Digo

Distributed Golang

Language Reference Manual

Manager: Wengian Yan (wy2249)
Language Guru: Yufan Chen (yc3858)
System Architect: Sida Huang (sh4081)
Test Designer: Hanxiao Lu (h13424)

Language Reference Manual

Notation

The syntax is specified using Extended Backus-Naur Form (EBNF):

Plain Text

1 Production = production_name "=" [Expression] "." .

2 Expression = Alternative { "|" Alternative } .

3 Alternative = Term { Term } .

4 Term = production_name | token [".." token] | Group | Option |
Repetition .
Group = "(" Expression ")" .
Option = "[" Expression "]" .
Repetition = "{" Expression "}" .

Productions are expressions constructed from terms and the following operators, in increasing

precedence:
Plain Text
1 | alternation
2 () grouping
3 [] option (0 or 1 times)
4 {} vrepetition (0 to n times)

Lower-case production names are used to identify lexical tokens. Non-terminals are in
CamelCase. Lexical tokens are enclosed in double quotes "" or back quotes ™ .

Theform a .. b represents the set of characters from a through b as alternatives. The
horizontal ellipsis ... is also used elsewhere in the spec to informally denote various
enumerations or code snippets that are not further specified.

Lexical Elements

Comment

Comments serve as program documentation. Digo supports two forms of comment:

a. Inline comment starts with the character sequence // and stops at the end of the line.

b. Comment block: starts with the character sequence /* and stops with the first
subsequent character sequence */ .

Comment cannot start inside a literal or inside a comment.

Tokens

Tokens form the vocabulary of Digo. There are five classes: identifiers, keywords, operators and
punctuation, and literals.

Only white space that separates tokens would combine into a single token, and others (formed
from spaces, horizontal tabs, carriage returns, and newlines) is ignored. While breaking the
input into tokens, the next token is the longest sequence of characters that form a valid token.
Digo hides semicolon delimiters. When the input is broken into tokens, a semicolon is
automatically inserted into the token stream immediately after a line's final token.

Identifiers

Identifier in Digo is a case-sensitive ASCII sequence of one or more letters, digits and underscore
'_'. The first character in an identifier must be a letter. Identifiers name program entities such as
variables and types.

Keywords

Keywords are case-sensitive sequence of letters reserved for use in Digo.The following keywords
are reserved and may not be used as identifiers.

Plain Text

1 for, if, else, func, return, await, async, remote,
2 var, string, int, bool, float, continue, break
3 true, false

Operators and punctuation

The following character sequences represent operators and punctuation:

Go

1 + && = 1= ()
2 = || < <= []
3 * == > >= { }
4 [o+ = S
5 % -- ! S

Basic Literals

Literals in Digo are the representation of a value of some primitive types. Basic literals in Digo
include integer literals, float literals, character literals, string literals, boolean literals. Digo also
implements slice literal, which is introduced in the later part.

Integer literals:

Sequence of one or more digits in decimal. For representing negative numbers, a negation
operator is prefixed.

Example: 12
Float literals:

Sequence that consists of an integer part, a decimal point and a fraction part. For
representing negative numbers, a negation operator is prefixed.

Example: 3.14

String literals:
Sequence of ASCII characters quoted by double quotes. A string can also be empty.
Example: "Digo is Great!"

Boolean literals:

Logical true and false.

Variables

Avariable is a storage location for holding a value. The set of permissible values is determined
by the variable's type.

Avariable declaration or the signature of a function declaration reserves storage for a named
variable.

Avariable's value is retrieved by referring to the variable in an expression; it is the most recent
value assigned to the variable. If a variable has not yet been assigned a value, its value is the
zero value for its type.

Types

A type determines a set of values together with operations and methods specific to those values.

Plain Text
1 Type = "string" | "float" | "bool" | "int" | SliceType | FutureType .
Boolean types

The predeclared boolean typeis boo'l . A boolean type represents the set of Boolean truth
values denoted by keywords true and false.

Integer types

An integer type represents sets of integer values. The predeclared typeis int .

Float types

A float type represents sets of floating numbers. The predeclared typeis float.

Slice types

Aslice is a sequence container representing arrays that can change in size.

Plain Text

1 SliceType = "[" "]" Type .

The length of aslice s can be discovered by the built-in function len . The elements can be
addressed by integer indices 0 through len(s)-1.

Function types

A function type denotes the set of all functions with the same parameter and result types.

