
C* - Final Report

C* - Final Report

Authors

Authors

Name

Name

UNI

UNI

Role

Role

Shannon Jin

Shannon Jin

sj2802

sj2802

Manager

Manager

Khyber Sen

Khyber Sen

ks3343

ks3343

Language Guru

Language Guru

Ryan Lee

Ryan Lee

dbl2127

dbl2127

System Architect

System Architect

Joanne Wang

Joanne Wang

jyw2118

jyw2118

Tester

Tester

Table of Contents

Table of Contents
1.

Introduction

Introduction

2.

Language Tutorial

Language Tutorial

3.

Language Manual

Language Manual

A C* Program

A C* Program

Modules

Modules

Identifiers

Identifiers

Keywords

Keywords

Comments

Comments

//

//

 Single-Line

 Single-Line

///

///

 Doc

 Doc

/* */

/* */

 Nested, Multi-Line

 Nested, Multi-Line

/-

/-

 Structural

 Structural

Publicity

Publicity

Annotations

Annotations

use

use

 Declarations

 Declarations

let

let

s

s

fn

fn

 Function Declarations

 Function Declarations

struct

struct

 Declarations

 Declarations

enum

enum

 Declarations

 Declarations

union

union

 Declarations

 Declarations

impl

impl

 Blocks

 Blocks

Type System

Type System

Primitive Types

Primitive Types

()

()

 Unit Type

 Unit Type

bool

bool

 Type

 Type

Integer Types

Integer Types

Float Types

Float Types

char

char

acter type

acter type

Built-In Compound Types

Built-In Compound Types

Reference Types

Reference Types

Slice Types

Slice Types

Array Types

Array Types

Pointer Types

Pointer Types

Tuple Types

Tuple Types

Function Types

Function Types

User-Defined Compound Types

User-Defined Compound Types

struct

struct

 Types

 Types

enum

enum

 Types

 Types

union

union

 Types

 Types

Destructive Moves

Destructive Moves

Expressions

Expressions

Literals

Literals

Unit

Unit

Boolean

Boolean

Number

Number

Character

Character

String

String

Struct

Struct

Tuple

Tuple

Array

Array

Enum

Enum

Union

Union

Function

Function

Closure

Closure

Range

Range

Function Calls

Function Calls

Method Calls

Method Calls

Blocks

Blocks

Control Flow

Control Flow

Pattern Matching

Pattern Matching

Conditionals

Conditionals

match

match

if

if

else

else

Labels

Labels

Loops

Loops

while

while

for

for

defer

defer

Error Handling

Error Handling

try

try

Panicking

Panicking

Operators

Operators

Generics

Generics

Constant Evaluation

Constant Evaluation

Builtin Functions

Builtin Functions

Lang Types

Lang Types

Option

Option

Result

Result

4.

Project Plan

Project Plan

5.

Architectural Design

Architectural Design

6.

Test Plan

Test Plan

7.

Lessons Learned

Lessons Learned

8.

Appendix

Appendix

1. Introduction

1. Introduction

C* is a general-purpose systems programming language. It is between the level of C and Zig on a

C* is a general-purpose systems programming language. It is between the level of C and Zig on a

semantic level, and syntactically it also borrows a lot from Rust (pun intended). It is meant primarily for

semantic level, and syntactically it also borrows a lot from Rust (pun intended). It is meant primarily for

programs that would otherwise be implemented in C for the speed, simplicity, and explicitness of the

programs that would otherwise be implemented in C for the speed, simplicity, and explicitness of the

language, but want a few simple higher-level language constructs, more expressiveness, and some safety,

language, but want a few simple higher-level language constructs, more expressiveness, and some safety,

but not so many overwhelming language features and implicit costs like in Rust, C++, or Zig.

but not so many overwhelming language features and implicit costs like in Rust, C++, or Zig.

It has manual memory management (no GC) and uses LLVM as its primary codegen backend, so it can be

It has manual memory management (no GC) and uses LLVM as its primary codegen backend, so it can be

optimized as well as C, or even better in cases. All of C*'s higher-level language constructs are zero-cost,

optimized as well as C, or even better in cases. All of C*'s higher-level language constructs are zero-cost,

meaning none of those features give it any overhead over C, which often lead to a highly-optimized style

meaning none of those features give it any overhead over C, which often lead to a highly-optimized style

where in C you would take less efficient shortcuts (e.x. function pointers and type-erased generics) and

where in C you would take less efficient shortcuts (e.x. function pointers and type-erased generics) and

use dangerous constructs like goto. In the future, it may also have a C backend so that it can target any

use dangerous constructs like goto. In the future, it may also have a C backend so that it can target any

architecture where there is a C compiler.

architecture where there is a C compiler.

While a general-purpose language, C* will probably have the most advantages when used in systems and

While a general-purpose language, C* will probably have the most advantages when used in systems and

embedded programming. It’s expressivity and high-level features combined with its relative simplicity,

embedded programming. It’s expressivity and high-level features combined with its relative simplicity,

performance, and explicitness is a perfect match for many of these low-level systems and embedded

performance, and explicitness is a perfect match for many of these low-level systems and embedded

programs.

programs.

2. Language Tutorial

2. Language Tutorial

The environment used for C* is based in the docker file provided in MicroC.

The environment used for C* is based in the docker file provided in MicroC.

To build:

To build:

$ sudo apt install ocaml llvm llvm-runtime m4 opam cmake pkg-config

$ sudo apt install ocaml llvm llvm-runtime m4 opam cmake pkg-config

ocamlbuild

ocamlbuild

$ opam init

$ opam init

$ opam install llvm.10.0.0

$ opam install llvm.10.0.0

$ eval $(opam env)

$ eval $(opam env)

$ make

$ make

Writing a Cstar Program (.cs)

Writing a Cstar Program (.cs)

fn

fn

int

int

main

main

(

(

)

)

{

{

print

print

(

(

20

20

+

+

10

10

)

)

;

;

return

return

0

0

;

;

}

}

Simple Program Example:

Simple Program Example:

To write a Cstar program in it’s current stage:

To write a Cstar program in it’s current stage:

Functions

Functions

Functions must be declared as “fn” + return type + “name” + “(” + params + “)” + “{” + body + “}”

Functions must be declared as “fn” + return type + “name” + “(” + params + “)” + “{” + body + “}”

Functions may or may not have a return statement depending on the type of the function

Functions may or may not have a return statement depending on the type of the function

Comments

Comments

Comments can either be multilined using “/**/”.

Comments can either be multilined using “/**/”.

Comments can also be singled lined using “//”.

Comments can also be singled lined using “//”.

3. Language Manual - What the Language

3. Language Manual - What the Language

Should Have Been

Should Have Been

Introduction

Introduction

C* is a general-purpose systems programming language. It is between the level of C and Zig on a

C* is a general-purpose systems programming language. It is between the level of C and Zig on a

semantic level, and syntactically it also borrows a lot from Rust (pun intended). It is meant primarily for

semantic level, and syntactically it also borrows a lot from Rust (pun intended). It is meant primarily for

programs that would otherwise be implemented in C for the speed, simplicity, and explicitness of the

programs that would otherwise be implemented in C for the speed, simplicity, and explicitness of the

language, but want a few simple higher-level language constructs, more expressiveness, and some safety,

language, but want a few simple higher-level language constructs, more expressiveness, and some safety,

but not so many overwhelming language features and implicit costs like in Rust, C++, or Zig.

but not so many overwhelming language features and implicit costs like in Rust, C++, or Zig.

It has manual memory management (no GC) and uses LLVM as its primary codegen backend, so it can be

It has manual memory management (no GC) and uses LLVM as its primary codegen backend, so it can be

optimized as well as C, or even better in cases. All of C*'s higher-level language constructs are zero-cost,

optimized as well as C, or even better in cases. All of C*'s higher-level language constructs are zero-cost,

meaning none of those features give it any overhead over C, which often lead to a highly-optimized style

meaning none of those features give it any overhead over C, which often lead to a highly-optimized style

where in C you would take less efficient shortcuts (e.x. function pointers and type-erased generics) and

where in C you would take less efficient shortcuts (e.x. function pointers and type-erased generics) and

use dangerous constructs like goto. In the future, it may also have a C backend so that it can target any

use dangerous constructs like goto. In the future, it may also have a C backend so that it can target any

architecture where there is a C compiler.

architecture where there is a C compiler.

While a general-purpose language, C* will probably have the most advantages when used in systems and

While a general-purpose language, C* will probably have the most advantages when used in systems and

embedded programming. It’s expressivity and high-level features combined with its relative simplicity,

embedded programming. It’s expressivity and high-level features combined with its relative simplicity,

performance, and explicitness is a perfect match for many of these low-level systems and embedded

performance, and explicitness is a perfect match for many of these low-level systems and embedded

programs.

programs.

A C* Program

A C* Program

A C* program is a top-level C* module.

A C* program is a top-level C* module.

Note that italics will be used here to refer to

Note that italics will be used here to refer to

placeholders for language items, not the items themselves.

placeholders for language items, not the items themselves.

