CaRdY

Language Reference
Manual

Pazit Schrecker o Liseidy Bueno © Lindsey Wales
Kenya Plenty @ Katrina Zhao

Contents

Introduction

Types
Primitive Data Types
Non-Primitives
Collections

Operators
Assignment Operators
Comparison Operators
Logical Operators
|dentity Operators
Membership Operators

Statements
Expressions
Return Statements
Declaration and Initialization

Control Flow
Conditional Statements
Looping
for loops
while loops

Classes

Functions
User-defined Functions
Function Calls
Built-in Functions

CoRdY Standard Library

CaRdY Types
Built-In Functions

Lexical Conventions
Comments
Keywords
Punctuation
|dentifiers (Names)

O 00O OO DN DNDNWW WWWW N

_ =
pury

_ A = e
W WNN

Y
(@)

—
»w

R W T (T §
N O~ U011 n

Example Code 17

Introduction

CaRdY is an innovative new programming language designed to make the
implementation of text-based card games as seamless and easy as
possible. Because CaRdY aims to take all the hassle out of coding your
own card game, the language provides built-in algorithms to control the
flow of the game (ie shuffling, drawing/dealing, displaying round results,
switching turns, etc.) and a pre-built and customizable 52 card Deck claoss.
It is important to note that CaRdY is meant to be used in coding one
player (human vs. computer) card games, but the language is not intended
to facilitate the creation of multiplayer card games that can be played

across consoles or hosted on a server of some kind.

Types

Primitive Data Types

int 4 byte signed integer

char 1 byte ASCII character

bool 1 byte, 0 or 1

float 4 byte floating point number

Non-Primitives

str

Sequence of ASCIl characters
enclosed in quotation marks

Collections

List

Stores multiple objects of the same
type in a single variable. Lists can
be initialized empty or with
variables. The size is not fixed.

Set

Stores an unordered, unindexed
collection of multiple objects in a
single variable. Sets can be
initialized empty or with variables.
The size is not fixed.

Dictionary

Stores multiple key/value pairs in a
single variable. Dictionaries can be
initialized empty or with variables.
The size is not fixed.

Operators

Assignment Operators

Assigns a value to a variable (x=5)

+

Addition

Subtraction

Multiplication

Division

/!

Truncated division

%

Modulus

Comparison Operators

All comparison operators evaluate to bool

Equals (x==5)

Does not equal (x!=9)

> Greater than (x>y)

< Less than (x<y)

>= Greater than or equal to (x>=y)
<= Less than or equal to (x<=9)

Logical Operators

All logical operators evaluate to bool

and True if the stotements on either
side are both true.

or True if ot least one of the
statements on either side is true.

not False if the expression being
evaluated is true.

Identity Operators

All identify operators evaluate to bool

is

True if the variables on either side
are the same object (in the same
location in memory)

is not True if the variables on either side
are not the some object (not in the
some location in memory)

Membership Operators

All membership operators evaluate to bool

in True if the value on the LHS
appears in the sequence on the
RHS
not in True if the value on the LHS does
not appear in the sequence on the
RHS.
Statements

Expressions
An Expression is a line of code composed of one or more of the following:
% A built-in data type (See the built-in types section of Chapter)

< An identifier of a variable (See the identifiers section of Chapter)

R
°

The associated key-value of a dictionary

0.
o

A list element

A set element

R
°

0.
o

An operand followed by an operator followed by another operand

R
°

The not operator followed by a bool value

Expression Examples

4 + 8; /* This expression evaluates to the int value 12 */
“hello” + “ World", /* This expression evaluates to the str “hello World"
*/

not true; /* This expression evaluates to the bool value false */

Return Statements
A return statement exits from the current function. It may either be
followed by an expression or exist on its own. When there is no expression
following the return statement it simply exits the function:

return; /* function exits */
When there is an expression following the return statement, the function
call returns that value:

return 9 +10; /* function exists and returns 19 */

Declaration and Initialization

In order to use an identifier in your code it must first be declared. The
declaration must include the type of the value associated with the
identifier. Before use in the code, the value of the identifier must also be
initialized, or set. This value must match the declared type of the identifier.
For integer, string, float, boolean, and character types, the Initialization

must either happen at the some time as declaration.