Plain Text

1 FunctionType = "func" Signature .

2 Signature = Parameters [Result] .

3 Result = Type | "(" Type { "," Type } ")" .

4 Parameters = "(" [ParameterList ["," 1] ")" .

5 ParameterList = ParameterDecl { "," ParameterDecl } .
6 ParameterDecl = Identifier Type .

Here are some examples:

Plain Text

1 func()
2 func(x 1int) 1int
3 func(a int, z float32) (bool)

String types

A string type represents the set of string values. A string value is a (possibly empty) sequence of
bytes. Under the hood, string is implemented by Slice. The predeclared string typeis string .

The length of a string s can be discovered using the built-in function len . Astring's bytes can
be accessed by integer indices 0 through len(s)-1.

Future types

A future type represents the set of asynchronous tasks. Under the hood, a future object keep
tracks of a task's information, including the task's id, func_id, worker_id, serialized arguments,
serialized response, and the current state of the task. The predeclared future typeis future .

Properties of types and values

Type Identity
Two types are either identical or different.

For string, float, int, bool, future ,each of these types is always different from any
other type.

For function types,two function types are identical if they have the same number of
parameters and result values, corresponding parameter and result types are identical.

For slice types,two slice types are identical if they have identical element types.

Assignability
Avalue x is assignableto avariable of type T (" x isassignableto T ")iff x 'stypeis
identicalto T.

Scope

The scope of a type identifier declared inside a block (function/if statments/for statement)
begins from the identifier declaration to the end of the innermost containing block.

We do not support global variables.

Declarations

A declaration binds a non-blank identifier to a variable or a function. Every identifierin a
program must be declared. No identifier may be declared twice in the same block, and no
identifier may be declared in both the file and package block.

the identifier master may only be used for master function declaration, it does not introduce
a new binding.

An identifier declared in a block may be redeclared in an inner block

Variable declarations

Avariable declaration creates one variable, binds corresponding identifier to them, and gives it
a type and aninitial value.

Plain Text

1 VarDecl = "var" VarSpec .

2 VarSpec = IdentifierList Type ["=" ExpressionList] .
Plain Text

1 var i int = 0
2 var b string = a + b
3 var x, y float32 = -1, -2

Short variable declarations

A short variable declaration uses the syntax:

Plain Text

1 ShortVarDecl = IdentifierList ":=" ExpressionList .

It is shorthand for a regular variable declaration with initializer expressions but no types:

Plain Text

1 "var" IdentifierList = ExpressionList .

Examples:

Plain Text

1 i, 3 :=0, 10

Function declarations
A function declaration binds an identifier, the function name, to a function.
Plain Text

1 FunctionDecl = "func" FunctionName Signature FunctionBody
2 FunctionName = +ddentifier .
3 FunctionBody = "{" StatementList "}" .

If the function's signature declares result parameters, the function body's statement list must
end in a terminating statement.

A function declaration can not omit the body.

Expressions

An expression specifies the computation of a value by applying operators and functions to
operands.

Operands

Operands denote the elementary values in an expression. An operand may be a literal, a non-
blank identifier denoting a variable, or a parenthesized expression.

The blank identifier may appear as an operand only on the left-hand side of an assignment.

Plain Text
1 Operand = Literal | OperandName | "(" Expression ")" .
2 Literal = BasicLit | SliceLit .
3 BasiclLit = int_lit | float_lit | string_lit | bool_lit .
4 OperandName = -didentifier .

Slice literals

Slice literals construct values for slices.

Plain Text
1 SlicelLit = SliceType LiteralValue .
2 Literalvalue = "{" [ElementList ["," 1 1 "}" .
3 ElementList = Element { "," Element } .
4 Element = Expression | Literalvalue .

- Each element has an associated integer index marking its position in the slice.

- An element uses the previous element's index plus one. The first element's index is zero.

Primary expressions

Primary expressions are the operands for unary and binary expressions.

Plain Text
1 PrimaryExpr =
2 Operand |
3 PrimaryExpr Index |
4 PrimaryExpr Slice |
5 PrimaryExpr Arguments .
6 Index = "[" Expression "]" .
7 Slice = "[" [Expression] ":" [Expression] "]"
8 Arguments = "(" [(ExpressionList | Type ["," ExpressionList]) ["..."

] [ll,ll]] ll)ll .

Plain Text

X
2

(s + ".txt")
f(3.1415, true)
s[i : j + 1]
p[10]

o b~ W N -

Index expressions

A primary expression of the form a[x] denotes the element of the slice. The following rules
apply:

- if x is out of range at run time, the program sends an segment fault to itself and therefore
exits.

a[x] istheslice elementatindex x andthetypeof a[x] isthe elementtypeof S

Slice expressions

Slice expressions construct a substring or slice from a string or slice. It specifies a low and high
bound.