Modules

Modules

Every C* file (by default using a

Every C* file (by default using a

.cstar

.cstar

 extension)

 extension)

must be UTF-8.

must be UTF-8.

Each file is implicitly a module, though modules can also be declared

Each file is implicitly a module, though modules can also be declared

inline with the

inline with the

mod

mod

name

name

 {}

 {}

 keyword

 keyword

*

*

.

.

Everything between the braces belongs to the module

Everything between the braces belongs to the module

name

name

.

.

A module is composed of a series of top-level items (aka declarations), which may be one of:

A module is composed of a series of top-level items (aka declarations), which may be one of:

use

use

let

let

fn

fn

struct

struct

enum

enum

union

union

impl

impl

These items may be proceeded by a single

These items may be proceeded by a single

publicity

publicity

 modifier

 modifier

and any number of

and any number of

annotations

annotations

.

.

Comments

Comments

 may also appear anywhere.

 may also appear anywhere.

C* is not whitespace sensitive, i.e.,

C* is not whitespace sensitive, i.e.,

any consecutive sequence of whitespace may be replaced by

any consecutive sequence of whitespace may be replaced by

any other consecutive sequence of whitespace

any other consecutive sequence of whitespace

without changing the meaning of the program.

without changing the meaning of the program.

A unicode character is considered whitespace if it matches the

A unicode character is considered whitespace if it matches the

\p{Pattern_White_Space}

\p{Pattern_White_Space}

 unicode

 unicode

property.

property.

Identifiers

Identifiers

Identifiers in C* may be any UTF-8 string

Identifiers in C* may be any UTF-8 string

in which the first characters is

in which the first characters is

_

_

,

,

$

$

, or matches the

, or matches the

\p{XID_Start}

\p{XID_Start}

 unicode property,

 unicode property,

and the remaining characters match the

and the remaining characters match the

\p{XID_Continue}

\p{XID_Continue}

 unicode property,

 unicode property,

except for the following exceptions:

except for the following exceptions:

Identifiers may begin with

Identifiers may begin with

$

$

 but are only definable by the compiler as intrinsics.

 but are only definable by the compiler as intrinsics.

There are no keywords at the lexer level, but identifiers may not be a C*

There are no keywords at the lexer level, but identifiers may not be a C*

keyword

keyword

.

.

They may also not be the

They may also not be the

boolean literals

boolean literals

true

true

 or

 or

false

false

.

.

_

_

 is a valid C* identifier at the syntactic level,

 is a valid C* identifier at the syntactic level,

but has a special meaning and cannot be used everywhere.

but has a special meaning and cannot be used everywhere.

That is, it can only be assigned to.

That is, it can only be assigned to.

Examples:

Examples:

// valid identifiers

// valid identifiers

let

let

 validWord

 validWord

:

:

u32

u32

=

=

2

2

;

;

fn

fn

get_num

get_num

(

(

)

)

=

=

{

{

}

}

enum

enum

 小笼包

 小笼包

{

{

}

}

// invalid identifier

// invalid identifier

let

let

 2words

 2words

=

=

2

2

;

;

struct

struct

const

const

{

{

}

}

Keywords

Keywords

https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B:Pattern_White_Space:%5D&abb=on&g=&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AXID_Start%3A%5D&abb=on&g=&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AXID_Continue%3A%5D&abb=on&g=&i=

Keywords are reserved identifiers that cannot be used as regular identifiers for other purposes.

Keywords are reserved identifiers that cannot be used as regular identifiers for other purposes.

C* keywords:

C* keywords:

use

use

let

let

mut

mut

pub

pub

try

try

const

const

impl

impl

fn

fn

struct

struct

enum

enum

union

union

return

return

break

break

continue

continue

for

for

while

while

if

if

else

else

match

match

defer

defer

undefer

undefer

There are also reserved keywords:

There are also reserved keywords:

trait

trait

Comments

Comments

C* contains multiple types of comments

C* contains multiple types of comments

single-line

single-line

nested multi-line

nested multi-line

structural comments

structural comments

//

//

 Single-Line Comments

 Single-Line Comments

Tokens followed by

Tokens followed by

//

//

 until a

 until a

\n

\n

 newline are considered single-line comments.

 newline are considered single-line comments.

///

///

 Doc Comments

 Doc Comments

Tokens followed by

Tokens followed by

///

///

 until a

 until a

\n

\n

 newline are considered doc comments.

 newline are considered doc comments.

They are a form of single-

They are a form of single-

line comments,

line comments,

but may also be processed by tools for generating documentation.

but may also be processed by tools for generating documentation.

/* */

/* */

 Nested, Multi-Line Comments

 Nested, Multi-Line Comments

Tokens followed by

Tokens followed by

/*

/*

 are considered multi-line comments.

 are considered multi-line comments.

They can be nested, and end at the next

They can be nested, and end at the next

*/

*/

 that is not a part

 that is not a part

of an inner multi-line comment.

of an inner multi-line comment.

They also do not have to be multi-line,

They also do not have to be multi-line,

and can comment out only part of a line.

and can comment out only part of a line.

/-

/-

 Structural Comments

 Structural Comments

/-

/-

 denotes a structral comment.

 denotes a structral comment.

It comments out the next item in the AST, which could be the next

It comments out the next item in the AST, which could be the next

expression, function, type definition, etc.

expression, function, type definition, etc.

Example:

Example:

// This is a regular single line comment.

// This is a regular single line comment.

/// This is a doc comment for the function below.

/// This is a doc comment for the function below.

fn

fn

foo

foo

(

(

)

)

=

=

{

{

}

}

/* This is a multiline comment

/* This is a multiline comment

Everything inside here is commented out until "* /"

Everything inside here is commented out until "* /"

*/

*/

/* They can be /* nested */, too. */

/* They can be /* nested */, too. */

fn

fn

/* and appear in-between things */

/* and appear in-between things */

bar

bar

(

(

)

)

=

=

{

{

}

}

/

/

-

-

let

let

 x

 x

=

=

25

25

;

;

// This comments out the entire let expression.

// This comments out the entire let expression.

pub

pub

 Publicity

 Publicity

All top-level items (except

All top-level items (except

impl

impl

 blocks

 blocks

)

)

may be prefixed with a publicity modifier.

may be prefixed with a publicity modifier.

The syntax for this is

The syntax for this is

pub

pub

.

.

Following the

Following the

pub

pub

, there may also be a module path

, there may also be a module path

within parentheses, like this:

within parentheses, like this:

(

(

path

path

)

)

.

.

If there is no publicity modifier, i.e. no

If there is no publicity modifier, i.e. no

pub

pub

,

,

then the publicity of the item is private, i.e.

then the publicity of the item is private, i.e.

pub(self)

pub(self)

.

.

Only public items may be

Only public items may be

use

use

d from other modules.

d from other modules.

Private items may only be used for the current module or its descendants.

Private items may only be used for the current module or its descendants.

Annotations

Annotations

All items may be prefixed with any number of annotations,

All items may be prefixed with any number of annotations,

which annotate the item with certain metadata.

which annotate the item with certain metadata.

The syntax for this is

The syntax for this is

@

@

annotation

annotation

,

,

where

where

annotation

annotation

 is the name of the annotation.

 is the name of the annotation.

Note that annotations may be imported (

Note that annotations may be imported (

use

use

d)

d)

or referred to with their fully-qualified path.

or referred to with their fully-qualified path.

They may also have an

They may also have an

argument_list

argument_list

 after the annotation.

 after the annotation.

Having no

Having no

argument_list

argument_list

 is equivalent to having an empty, 0-length

 is equivalent to having an empty, 0-length

argument_list

argument_list

.

.

The

The

argument_list

argument_list

 is a normal C*

 is a normal C*

argument_list

argument_list

,

,

except this one must be a compile-time constant.

except this one must be a compile-time constant.

The exact annotations available is still being decided,

The exact annotations available is still being decided,

but a few of them may be:

but a few of them may be:

@extern

@extern

@abi("

@abi("

abi

abi

")

")

, like

, like

@abi("C")

@abi("C")

 or the default

 or the default

@abi("C*")

@abi("C*")

@inline

@inline

@noinline

@noinline

@impl(

@impl(

type1

type1

,

,

...

...

,

,

typeN

typeN

)

)

@align(

@align(

alignment

alignment

)

)

@packed

@packed

@allow("

@allow("

warning_name

warning_name

")

")

@non_exhaustive

@non_exhaustive

For now, any available annotations will be implemented in the compiler,

For now, any available annotations will be implemented in the compiler,

though this could change in the future.

though this could change in the future.

Annotations can also be applied to the current module.

Annotations can also be applied to the current module.

In this case, they must appear before any other items in the module

In this case, they must appear before any other items in the module

and are prefixed with an extra

and are prefixed with an extra

@

@

, like

, like

@@allow("unused_variable")

@@allow("unused_variable")

.

.

use

use

 Declarations

 Declarations

use

use

 declarations are used to import items/declarations

 declarations are used to import items/declarations

from other modules, such as the standard library,

from other modules, such as the standard library,

external libraries, your own defined modules, or certain types.

external libraries, your own defined modules, or certain types.