This is an example of an integer identifier mylnt being declared and

initialized in one line (valid):

int myint = 3;

This is an example of an integer identifier myOtherlnt being declared and
initialized in one line (invalid):

int myint = 3.14;

This case is invalid because an int type cannot be set to a value of type

float.

This is an example of an integer identifier myString being declared and
initialized in one line:

str myString =“l am a String”,

The syntaox to declare a dictionary is the following:

myDict={... }

Where the brackets can contain a list of key/value pairs separated by a
commoa, or it can be empty to initialize an empty dictionary. Key value

pairs a denoted by the key followed by a colon and then the value.

This is an example of a dictionary myDict with integer keys and String
values being declared and initialized:

myDict = {1: “spades”, 2: “diamonds'};

The syntox to initialize a list is the following:

type myList = [...];

8

Where the brackets can contain a list of literals separated by a comma, or
it can be empty to initialize an empty list.

This is an example of a list myList with of character types:

char myList =[‘0’, ', ’¢];

The syntox to declare a set is the following:

type mySet = {...};

Where the brackets can contain a list of literals separated by a comma, or
it can be empty to initialize an empty set.

This is an example of a set mySet with of character types:

char mySet = {o’, 0', ‘c’};

Control Flow

Conditional Statements

There are two valid forms of the conditional statement

if (expressionl) { statement, }

if (expression,) { statement,}

else if (expression,) { statement, }

else if (expression,) { statement, ,}

else { statement,}

In both forms, expression, is evaluated first. Each expression, must
evaluate to a bool. If the bool value of expression; is 1, statement,. If
expression, evaluates to 0 in the second case, expression, is evaluated. If
this is 1, statement, is evaluated. The expressions are evaluated until an
expression evaluates to 1, or the else clause is reached. If the else clause is

reached, statement, is executed.

There may be 0 or more else if clauses and these must follow the if clause.
The else clause is never required and there may be ot most one else
clause. The else clause must follow an if clause (or a number of else if

clauses, as long as the first clause is an if).

Looping

The CaRdY language has two types of loops, while loops and for loops.

1. for loops
A for loop executes a statement a predetermined number of times,
specified by a counter that is initialized, a condition upon which to
terminate, and a change rule for the counter. The syntax for a for

loop is:

for (initialize; terminate; change) {

statement;

1.1.
1.2.

1.3.

10

initialize sets the vaolue of the counter

terminate specifies when to exit the loop. terminate must be an
expression that evaluates to a bool value. The loop continues
so long as the value of terminate is 1 and stops when the value
of terminate is 0.

change specifies a rule dictating how the counter value should
be changed aofter each execution of the loop. In order to avoid
an infinite loop, the change rule should eventually lead to the
termination condition. The change rule may alter the counter
either by decrementing or incrementing it using the standard

binary operators.

The following example is a valid for-loop that prints the
numbers from 0 to 8:
for (int count = 0; count < 9; count = count + 1) {

print(count);

In this case, the initialized variable is count, with a value of 0.
When the loop body statement is executed, count is printed

and its value is then incremented by 1 according to the change

1

rule. Once the value of count has been incremented is equal to

9, the print statement in the body of the loop stops executing.

while loops

The syntax of a while loop is:

while (continuation_expression) {

Statement;

When the value of the continuation_expression is 1, the statement
inside the loop is executed. This occurs until the

continuation_expression no longer evaluates to 1.

The following example is a while loop that prints the numbers from 0
to 8:
int count = 0;
while (count < 9) {
print(count);

count =count +1;

In the above example, the continuation_expression is ‘count < 9",

12

Note that unlike a for loop, integer value count must be declared

and initialized prior to the start of the while loop.