For a string or slice a , the primary expression

Plain Text

1 al[low : high]

constructs a substring or slice. The indices Tow and high select which elements of operand
a appearin the result. The result has indices starting at 0 and length equalto high - low.

For convenience, any of the indices may be omitted. A missing low index defaults to zero; a

missing high index defaults to the length of the sliced operand:

Bash

1 a[2:] // same as a[2 : len(a)]
2 al[:3] // same as a[0 : 3]
3 al:] // same as al[0 : len(a)]

For slices or strings, the indices are in rangeif ® <= low <= high < len(a) , otherwise they
are out of range. If the indices are out of range at run time, a segment fault occurs.

Calls

Given an expression f of function type F,

Apache

1 f(al, a2, .. an)

calls f witharguments al, a2, .. an.Exceptforone special case, arguments must be
single-valued expressions assignable to the parameter types of F and are evaluated before the
function is called. The type of the expression is the result type of F .

In a function call, the function value and arguments are evaluated in the usual order. After they
are evaluated, if the types of the parameters are then they are passed by value to the function
and the called function begins execution.

Operators

Operators combine operands into expressions.

Plain Text

=

Expression = UnaryExpr | Expression binary_op Expression | Expression assign_op
Expression.

UnaryExpr = PrimaryExpr | unary_op UnaryExpr .

binary_op = "||" | "&&" | rel_op | add_op | mul_op .

rel_op R I e B A LU L L T L

add_op = "e" | mn || onan

mul_op S AL I AL L

assign_op = "=" .

o N o b~ W N

unary_op = n_n | H!H

For binary operators, the operand types must be identical.

Operator precedence and associavity

The assocaitivity of operators are as follows:
Operator Name Associativity
= Assign Right

== Equal to Left

I= Unequal to

> Greater than

>= Greater than or equal
< Less than

<= Less than or equal to
+ Addition

- Subtraction

* Multiplication
/ Division
% Modulo
&& Logical and
I Logical or
! Logical not

The precedence of operators is as follows:
a. /%
b. +-

C
d. ==1=

. ®
Qo =
@o

=

Arithmetic operators

Left

Left

Left

Left

Left

Left

Left

Left

Left

Left

Left

Left

Right

Arithmetic operators apply to numeric values and yield a result of the same type as the first
operand. The four standard arithmetic operators (+, -, x, /) apply to integer, floating-point,
and complex types; + also applies to strings.

SQL
1+ sum integers, floats, strings
2 = difference integers, floats
3 % product integers, floats
4 |/ quotient integers, floats
5 % remainder integers
Integer operators

For two integer values x and vy ,theinteger quotient g = x / y andremainder r = x %
y satisfy the following relationships:

Plain Text

1 x=qgxy +r and |r| < |y|

Floating-point operators

For a given integer i, its floating point representation could be achieved by using float(). float()
could also be used to convert the intermediate result of operation.

Plain Text

1 float(d)
2 float(axb+c)

String concatenation

Strings can be concatenated using the + operator:

Plain Text

1 s := "hi" + string(c)

Comparison operators

Comparison operators compare two operands and yield an untyped boolean value.

Shell

1 == equal

2 1= not equal

3 < less

4 <= less or equal

5 > greater

6 >= greater or equal
Logical operators

Logical operators apply to boolean values and yield a result of the same type as the operands.
The right operand is evaluated conditionally.

Plain Text

&& conditional AND p &k q 1is "if p then g else false"

2 || conditional OR p || g is "if p then true else g"
3 ! NOT 'p is "not p"
Order of evaluation

when evaluating the operands of an expression, assignment, or return statement, all function
calls, are evaluated in lexical left-to-right order.

Statements

Statements control execution.

Plain Text

1 Statement =

2 Declaration | SimpleStmt |
3 AwaitStmt | ReturnStmt | BreakStmt | ContinueStmt | IfStmt | ForStmt
4

5 SimpleStmt = EmptyStmt | ExpressionStmt | Assignment | ShortVarDecl .

Terminating statements

A terminating statement prevents execution of all statements that lexically appear after it in the
same block. The following statements are terminating:

1. A'"return" statement
2. An"if" statement in which:

- the "else" branch is present, and both branches are terminating statements.
3. A"for" statement in which:

- there are no "break" statements referring to the "for" statement, and the loop condition is
absent.

Empty statements

The empty statement does nothing.

Plain Text

1 EmptyStmt = .

Expression statements

With the exception of specific built-in functions, functions can appear in statement context.
Such statements may be parenthesized.