Their syntax is

Their syntax is

use

use

= use

= use

path

path

,

,

where

where

path

path

=

=

identitifier

identitifier

.

.

path

path

.

.

That is, it imports a path to an item to be used

That is, it imports a path to an item to be used

without path qualification within the current scope.

without path qualification within the current scope.

path

path

 can also end in

 can also end in

.*

.*

. The

. The

*

*

 indicates all items,

 indicates all items,

so this imports all items from the parent path.

so this imports all items from the parent path.

let

let

s

s

A

A

let

let

 binds an expression to a name.

 binds an expression to a name.

That expression can either be a

That expression can either be a

value

value

 or a

 or a

type

type

.

.

Normally (in expressions),

Normally (in expressions),

let

let

 bindings can be shadowed,

 bindings can be shadowed,

but they cannot be at the module level.

but they cannot be at the module level.

Value

Value

let

let

s

s

For values, the syntax of this is

For values, the syntax of this is

let mut

let mut

?

?

identifier

identifier

:

:

type

type

=

=

expr

expr

;

;

?

?

.

.

The

The

mut

mut

 is optional.

 is optional.

If there is no

If there is no

mut

mut

,

,

then the variable is an immutable const.

then the variable is an immutable const.

If there is a

If there is a

mut

mut

, then it is a mutable global variable.

, then it is a mutable global variable.

In normal

In normal

let

let

 bindings,

 bindings,

expr

expr

 can be any C* expression,

 can be any C* expression,

and the

and the

:

:

type

type

 may be omitted where inferrable,

 may be omitted where inferrable,

but at the top, global level, the

but at the top, global level, the

expr

expr

 must be constant evaluated

 must be constant evaluated

and the

and the

type

type

 must be annotated.

 must be annotated.

The way to do the former is by using a

The way to do the former is by using a

const { ... }

const { ... }

 block,

 block,

which evaluates the block to a constant at compile time.

which evaluates the block to a constant at compile time.

A value

A value

let

let

 can also create zero, one, or multiple bindings

 can also create zero, one, or multiple bindings

at once through destructuring a pattern.

at once through destructuring a pattern.

If the pattern is tautological, i.e. the pattern always matches,

If the pattern is tautological, i.e. the pattern always matches,

then the bindings are always created.

then the bindings are always created.

If the pattern may not match, then the

If the pattern may not match, then the

let

let

 expression is a

 expression is a

bool

bool

 and may be used in

 and may be used in

if

if

s or

s or

match

match

es.

es.

In this case, the

In this case, the

let

let

 binding(s) are only created if the pattern matches and the

 binding(s) are only created if the pattern matches and the

let

let

 expression

 expression

evaluated to

evaluated to

true

true

.

.

Note that

Note that

match

match

ing a non-tautological

ing a non-tautological

let

let

 is possible

 is possible

but very un-idiomatic, since the binding could simply be done in the match itself.

but very un-idiomatic, since the binding could simply be done in the match itself.

Thus, it is normally used

Thus, it is normally used

with

with

if

if

.

.

See

See

pattern matching

pattern matching

 for more info on patterns and destructuring.

 for more info on patterns and destructuring.

Type

Type

let

let

s aka Type Aliases

s aka Type Aliases

For types, the syntax of this is

For types, the syntax of this is

let

let

identifier generic_parameter_list?

identifier generic_parameter_list?

=

=

type

type

;

;

.

.

The

The

type

type

 here may be any type expression that

 here may be any type expression that

a value would be annotated with.

a value would be annotated with.

For example, this includes named types, tuples, arrays, slices, function pointers.

For example, this includes named types, tuples, arrays, slices, function pointers.

See

See

below

below

 for info on the optional

 for info on the optional

generic_parameter_list

generic_parameter_list

.

.

Note that this only creates an alias of the type,

Note that this only creates an alias of the type,

but does not actually create a new type.

but does not actually create a new type.

For example, the type alias cannot be used as a namespace

For example, the type alias cannot be used as a namespace

for methods or enum variants.

for methods or enum variants.

For example, you could have these type aliases:

For example, you could have these type aliases:

let

let

Option

Option

<

<

T

T

>

>

=

=

Result

Result

<

<

T

T

,

,

(

(

)

)

>

>

;

;

let

let

Bool

Bool

=

=

Option

Option

<

<

(

(

)

)

>

>

;

;

let

let

Point

Point

=

=

(

(

f64

f64

,

,

f64

f64

)

)

;

;

fn

fn

 Function Declarations

 Function Declarations

fn

fn

 declarations declare functions.

 declarations declare functions.

The syntax of this is

The syntax of this is

fn

fn

identifier generic_parameter_list? parameter_list

identifier generic_parameter_list? parameter_list

:

:

type

type

=

=

expr

expr

.

.

The

The

identifier

identifier

 is the name of the function,

 is the name of the function,

the

the

generic_parameter_list

generic_parameter_list

 optional generic parameters,

 optional generic parameters,

the

the

parameter_list

parameter_list

 required normal (non-generic) parameters,

 required normal (non-generic) parameters,

the

the

type

type

 the

 the

return type

return type

 of the function,

 of the function,

and the

and the

expr

expr

 the

 the

return value

return value

 of the function.

 of the function.

Generic Parameters

Generic Parameters

A

A

generic_parameter_list

generic_parameter_list

 is delimited by

 is delimited by

<

<

>

>

 angle brackets

 angle brackets

and contains

and contains

,

,

 comma-separated generic parameters.

 comma-separated generic parameters.

A trailing comma is allowed.

A trailing comma is allowed.

Each generic parameter is a generic type or a generic constant

Each generic parameter is a generic type or a generic constant

*

*

.

.

If it is a generic constant, then it requires a

If it is a generic constant, then it requires a

:

:

type

type

 annotation.

 annotation.

Note that an empty

Note that an empty

generic_parameter_list

generic_parameter_list

 like

 like

<>

<>

is semantically distinct from no

is semantically distinct from no

generic_parameter_list

generic_parameter_list

 at all.

 at all.

Generic functions are monomorphized (see

Generic functions are monomorphized (see

generics

generics

 for more).

 for more).

Also, the

Also, the

<

<

>

>

 angle brackets as used for generics

 angle brackets as used for generics

has higher precedence than the

has higher precedence than the

<

<

>

>

 comparison operators.

 comparison operators.

Parameters

Parameters

A

A

parameter_list

parameter_list

 is delimited by

 is delimited by

(

(

)

)

 parentheses

 parentheses

and contains a

and contains a

,

,

 comma-separated parameters.

 comma-separated parameters.

A trailing comma is allowed.

A trailing comma is allowed.

Each parameter is a

Each parameter is a

let

let

 binding except without the

 binding except without the

let

let

 keyword.

 keyword.

However, in function declarations, the parameters must have

However, in function declarations, the parameters must have

:

:

type

type

 annotations.

 annotations.

Note that the similar

Note that the similar

function literals/values

function literals/values

 do not require this.

 do not require this.

Return Type

Return Type

The

The

:

:

type

type

 may be omitted if the type is the unit

 may be omitted if the type is the unit

()

()

 type.

 type.

Return Value

Return Value

The

The

expr

expr

 that the function returns may be any expression.

 that the function returns may be any expression.

However, normally it is a

However, normally it is a

{ ... }

{ ... }

 block,

 block,

which is necessary to include multiple statements in a function.

which is necessary to include multiple statements in a function.

The block (like any) may also have modifiers,

The block (like any) may also have modifiers,

like

like

try { ... }

try { ... }

 or

 or

const { ... }

const { ... }

.

.

Returning a

Returning a

const { ... }

const { ... }

 from a function in particular marks

 from a function in particular marks

that function as constant evaluatable

that function as constant evaluatable

*

*

.

.

Normally a

Normally a

;

;

 is required to end the return value,

 is required to end the return value,

except if a block is used as the return value,

except if a block is used as the return value,

then it does not require the

then it does not require the

;

;

.

.

A function return block is slightly special in that

A function return block is slightly special in that

return

return

 may be used within it, which is equivalent to a

 may be used within it, which is equivalent to a

break

break

 from that top-level function block.

 from that top-level function block.

If a function is annotated with

If a function is annotated with

@extern

@extern

,

,

then it must omit the

then it must omit the

 =

 =

 expr

 expr

 and end with a

 and end with a

;

;

.

.

In this case, only the function signature is specified

In this case, only the function signature is specified

and the

and the

@extern

@extern

ed function must be available as a function symbol at link time or else there will be a

ed function must be available as a function symbol at link time or else there will be a

compile error.

compile error.

Note that

Note that

@abi("C")

@abi("C")

 is usually specified along with

 is usually specified along with

@extern

@extern

because the default

because the default

@abi("C*")

@abi("C*")

 is unstable.

 is unstable.

In an

In an

@extern @abi("C")

@extern @abi("C")

 function,

 function,

the last (but not only) parameter may also be

the last (but not only) parameter may also be

...