Classes

Classes are user defined data types. Classes in CaRdY act as blueprints
for the objects they define. They have functions and data as attributes.
Closs definitions are as follows:
class exampleClass {
main(){
expression;
fun exampleFunction(int x, int y){

print(x +vy);

}

Objects are instances of classes. They are instantiated as follows:
exampleObject = exampleClass();

Once an object has been instantiated, functions within it can be

invoked as follows:

exampleObject.exampleFunction(, 2);

13
Functions

User-defined Functions
Functions are defined using the keyword ‘fun’ followed by the function
name, return type if applicable, and any parameters in parentheses. The
body of the function is enclosed in curly brackets. Functions are assumed
to be void if no return type is specified. For example:

fun int exampleFunction(int x, int y){

print(x +y);

}

Function Calls

Functions are called on objects. The syntax is as follows:
int x = exampleClass.exampleFunction(l, 2);

Each class must contain a main function, which indicates the start of
runnable code and has a void return type. Syntox is as follows:
class exampleClass {

main(){

/*function body*/
}

Built-in Functions
Refer to section CaRdY Standard Library section to see the built-in

functions.

CaRdY Standard Library

CaRdY Types

14

Card(type, color, number)

Allows the user to create a custom
card object to be added to a deck.
The type attribute must be
specified.

Player(score, hand_size, hand)

Creates a player object and keeps
track of the cards in the player's
hand.

Discarded()

Retrieves a list of discarded card
objects.

Built-In Functions

createDeckCustomized({'type”
[color, number, num_copies],..f.})

Taokes a dictionary as a parameter
where the keys are card
characteristics (e.g. type) and the
value is a list of the secondary
characteristics (e.g. colors) and the
number of cards to create of that

type.

createDeck(num_copies, color,
number, type)

Creates a deck (a list of card
objects) with the specified number
of copies of every combination of
the specified attributes.

add(myCard) Adds card object to the list on
which it's called.
createStandardDeck() Creates a standard deck of 52

playing cards.

shuffle(myDeck)

Taokes in a deck or list of cards and
shuffles it.

deal(player)

Deals cards to fill the specified
player's hand.

discard(myCard)

Removes a card from the player's
hand and adds it to the discard
list.

draw(number)

Moves the specified number of

15

cards from the deck to the player's

hand.
display(player.hand) Prints cards in player's hand.
display(player.score) Prints player's score.
input() Allows the user to input a variable

from the keyboard to be read/used
in the progrom.

print(val) Takes in data as a parometer and
prints it in the console.

reset() Starts a new card gome, deleting
current hands and player scores
but not the deck or existing
players.

quit() Quits the game, deleting all
created decks, cards, hands, and
players.

Lexical Conventions

CaRdY contains the following tokens: identifiers (hames), keywords,
expression operators, comparison operators, identity operators

Constants, tabs, newlines, and whitespace are ignored.

1. Comments
The characters /* introduce a comment. A comment must terminate
the with characters */
/* Everything between the start and end of a comment is ignored*/
Comments may span many lines or a single line, but the above

syntax must be used in either case.

2. Keywords
The following identifiers are reserved as keywords and may not be
used otherwise (i.e,, as the name of a variable or class):
% for
% while
% if
e else
% return
% int
% char
% bool
% float
% str
% ond
% or

< not

% set
% dict
% list
% class

% fun

17

3. Punctuation

% Parentheses: all if, else if, while, and for conditional expressions
must be enclosed in (parentheses)

% All logical blocks, including the body statements of if, else if,
and else statements, and while and for loops must be enclosed
in { curly braces }

< Semicolons are used to separate the conditions in a for loop

as well as to denote the end of a line.

4. |dentifiers (Names)
An |dentifier is a value or expression that has a name associated
with it. a name associated with an expression of some value. All
characters must be lowercase alphanumeric characters and the first

character must be an alphabetical character.

18