If statements

"If" statements specify the conditional execution of two branches according to the value of a
boolean expression. If the expression evaluates to true, the "if" branch is executed, otherwise, if
present, the "else" branch is executed.

Plain Text

1 IfStmt = "4if" Expression "{" StatementList "}" ["else" (IfStmt | "{" Statement
List "})] .

Plain Text

1 if x > max {
2 X = max
3

}

For statements

A "for" statement specifies repeated execution of a statement list. There are three forms: The
iteration may be controlled by a single condition, a "for" clause, or a "range" clause.

Plain Text

1 ForStmt = "for" [Condition | ForClause] "{" StatementList "}" .

2 Condition = Expression .

For statements with single condition

In its simplest form, a "for" statement specifies the repeated execution of a statement list as
long as a boolean condition evaluates to true. The condition is evaluated before each iteration. If
the condition is absent, it is equivalent to the boolean value true .

Plain Text
1 for a < b {
2 a *= 2
3 }

For statements with for clause

A "for" statement with a ForClause is also controlled by its condition, but additionally it may
specify an initand a post statement, such as an assignment, an increment or decrement
statement. The init statement may be a short variable declaration, but the post statement must
not. Variables declared by the init statement are re-used in each iteration.

Plain Text

1 ForClause = [InitStmt] ";" [Condition] ";" [PostStmt] .
2 InitStmt = SimpleStmt .
3 PostStmt = SimpleStmt .

Plain Text
1 for i :=0; i < 10; i++ {
pi (i)
3 1}

If non-empty, the init statement is executed once before evaluating the condition for the first
iteration; the post statement is executed after each execution of the a statement list (and only if
the the statement list was executed). Any element of the ForClause may be empty but the
semicolons are required unless there is only a condition. If the condition is absent, it is

equivalent to the boolean value true.

Plain Text

1 for cond { S() } is the same as for ; cond ;3 { S() }
2 for { SO } is the same as for true { SO }

Await Statements

An "await" statement waits in a blocking way for the response of a task denoted by a future
object.

Plain Text

1 AwaitStmt = "await" Expression .

The expression must be a future object.

Return statements

A '"return" statementin a function F terminates the execution of F ,and optionally provides
one or more result values.

Plain Text

1 ReturnStmt = "return" [ExpressionList] .

In a function without a result type, a "return" statement must not specify any result values.

Plain Text

1 func noResult() {
2 return
3

}

Break statements

A "break" statement terminates execution of the innermost "for" statement within the same
function.

Plain Text

1 BreakStmt = "break" .

Continue statements

A "continue" statement begins the next iteration of the innermost "for" loop at its post

statement. The "for" loop must be within the same function.

Plain Text

1 ContinueStmt = "continue"

Built-in functions

Call

len(s)

append(s, x)

gather(s)

Program Execution

Argument type

String type
Slice type

(Slice, element type of the Slice)

Slice with element type future

Program execution begins by parsing three arguments:

Bash

Result

string length in bytes

slice length

Append x tos.

Await all the future objects and
return the result of them

1 -m [master|worker] specifies whether this is a master or a worker

2 -h <string> hostname of the master

3 -p <int> port of the master

If the command line does not contain these arguments, then the program will promt a error and

exit.

Then according to whether this is a mster or a worker, the program will have different

iniialzation procedures.

Master

If the program is a master, the program starts listening to <hostname:port> and waits for other
workerstosend a join requestand then invoking the function master . When that function
invocation returns, the program exits.

Worker

If the program is a worker, the program starts listening to a 0.0.0.0:<random_port>. Then the
worker sendsa join request to the master(the hostname and port of which are gotten from
the cmdline arguments). Then the worker keeps alive and waiting for remote tasks from the
master program, executes it and returns the result back to the master.

Overall Procedure

:Master TO :Master T1 ‘Workerl
H o
init) L lcreate .
>
Fstan listening start listening
WorkerPool
Worker JOIN : <hostname>:<port>
+worker_id: int
- « add worker to pool
*hostname: string [T o
+port:int
user-defined Master T2
code T
call an async remote function :
create |
Future H .
" ' pick a worker
+id: hash(func_id + args_buf) create N from pool
or wait for an
+func_id:int available one
+worker_id: int
send task R
+args_buf : string 1J
+resp_buf: string &._returnresult |
+state : enum(INIT, REQUESTED, ABORTED,DONE) |~~~ | 1 write result into resp_buf
A
await future object X
wait for response [
L L L]

https://golang.org/ref/spec

https://golang.org/ref/spec