...

,

,

which is a C varargs parameter and may be called with multiple arguments.

which is a C varargs parameter and may be called with multiple arguments.

This is only for C FFI for functions like

This is only for C FFI for functions like

syscall

syscall

,

,

which otherwise we’d need to implement with some assembly.

which otherwise we’d need to implement with some assembly.

Note that

Note that

@extern

@extern

 and

 and

@abi("C")

@abi("C")

 may also be specified for an entire module,

 may also be specified for an entire module,

in which case it applies to all items within that module.

in which case it applies to all items within that module.

Function Examples

Function Examples

For example, a non-generic function may look like this:

For example, a non-generic function may look like this:

fn

fn

foo

foo

(

(

_a

_a

:

:

i32

i32

,

,

 b

 b

:

:

usize

usize

,

,

 _c

 _c

:

:

String

String

)

)

:

:

usize

usize

=

=

 b

 b

*

*

 b

 b

;

;

or this:

or this:

fn

fn

string_len

string_len

(

(

c

c

:

:

String

String

)

)

:

:

usize

usize

=

=

{

{

 c

 c

.

.

len

len

(

(

)

)

}

}

and a generic function may look like this:

and a generic function may look like this:

fn

fn

equals

equals

<

<

T

T

>

>

(

(

a

a

:

:

T

T

,

,

 b

 b

:

:

T

T

)

)

:

:

bool

bool

=

=

{

{

 a

 a

.

.

equals

equals

(

(

b

b

)

)

}

}

struct

struct

 Declarations

 Declarations

struct

struct

 declarations declare a

 declarations declare a

struct

struct

 type,

 type,

which is a product type of its field types.

which is a product type of its field types.

All fields are always initialized.

All fields are always initialized.

The syntax of this is

The syntax of this is

struct

struct

identifier generic_parameter_list?

identifier generic_parameter_list?

{

{

fields

fields

}

}

,

,

where

where

identifier

identifier

 is the name of the

 is the name of the

struct

struct

 type,

 type,

generic_parameter_list

generic_parameter_list

 are its generic parameters,

 are its generic parameters,

and

and

fields

fields

 is a

 is a

,

,

 comma-separated list of fields.

 comma-separated list of fields.

A trailing comma is allowed.

A trailing comma is allowed.

Zero fields is also allowed.

Zero fields is also allowed.

The syntax of each field is a value

The syntax of each field is a value

let

let

 without the

 without the

let

let

 and the

 and the

 =

 =

 expr

 expr

;

;

.

.

Each field may also be prefixed by a

Each field may also be prefixed by a

publicity

publicity

 modifier.

 modifier.

Note that

Note that

mut

mut

 can be specified for these fields,

 can be specified for these fields,

in which case they are have interior mutability,

in which case they are have interior mutability,

i.e., they can be mutated through a non-

i.e., they can be mutated through a non-

mut

mut

 pointer to the struct.

 pointer to the struct.

By default,

By default,

struct

struct

s use

s use

@abi("C*")

@abi("C*")

,

,

which means their layout and alignment is unspecified and unstable.

which means their layout and alignment is unspecified and unstable.

This allows for fields to be rearranged for optimizations.

This allows for fields to be rearranged for optimizations.

If

If

@abi("C")

@abi("C")

 is specified, however, then the fields are

 is specified, however, then the fields are

layed out in memory in the order they appear in,

layed out in memory in the order they appear in,

and C alignment and padding rules are used.

and C alignment and padding rules are used.

enum

enum

 Declarations

 Declarations

enum

enum

 declarations declare an

 declarations declare an

enum

enum

 type,

 type,

which is a sum type of its variants.

which is a sum type of its variants.

That is, it is a discriminated union of variants,

That is, it is a discriminated union of variants,

each of which may have a value or not.

each of which may have a value or not.

A value of an

A value of an

enum

enum

 type is always one of its variants

 type is always one of its variants

and cannot be anything except those variants.

and cannot be anything except those variants.

The discriminant value is stored.

The discriminant value is stored.

The syntax of this is

The syntax of this is

enum

enum

identifier generic_parameter_list?

identifier generic_parameter_list?

{

{

variants

variants

}

}

,

,

where

where

identifier

identifier

 is the name of the

 is the name of the

struct

struct

 type,

 type,

generic_parameter_list

generic_parameter_list

 its generic parameters,

 its generic parameters,

and

and

variants

variants

 is a

 is a

,

,

 comma-separated list of variants.

 comma-separated list of variants.

A trailing comma is allowed.

A trailing comma is allowed.

Zero variants is also allowed, but note that this means that

Zero variants is also allowed, but note that this means that

the

the

enum

enum

 can never be instantiated because it has no variants.

 can never be instantiated because it has no variants.

Each variant may have a value or not.

Each variant may have a value or not.

If a variant does not have a value, then the syntax is

If a variant does not have a value, then the syntax is

identifier

identifier

.

.

By default, the discriminant value of each variant is chosen by the compiler,

By default, the discriminant value of each variant is chosen by the compiler,

but this may be overridden for each variant

but this may be overridden for each variant

if all the variants of the

if all the variants of the

enum

enum

 have no value.

 have no value.

The syntax for this is

The syntax for this is

identifier

identifier

=

=

expr

expr

,

,

where

where

expr

expr

 must be a

 must be a

const { ... }

const { ... }

 block

 block

evaluating to the integer to be used for the discriminant.

evaluating to the integer to be used for the discriminant.

If a variant does have a value, then the syntax is

If a variant does have a value, then the syntax is

identifier

identifier

(

(

type

type

)

)

.

.

Note that only one

Note that only one

type

type

 is allowed here.

 is allowed here.

If you wish to include multiple types,

If you wish to include multiple types,

simple use a tuple or

simple use a tuple or

struct

struct

 instead.

 instead.

All variants of an

All variants of an

enum

enum

 implicity use

 implicity use

pub

pub

 as their publicity modifier, which cannot be changed.

 as their publicity modifier, which cannot be changed.

By default,

By default,

enum

enum

s use

s use

@abi("C*")

@abi("C*")

,

,

which means their layout and alignment is unspecified and unstable.

which means their layout and alignment is unspecified and unstable.

This allows for the layout, including the discriminant, to be optimized.

This allows for the layout, including the discriminant, to be optimized.

Generally, though, the size of an

Generally, though, the size of an

enum

enum

 type is the

 type is the

size of the discriminant plus the size of the largest variant data.

size of the discriminant plus the size of the largest variant data.

If all the variants have no values,

If all the variants have no values,

then

then

@abi("C")

@abi("C")

 may be specified.

 may be specified.

In this case, you must also specify the size of the enum

In this case, you must also specify the size of the enum

by adding a

by adding a

:

:

type

type

 following the

 following the

identifier

identifier

 name,

 name,

where the

where the

type

type

 is a primitive integer type.

 is a primitive integer type.

In this case, all the variant discriminants must fit within that type.

In this case, all the variant discriminants must fit within that type.

The

The

@non_exhaustive

@non_exhaustive

 attribute can also be applied to an

 attribute can also be applied to an

enum

enum

 type,

 type,

in which case matching all the variants is no longer considered an exhaustive match,

in which case matching all the variants is no longer considered an exhaustive match,

and a catch-all

and a catch-all

_ =>

_ =>

 match arm is required.

 match arm is required.

union

union

 Declarations

 Declarations

*

*

union

union

 declarations declare a

 declarations declare a

union

union

 type,

 type,

which is a non-discriminated union similar to C

which is a non-discriminated union similar to C

union

union

s.

s.

It is meant for C FFI and thus defaults to

It is meant for C FFI and thus defaults to

@abi("C")

@abi("C")

.

.

The syntax of a

The syntax of a

union

union

 type declaration is

 type declaration is

the same as a

the same as a

struct

struct

 type declaration,

 type declaration,

except the

except the

struct

struct

 keyword is replaced by the

 keyword is replaced by the

union

union

 keyword.

 keyword.

The difference between the two is semantics.

The difference between the two is semantics.

The size of a union is the size of its largest field

The size of a union is the size of its largest field

and only one field may be active at any time.

and only one field may be active at any time.

Reading from an inactive field is undefined.

Reading from an inactive field is undefined.

impl

impl

 Blocks

 Blocks

impl

impl

 blocks define associated items for a type, which includes methods.

 blocks define associated items for a type, which includes methods.

The syntax for this is

The syntax for this is

impl

impl

generic_parameter_list? type

generic_parameter_list? type

{

{

items

items

}

}

,

,

where

where

type

type

 is the type you are defining associated items for,

 is the type you are defining associated items for,

generic_parameter_list

generic_parameter_list

 is any generic parameters needed for

 is any generic parameters needed for

type

type

, and

, and

items

items

 are items like

 are items like

those in a module.

those in a module.

Within an

Within an

impl

impl

 block, there is an implicit type alias defined:

 block, there is an implicit type alias defined:

let Self =

let Self =

type

type

;

;

, where

, where

type

type

 is the same type being

 is the same type being

impl

impl

emented.

emented.

