax

Graph g = createGraph();

Node g.createNode("New York");
Node g.createNode("Chicago");
Node g.createNode("San Francisco");

Edge
Edge
Edge

g.addEdge(n, ¢, 796.1);
g.addEdge(c, s, 2131.72);
g.addEdge(n, s, 2900.0);

NodeList n = g.nodes();

(n.updateData("New York City") < 0) {
print("Failure updating the data");

(g.removeNode(c) < 0) {
print("Failure removing the node");

b. Concurrent DFS Graph Traversal

NodeList path = createNodeList();
bool goalTest(Node goal, Node current){

current.equals(goal);

}

int normalDFS(Node current, Node goal, NodeList myPath){
synch path {
(tpath.empty()) {
0;

(myPath.append(current) < @) {
_1;

(goalTest(goal, current)) {

synch path {
path = myPath;
}
{
synch current {

(current.updateVisited(True) < 0) {
_1;

(neighbor in current.neighbors()) {

bool alreadyVisited = False;
synch neighbor {
alreadyVisited = neighbor.visited();
}
('alreadyVisited) {
normalDFS(neighbor, goal, myPath);

NodeList multithreadDFS(Node start, Node goal) {

(goalTest(goal, start)) {
createNodeList();

{

(start.updateVisited(True) < 0) {
createNodeList();
}
NodeList neighbors = start.neighbors();
NodeList myPath = createNodelList();

(node in neighbors) {
hatch 1 normalDFS(node, goal, myPath) {}
path;

15. References
e GRAIL Project (Spring 2017)
e K&R C Book
e Java Synchronized Keyword

http://www.cs.columbia.edu/~sedwards/classes/2017/4115-spring/lrms/GRAIL.pdf
http://www.cs.columbia.edu/~sedwards/papers/sgi1999c.pdf
https://www.baeldung.com/java-synchronized