Items defined within an

Items defined within an

impl

impl

 block are available

 block are available

through the type as if it were a module.

through the type as if it were a module.

The exception is methods, which may be called in another way as well.

The exception is methods, which may be called in another way as well.

A method is a function in an

A method is a function in an

impl

impl

 block whose first parameter

 block whose first parameter

is

is

self: Self

self: Self

.

.

The

The

: Self

: Self

 may be inferred (an exception for function declarations).

 may be inferred (an exception for function declarations).

To call a method, you may also call it using

To call a method, you may also call it using

.

.

 syntax on a value of the

 syntax on a value of the

impl

impl

type

type

.

.

That is,

That is,

value

value

.

.

method

method

(

(

args

args

)

)

 is syntactic sugar

 is syntactic sugar

for

for

type

type

.

.

method

method

(

(

value

value

,

,

args

args

)

)

 where

 where

value

value

:

:

type

type

.

.

Type System

Type System

C* types can be split up into three kinds of types:

C* types can be split up into three kinds of types:

primitive types

primitive types

compound types

compound types

built-in

built-in

user-defined

user-defined

Primitive Types

Primitive Types

The primitive types in C* are:

The primitive types in C* are:

the

the

()

()

 unit type

 unit type

integer types

integer types

float types

float types

the

the

char

char

acter type

acter type

()

()

 Unit Type

 Unit Type

bool

bool

 Type

 Type

bool

bool

 is the boolean type in C*,

 is the boolean type in C*,

except it is actually defined as an enum:

except it is actually defined as an enum:

@

@

allow

allow

(

(

"non_title_case_types"

"non_title_case_types"

)

)

enum

enum

bool

bool

{

{

false

false

=

=

const

const

{

{

0

0

}

}

,

,

true

true

=

=

const

const

{

{

1

1

}

}

,

,

}

}

Normally operator overloading is not allowed in C*.

Normally operator overloading is not allowed in C*.

The exception is

The exception is

bool

bool

, which defines the normal boolean operators.

, which defines the normal boolean operators.

See

See

operators

operators

 for details on them.

 for details on them.

Integer Types

Integer Types

Float Types

Float Types

char

char

acter Type

acter Type

Built-In Compound Types

Built-In Compound Types

The built-in compound types in C* are:

The built-in compound types in C* are:

reference types

reference types

slice types

slice types

array types

array types

pointer types

pointer types

tuple types

tuple types

function types

function types

Reference Types

Reference Types

In C*, you can have a reference to any type.

In C*, you can have a reference to any type.

That reference is either immutable or mutable.

That reference is either immutable or mutable.

There is one exception to this.

There is one exception to this.

type

type

.$bit_size_of()

.$bit_size_of()

 must be a multiple of 8.

 must be a multiple of 8.

That is, bit fields like

That is, bit fields like

u1

u1

 or

 or

i5

i5

 may not be referenced.

 may not be referenced.

The syntax for an immutable reference is

The syntax for an immutable reference is

type

type

&

&

,

,

and the syntax for a mutable reference is

and the syntax for a mutable reference is

type

type

&mut

&mut

.

.

An immutable reference can be created using the postfix

An immutable reference can be created using the postfix

.&

.&

 reference operator from either an immutable or mutable binding.

 reference operator from either an immutable or mutable binding.

A mutable reference can be created using the postfix

A mutable reference can be created using the postfix

.&mut

.&mut

 mutable reference operator, but only from a mutable binding.

 mutable reference operator, but only from a mutable binding.

Both immutable and mutable references can be dereferenced

Both immutable and mutable references can be dereferenced

using the postfix

using the postfix

.*

.*

 dereference operator.

 dereference operator.

This creates a temporary, unnamed, non-copied, immutable binding.

This creates a temporary, unnamed, non-copied, immutable binding.

A mutable reference can also be dereferenced mutably

A mutable reference can also be dereferenced mutably

using the postfix

using the postfix

.*mut

.*mut

 mutable dereference operator.

 mutable dereference operator.

This is the same as the

This is the same as the

.*

.*

 deference operator,

 deference operator,

except the resultant temporary is mutable.

except the resultant temporary is mutable.

Note that references can only be created by referencing an existing value.

Note that references can only be created by referencing an existing value.

Thus, null references are impossible to create.

Thus, null references are impossible to create.

Instead,

Instead,

Option

Option

 should be used, like

 should be used, like

Option<T&>

Option<T&>

.

.

Table of Contents

Table of Contents

Slice Types

Slice Types

In C*, you can also have a slice of a type, a contiguous collection of values of the same type.

In C*, you can also have a slice of a type, a contiguous collection of values of the same type.

The number

The number

of values is only known at runtime.

of values is only known at runtime.

The syntax for this is

The syntax for this is

type

type

[]

[]

.

.

A slice

A slice

T[]

T[]

 is similar to the struct

 is similar to the struct

struct

struct

SliceT

SliceT

{

{

 len

 len

:

:

usize

usize

,

,

 ptr

 ptr

:

:

T

T

&

&

,

,

}

}

but there are a few important differences.

but there are a few important differences.

Slices store their values inline.

Slices store their values inline.

They are thus unsized (i.e. dynamically sized) (

They are thus unsized (i.e. dynamically sized) (

.$size_of()

.$size_of()

 is non-

 is non-

const

const

 for them).

 for them).

However, references to slices are sized.

However, references to slices are sized.

They are so-called fat pointers, i.e. the length and raw pointer both constitute the reference.

They are so-called fat pointers, i.e. the length and raw pointer both constitute the reference.

Slices are the only fundamentally unsized types.

Slices are the only fundamentally unsized types.

Other compounds may only contain at most one unsized type,

Other compounds may only contain at most one unsized type,

and if they do, then they themselves are unsized.

and if they do, then they themselves are unsized.

Like slices, references to any unsized type are fat pointers.

Like slices, references to any unsized type are fat pointers.

To access the values of a slice,

To access the values of a slice,

the

the

[]

[]

 index operator may be used:

 index operator may be used:

value

value

[

[

index

index

]

]

,

,

where

where

index

index

 is a value of an unsigned integer type

 is a value of an unsigned integer type

and

and

value

value

 is a reference to a value of slice type.

 is a reference to a value of slice type.

Note that if you have a slice reference,

Note that if you have a slice reference,

it must be derefenced before indexing the slice directly.

it must be derefenced before indexing the slice directly.

Indexing a slice reference

Indexing a slice reference

T[]&

T[]&

 evaluates to

 evaluates to

Result<T&, IndexBoundsError>

Result<T&, IndexBoundsError>

,

,

and indexing a mutable slice reference

and indexing a mutable slice reference

T[]&mut

T[]&mut

 evaluates to

 evaluates to

Result<T&mut, IndexBoundsError>

Result<T&mut, IndexBoundsError>

.

.

Thus, it is always bounds checked.

Thus, it is always bounds checked.

To

To

panic

panic

 on an out-of-bounds index, simply

 on an out-of-bounds index, simply

.unwrap()

.unwrap()

the

the

Result

Result

 to get the

 to get the

T&

T&

 or

 or

T&mut

T&mut

,

,

which can then be dereference to access.

which can then be dereference to access.

To elimiate bounds checking, the

To elimiate bounds checking, the

Result

Result

 can instead be

 can instead be

.unwrap_unchecked()

.unwrap_unchecked()

 to get the

 to get the

T&

T&

 or

 or

T&mut

T&mut

without checking if there was an error,

without checking if there was an error,

thus eliminating the bounds check.

thus eliminating the bounds check.

Bounds checking can also be eliminated in many other safe ways.

Bounds checking can also be eliminated in many other safe ways.

Bounds checking is usually only a problem when it is done for many elements of a slice when it only

Bounds checking is usually only a problem when it is done for many elements of a slice when it only

needs to be done once.

needs to be done once.

For this case, multiple elements can be indexed using a slice pattern (see

For this case, multiple elements can be indexed using a slice pattern (see

patterns

patterns

),

),

or an iterator can be used, which will eliminate redundant bounds checking.

or an iterator can be used, which will eliminate redundant bounds checking.

Slices can also be sliced to yield a smaller view of the original slice.

Slices can also be sliced to yield a smaller view of the original slice.

This is also done by the same

This is also done by the same

[]

[]

 indexing operator,

 indexing operator,

except now the syntax is

except now the syntax is

value

value

[

[

range

range

]

]

,

,

where

where

range

range

 is a value of

 is a value of

range

range

 type.

 type.

Slicing a slice reference

Slicing a slice reference

T[]&

T[]&

 evaluates to

 evaluates to

Result<T[]&, SliceBoundsError>

Result<T[]&, SliceBoundsError>

,

,

and slicing a mutable slice reference

and slicing a mutable slice reference

T[]&mut

T[]&mut

 evaluates to

 evaluates to

Result<T[]&mut, SliceBoundsError>

Result<T[]&mut, SliceBoundsError>

.

.

Array Types

Array Types

In C*, there also arrays of a type,

In C*, there also arrays of a type,

which, like slices, are a contiguous collection of values of the same type,

which, like slices, are a contiguous collection of values of the same type,

but unlike slices, have a length known at compile time and not stored at runtime.

but unlike slices, have a length known at compile time and not stored at runtime.

Thus, they are sized unliked slices.

Thus, they are sized unliked slices.

The syntax for this type is

The syntax for this type is

type

type

[

[

size

size

]

]

,

,

where

where

size

size

 is a const of an unsized integer type.

 is a const of an unsized integer type.

Arrays can also be indexed and sliced,

Arrays can also be indexed and sliced,

but since the length is known at compile time,

but since the length is known at compile time,

if the index or range is also known at compile time,

if the index or range is also known at compile time,

then indexing and slicing always succeeds at runtime

then indexing and slicing always succeeds at runtime

(i.e. there is no

(i.e. there is no

Result

Result

) yielding another array,

) yielding another array,

or else is a compile error.

or else is a compile error.

The same syntax is used for indexing and slicing as is for slices.

The same syntax is used for indexing and slicing as is for slices.

To explicitly turn an array into a slice reference,

To explicitly turn an array into a slice reference,

.$cast<T[]>()

.$cast<T[]>()

 can be used.

 can be used.

Pointer Types

Pointer Types

In C*, you can have a pointer to any type,

In C*, you can have a pointer to any type,

That reference is either immutable or mutable.

That reference is either immutable or mutable.

There is one exception to this.

There is one exception to this.

type

type

.$bit_size_of()

.$bit_size_of()

 must be a multiple of 8.

 must be a multiple of 8.

That is, bit fields like

That is, bit fields like

u1

u1

 or

 or

i5

i5

 may not be referenced.

 may not be referenced.

The syntax for an immutable reference is

The syntax for an immutable reference is

type

type

*

*

,

,

and the syntax for a mutable reference is

and the syntax for a mutable reference is

type

type

*mut

*mut

.

.

A pointer can point to 0, 1, or any number of the pointee type.

A pointer can point to 0, 1, or any number of the pointee type.

A pointer can only be created from

A pointer can only be created from

an explicit cast from a

an explicit cast from a

reference type

reference type

and through the return type of an

and through the return type of an

@extern

@extern

 function.

 function.

It is just meant primarily for FFI.

It is just meant primarily for FFI.

A pointer cannot be dereferenced directly.

A pointer cannot be dereferenced directly.

It must be explicitly cast to one of these types to be dereferenced:

It must be explicitly cast to one of these types to be dereferenced:

a

a

reference

reference

 if it points to 1 pointee type

 if it points to 1 pointee type

a

a

slice

slice

 if it points to any number of pointee types of runtime-known amount

 if it points to any number of pointee types of runtime-known amount

an

an

array

array

 if it points to any number of pointee types of compile-time-known amount

 if it points to any number of pointee types of compile-time-known amount

None

None

 if it is a null pointer

 if it is a null pointer

Tuple Types

Tuple Types

In C*, you can also have a contiguous collection values of different types, i.e. a heterogenous array of

In C*, you can also have a contiguous collection values of different types, i.e. a heterogenous array of

sorts.

sorts.

This is called a tuple and its length must be known at compile time.

This is called a tuple and its length must be known at compile time.

The syntax for this type is

The syntax for this type is

(

(

types

types

)

)

,

,

where

where

types

types

 is a list of

 is a list of

,

,

 comma-separated

 comma-separated

type

type

 s.

 s.

A trailing

A trailing

,

,

 comma is allowed.

 comma is allowed.

However, in a single-element tuple, a trailing comma is required

However, in a single-element tuple, a trailing comma is required

to differentiate from general parentheses.

to differentiate from general parentheses.

The elements of a tuple can be accessed as fields like in a

The elements of a tuple can be accessed as fields like in a

struct

struct

.

.

In fact, a tuple is syntax sugar for an anonymous

In fact, a tuple is syntax sugar for an anonymous

struct

struct

with all public fields, though there is one caveat.

with all public fields, though there is one caveat.

The fields of a tuple are decimal integer literals (the index),

The fields of a tuple are decimal integer literals (the index),

which would not otherwise be allowed as an identifier for a field name.

which would not otherwise be allowed as an identifier for a field name.

Note that like

Note that like

struct

struct

s, tuple elements may be not layed out in memory in order.

s, tuple elements may be not layed out in memory in order.

Function Types

Function Types

The type of a function

The type of a function

fn(a: A, b: B): C

fn(a: A, b: B): C

 is

 is

fn(A, B): C

fn(A, B): C

.

.

The syntax for this is

The syntax for this is

fn

fn

tuple_type

tuple_type

:

:

type

type

,

,

where

where

tuple_type

tuple_type

 is a

 is a

tuple type

tuple type

 of the arguments

 of the arguments

and

and

type

type

 is the return type.

 is the return type.

Other postfix type modifiers (e.x.

Other postfix type modifiers (e.x.

*

*

,

,

&

&

,

,

[]

[]

)

)

applied at the end by default apply to the return type.

applied at the end by default apply to the return type.

To apply them to the entire function type,

To apply them to the entire function type,

the function type must be parenthesized,

the function type must be parenthesized,

like

like

(fn(A): B)&

(fn(A): B)&

.

.

User-Defined Compound Types

User-Defined Compound Types

The user-defined compound types in C* are:

The user-defined compound types in C* are:

struct

struct

 types

 types

enum

enum

 types

 types

union

union

 types

 types

They correspond to the item declarations of the same name.

They correspond to the item declarations of the same name.

struct

struct

 Types

 Types

See

See

struct

struct

 declarations

 declarations

 for more.

 for more.

enum

enum

 Types

 Types

See

See

enum

enum

 declarations

 declarations

 for more.

 for more.

union

union

 Types

 Types

See

See

union

union

 declarations

 declarations

 for more.

 for more.

Destructive Moves

Destructive Moves

Passing a variable (to a function, to another variable, etc.)

Passing a variable (to a function, to another variable, etc.)

are done by moving destructively.

are done by moving destructively.

That is, a simple

That is, a simple

memcpy

memcpy

 to the new location.

 to the new location.

There are no move constructors or anything like that.

There are no move constructors or anything like that.

Clones must be explicit with a

Clones must be explicit with a

.clone()

.clone()

 call for

 call for

Clone

Clone

 types (

 types (

@impl(Clone)

@impl(Clone)

).

).

The exception is

The exception is

Copy

Copy

 types (

 types (

@impl(Copy)

@impl(Copy)

),

),

for which clones are implicit.

for which clones are implicit.

Expressions

Expressions

Almost everything that is not a type in C* is an expression.

Almost everything that is not a type in C* is an expression.

This includes all control flow constructs.

This includes all control flow constructs.

Literals

Literals

C* Literals:

C* Literals:

unit

unit

bool

bool

int

int

float

float

char

char

string

string

struct

struct

tuple

tuple

array

array

enum

enum

union

union

function

function

closure

closure

range

range

Table of Contents

Table of Contents

Unit Literals

Unit Literals

In C*, every expression has a type.

In C*, every expression has a type.

Even statements that return “nothing”,

Even statements that return “nothing”,

they really return unit, or

they really return unit, or

()

()

.

.

The type of this unit literal is also called unit and written

The type of this unit literal is also called unit and written

()

()

 as well.

 as well.

Boolean Literals

Boolean Literals

There are two boolean literals of type

There are two boolean literals of type

bool

bool

:

:

true

true

 and

 and

false

false

.

.

These are actually enum variants of the

These are actually enum variants of the

enum bool

enum bool

.

.

See the

See the

bool

bool

 Type

 Type

.

.

Number Literals

Number Literals

In C*, number literals are composed of 4 (potentially optional) parts (in order):

In C*, number literals are composed of 4 (potentially optional) parts (in order):

the integral part

the integral part

the floating part (optional)

the floating part (optional)

the exponent (optional)

the exponent (optional)

the suffix (optional)

the suffix (optional)

For each of the integral part, floating part, and exponent,

For each of the integral part, floating part, and exponent,

they contain an optional sign, optional base,

they contain an optional sign, optional base,

and then a series of one or more digits.

and then a series of one or more digits.

Note that each part may specify a different base.

Note that each part may specify a different base.

The sign may be

The sign may be

+

+

 for positive numbers,

 for positive numbers,

-

-

 for negative numbers, or nothing, which defaults to

 for negative numbers, or nothing, which defaults to

+

+

.

.

The base and corresponding digits may be:

The base and corresponding digits may be:

Prefix

Prefix

Name

Name

Base

Base

Digits

Digits

none

none

decimal

decimal

10

10

0-9

0-9

0b

0b

binary

binary

2

2

0-1

0-1

0o

0o

octal

octal

8

8

0-8

0-8

0x

0x

hexadecimal

hexadecimal

16

16

0-9

0-9

,

,

A-F

A-F

The series of digits may also be separated by

The series of digits may also be separated by

any number of

any number of

_

_

 underscores between the digits.

 underscores between the digits.

It cannot begin or end with

It cannot begin or end with

_

_

 underscores, however.

 underscores, however.

If there is a floating part, then a decimal point

If there is a floating part, then a decimal point

.

.

separates it from the preceeding integral part.

separates it from the preceeding integral part.

The floating part may not have a sign and is always positive (in itself).

The floating part may not have a sign and is always positive (in itself).

If there is an exponent, then an

If there is an exponent, then an

e

e

 precedes it.

 precedes it.

The (optional) suffix contains the type of number and a bit size.

The (optional) suffix contains the type of number and a bit size.

The type of number may be:

The type of number may be:

u

u

: unsigned integer

: unsigned integer

i

i

: signed integer

: signed integer

f

f

: floating-point number

: floating-point number

The bit size is usually a literal power of 2 number,

The bit size is usually a literal power of 2 number,

but may be any positive integer for integer types.

but may be any positive integer for integer types.

It may also be a word whose bit size is architecture-dependent.

It may also be a word whose bit size is architecture-dependent.

For integers (

For integers (

u

u

 and

 and

i

i

), the common bit sizes are:

), the common bit sizes are:

8

8

16

16

32

32

64

64

128

128

size

size

 (bit size necessary to store an array index)

 (bit size necessary to store an array index)

ptr

ptr

 (bit size necessary to store a pointer

 (bit size necessary to store a pointer

or the difference between them)

or the difference between them)

For floats (

For floats (

f

f

), the bit sizes are:

), the bit sizes are:

16

16

32

32

64

64

128

128

These suffixes are the primitive number types.

These suffixes are the primitive number types.

Thus, in total, they are (with their C equivalent for FFI):

Thus, in total, they are (with their C equivalent for FFI):

C*

C*

C

C

u8

u8

uint8_t

uint8_t

i8

i8

int8_t

int8_t

u16

u16

uint16_t

uint16_t

i16

i16

int16_t

int16_t

u32

u32

uint32_t

uint32_t

i32

i32

int32_t

int32_t

u64

u64

uint64_t

uint64_t

i64

i64

int64_t

int64_t

u128

u128

unsigned __int128

unsigned __int128

i128

i128

__int128

__int128

usize

usize

size_t

size_t

isize

isize

ssize_t

ssize_t

uptr

uptr

uintptr_t

uintptr_t

iptr

iptr

intptr_t

intptr_t

f16

f16

_Float16

_Float16

f32

f32

float

float

f64

f64

double

double

f128

f128

_Float128

_Float128

Integers always use 2’s-complement

Integers always use 2’s-complement

and floats always are IEEE 754 floating point numbers.

and floats always are IEEE 754 floating point numbers.

If the type is a float, then it must contain

If the type is a float, then it must contain

a

a

.

.

 decimal point and a floating part.

 decimal point and a floating part.

If the type is an integer, then it must not.

If the type is an integer, then it must not.

Both can contain exponents, though for integers,

Both can contain exponents, though for integers,

the exponent (in scientific notation) cannot cause

the exponent (in scientific notation) cannot cause

the integer to exceed its finite size.

the integer to exceed its finite size.

If there is no suffix type, then the type is inferred.

If there is no suffix type, then the type is inferred.

If there is a

If there is a

.

.

 decimal point, then the type must be a float, and vice versa with integers.

 decimal point, then the type must be a float, and vice versa with integers.

If there is a

If there is a

-

-

 sign for the integral part,

 sign for the integral part,

then the type must be a float or a signed integer.

then the type must be a float or a signed integer.

To infer the bit size of the number,

To infer the bit size of the number,

general type inference is used.

general type inference is used.

If it cannot be unambiguously inferred,

If it cannot be unambiguously inferred,

then it is an error and the user must

then it is an error and the user must

explicitly specify the suffix type.

explicitly specify the suffix type.

Character Literals

Character Literals

In C*, character literals are of type

In C*, character literals are of type

char

char

 and are denoted with single

 and are denoted with single

''

''

 quotes.

 quotes.

They are

They are

unicode scalar values

unicode scalar values

,

,

which are slightly different from

which are slightly different from

unicode code points

unicode code points

.

.

https://www.unicode.org/glossary/#unicode_scalar_value
https://www.unicode.org/glossary/#code_point

This means they are always 32 bits on all architectures.

This means they are always 32 bits on all architectures.

For the actual char literal within the quotes,

For the actual char literal within the quotes,

it may be any unicode scalar value,

it may be any unicode scalar value,

but some characters need to be or may be escaped.

but some characters need to be or may be escaped.

The ascii values that must be escaped are:

The ascii values that must be escaped are:

\n

\n

: newline

: newline

\r

\r

: carriage return

: carriage return

\t

\t

: tab

: tab

\0

\0

: null char

: null char

\\

\\

: backslash

: backslash

\'

\'

: single quote

: single quote

Other ascii values may also be escaped as well using the syntax

Other ascii values may also be escaped as well using the syntax

\x7F

\x7F

,

,

where

where

7F

7F

 is the hexadecimal value of the ascii character,

 is the hexadecimal value of the ascii character,

from 0 to 127 (aka

from 0 to 127 (aka

0x7F

0x7F

).

).

Thus it may only be two digits.

Thus it may only be two digits.

Unicode scalar values can also be escaped with the syntax

Unicode scalar values can also be escaped with the syntax

\u{7FFF}

\u{7FFF}

.

.

The hexadecimal value is the 24-bit unicode character code.

The hexadecimal value is the 24-bit unicode character code.

Character literals can also be prefixed with a

Character literals can also be prefixed with a

b

b

:

:

b' '

b' '

,

,

in which case they are byte literals, i.e. a

in which case they are byte literals, i.e. a

u8

u8

.

.

The required ascii escapes are the same,

The required ascii escapes are the same,

though the

though the

\xFF

\xFF

 escape can now go up to 255 (aka

 escape can now go up to 255 (aka

0xFF

0xFF

),

),

and there may not be unicode escapes

and there may not be unicode escapes

(since it’s only a

(since it’s only a

u8

u8

 byte literal now).

 byte literal now).

String Literals

String Literals

There are multiple types of strings in C* owing to

There are multiple types of strings in C* owing to

the inherent complexity of string-handling without incurring overhead.

the inherent complexity of string-handling without incurring overhead.

The default string literal type is

The default string literal type is

String

String

, which is UTF-8 encoded and

, which is UTF-8 encoded and

wraps a

wraps a

*[u8]

*[u8]

.

.

This is a borrowed slice type and can’t change size.

This is a borrowed slice type and can’t change size.

To have a growable string, there is the

To have a growable string, there is the

StringBuf

StringBuf

 type,

 type,

but there is no special syntactic support for this owned string.

but there is no special syntactic support for this owned string.

String

String

s are made of

s are made of

char

char

s, unicode scalar values, when iterating

s, unicode scalar values, when iterating

(even though they are stored as

(even though they are stored as

*[u8]

*[u8]

).

).

Then there are byte strings, which are just

Then there are byte strings, which are just

*[u8]

*[u8]

 and

 and

do not have to be UTF-8 encoded.

do not have to be UTF-8 encoded.

String literals for this are prefixed with

String literals for this are prefixed with

b

b

, like

, like

b"hello"

b"hello"

.

.

The owning version of this is just a

The owning version of this is just a

Box<[u8]>

Box<[u8]>

(notice the unsized slice use), and

(notice the unsized slice use), and

the growable owning version is just a

the growable owning version is just a

Vec<u8>

Vec<u8>

.

.

Furthermore, for easier C FFI, there is also

Furthermore, for easier C FFI, there is also

CString

CString

 and

 and

CStringBuf

CStringBuf

,

,

which are explicitly null-terminated.

which are explicitly null-terminated.

All other string types are

All other string types are

not null-terminated, since they store their own length,

not null-terminated, since they store their own length,

which is way more efficient and safe.

which is way more efficient and safe.

Literal

Literal

CString

CString

s have a

s have a

c

c

 prefix, like

 prefix, like

c"/home"

c"/home"

.

.

And finally, there are format strings.

And finally, there are format strings.

Written

Written

f"n + m = {n + m}"

f"n + m = {n + m}"

,

,

they can interpolate expressions within

they can interpolate expressions within

{}

{}

.

.

Format, or

Format, or

f

f

-strings, don’t actually evaluate to a string,

-strings, don’t actually evaluate to a string,

but rather evaluate to an anonymous struct that has methods to

but rather evaluate to an anonymous struct that has methods to

convert it all at once into a real string.

convert it all at once into a real string.

Thus,

Thus,

f

f

-strings do not allocate.

-strings do not allocate.

For the character literals allowed in C* strings,

For the character literals allowed in C* strings,

that depends on the string type, which are:

that depends on the string type, which are:

Prefix

Prefix

Name

Name

Type

Type

none

none

string

string

String

String

b

b

byte-string

byte-string

*[u8]

*[u8]

r

r

raw-string

raw-string

type without the

type without the

r

r

c

c

c-string

c-string

CString

CString

f

f

f-string

f-string

anonymous struct with methods

anonymous struct with methods

All of these string prefixes can be combined with each other,

All of these string prefixes can be combined with each other,

except for

except for

r

r

 and

 and

f

f

, since f-strings require escaping,

, since f-strings require escaping,

which goes against raw strings.

which goes against raw strings.

For

For

r

r

 raw strings, no escapes are allowed.

 raw strings, no escapes are allowed.

For normal UTF-8 strings (which includes the

For normal UTF-8 strings (which includes the

r

r

,

,

c

c

, and

, and

f

f

 modifiers),

 modifiers),

the string must contain

the string must contain

character literals

character literals

, except there are no single

, except there are no single

'

'

 quotes anymore,

 quotes anymore,

double

double

"

"

 quotes delimit strings,

 quotes delimit strings,

and double quotes must escaped (

and double quotes must escaped (

\"

\"

) instead of single quotes (

) instead of single quotes (

\'

\'

).

).

Obviously the escapes don’t apply to raw

Obviously the escapes don’t apply to raw

r

r

 strings.

 strings.

For

For

f

f

-strings, braces must also be escaped:

-strings, braces must also be escaped:

\{

\{

 and

 and

\}

\}

,

,

since they are used to delimit expressions within the string.

since they are used to delimit expressions within the string.

And for

And for

c

c

-strings, they must not contains any

-strings, they must not contains any

\0

\0

 null characters.

 null characters.

For byte

For byte

b

b

 strings, the string must contains

 strings, the string must contains

byte literals

byte literals

.

.

The other string modifiers apply in the same way,

The other string modifiers apply in the same way,

and again, double quotes (

and again, double quotes (

\"

\"

) must be escaped instead of single quotes (

) must be escaped instead of single quotes (

\'

\'

).

).

Struct Literals

Struct Literals

Struct literals are literals that create a value of a struct type.

Struct literals are literals that create a value of a struct type.

That is, if we have a struct

That is, if we have a struct

Example

Example

:

:

struct

struct

Example

Example

{

{

 a

 a

:

:

u32

u32

,

,

 b

 b

:

:

f64

f64

,

,

 c

 c

:

:

String

String

,

,

}

}

then we can create a value of type

then we can create a value of type

Example

Example

 with the struct literal

 with the struct literal

Example

Example

{

{

 a

 a

:

:

0

0

,

,

 b

 b

:

:

0.0

0.0

,

,

 c

 c

:

:

""

""

,

,

}

}

That is, we first have the struct type name, an open

That is, we first have the struct type name, an open

{

{

 brace,

 brace,

the list of fields and their values, and then a closing

the list of fields and their values, and then a closing

}

}

 brace.

 brace.

The fields are separate by

The fields are separate by

,

,

 commas (a trailing

 commas (a trailing

,

,

 comma is allowed),

 comma is allowed),

and

and

:

:

 colons separate the field name and its value.

 colons separate the field name and its value.

If the name of a field and its value expression are the same,

If the name of a field and its value expression are the same,

then the

then the

:

:

 colon and value may be omitted, like so:

 colon and value may be omitted, like so:

let

let

 c

 c

=

=

""

""

;

;

Example

Example

{

{

 a

 a

:

:

0

0

,

,

 b

 b

:

:

0.0

0.0

,

,

 c

 c

,

,

}

}

Furthermore,

Furthermore,

..

..

 can be used to spread the fields of another struct into a struct literal, like so:

 can be used to spread the fields of another struct into a struct literal, like so:

struct

struct

SmallExample

SmallExample

{

{

 a

 a

:

:

u32

u32

,

,

 b

 b

:

:

f64

f64

,

,

}

}

let

let

 x

 x

=

=

SmallExample

SmallExample

{

{

 a

 a

:

:

0

0

,

,

 b

 b

:

:

0.0

0.0

,

,

}

}

;

;

Example

Example

{

{

..

..

x

x

,

,

 c

 c

:

:

""

""

,

,

}

}

Note that the struct type does not have to be the same,

Note that the struct type does not have to be the same,

but the fields that are being spread must match between the struct types in name and type.

but the fields that are being spread must match between the struct types in name and type.

Tuple Literals

Tuple Literals

C* has tuples, but they are simply shorthand and syntax sugar for structs.

C* has tuples, but they are simply shorthand and syntax sugar for structs.

A tuple type is a finite, heterogenous list of types,

A tuple type is a finite, heterogenous list of types,

such as

such as

(i32, usize, String)

(i32, usize, String)

,

,

and its field names are unsigned integers (

and its field names are unsigned integers (

.0

.0

,

,

.1

.1

, and

, and

.2

.2

 for this tuple).

 for this tuple).

This is the only difference between tuples and desugaring them to structs:

This is the only difference between tuples and desugaring them to structs:

struct field names must be

struct field names must be

valid C* identifiers

valid C* identifiers

,

,

but tuple field names begin with digits.

but tuple field names begin with digits.

Otherwise, they are exactly the same.

Otherwise, they are exactly the same.

The tuple type with 0 element types,

The tuple type with 0 element types,

()

()

, is also valid,

, is also valid,

but it is equivalent to the

but it is equivalent to the

()

()

 unit type.

 unit type.

Tuple literals mirror tuple types.

Tuple literals mirror tuple types.

The field names are unnamed (unlike

The field names are unnamed (unlike

struct literals

struct literals

),

),

so it is just a

so it is just a

,

,

 comma separated list of values of any type delimited by open

 comma separated list of values of any type delimited by open

(

(

 and close

 and close

)

)

parentheses.

parentheses.

There may be a trailing

There may be a trailing

,

,

 comma separator,

 comma separator,

and for 1-element tuple literals, this trailing

and for 1-element tuple literals, this trailing

,

,

 comma

 comma

is required to distinguish it from using

is required to distinguish it from using

()

()

 parentheses for associating general expressions.

 parentheses for associating general expressions.

Array Literals

Array Literals

In C*, arrays are finite, homogenous lists of a single type.

In C*, arrays are finite, homogenous lists of a single type.

There are delimited by open

There are delimited by open

[

[

 and close

 and close

]

]

 brackets,

 brackets,

as opposed to

as opposed to

()

()

 parentheses for tuples.

 parentheses for tuples.

Their values are also

Their values are also

,

,

 comma separated.

 comma separated.

Trailing

Trailing

,

,

 commas are allowed but never required,

 commas are allowed but never required,

unlike in 1-element tuple literals.

unlike in 1-element tuple literals.

Array types are denoted

Array types are denoted

[T; N]

[T; N]

, where

, where

T

T

 is any type

 is any type

and

and

N: usize

N: usize

.

.

Enum Literals

Enum Literals

In an enum, such as

In an enum, such as

enum

enum

Example

Example

{

{

A

A

,

,

B

B

(

(

i32

i32

)

)

,

,

}

}

there are two possible forms of enum literals

there are two possible forms of enum literals

depending on if the variant has any data or not.

depending on if the variant has any data or not.

In the case of the variant

In the case of the variant

A

A

, which has no data attached,

, which has no data attached,

the enum literal

the enum literal

Example.A

Example.A

 (or just

 (or just

A

A

 if

 if

A

A

 is imported)

 is imported)

is a value of type

is a value of type

Example

Example

.

.

In the case of the variant

In the case of the variant

B

B

, which has data attached,

, which has data attached,

the enum literal

the enum literal

Example.B

Example.B

 is a function of type

 is a function of type

fn(i32): Example

fn(i32): Example

that returns the

that returns the

B

B

 variant with the given data attached.

 variant with the given data attached.

Thus,

Thus,

Example.B(0)

Example.B(0)

 or

 or

Example.B(100)

Example.B(100)

 is normally written,

 is normally written,

though the function can also be referred to by itself.

though the function can also be referred to by itself.

Union Literals

Union Literals

Union literals are the same as struct literals

Union literals are the same as struct literals

except only one field may be specified.

except only one field may be specified.

Function Literals

Function Literals

In C*, there is very little difference between function declarations

In C*, there is very little difference between function declarations

and function literals (using them as values).

and function literals (using them as values).

In function declarations, they are written

In function declarations, they are written

PUBLICITY

PUBLICITY

fn

fn

FUNC_NAME

FUNC_NAME

GENERIC_ARGS

GENERIC_ARGS

ARGS

ARGS

=

=

BODY_EXPRESSION

BODY_EXPRESSION

such as

such as

fn

fn

foo

foo

<

<

T

T

>

>

(

(

t

t

:

:

T

T

)

)

:

:

T

T

=

=

{

{

 t

 t

*

*

 t

 t

}

}

In function literals, there is no more publicity modifier

In function literals, there is no more publicity modifier

and the function name is optional,

and the function name is optional,

since it usually specified as the let binding instead if named:

since it usually specified as the let binding instead if named:

fn

fn

<

<

T

T

>

>

(

(

t

t

:

:

T

T

)

)

:

:

T

T

=

=

{

{

 t

 t

*

*

 t

 t

}

}

Furthermore, type inference of function arguments and return type

Furthermore, type inference of function arguments and return type

is allowed for function literals, since they cannot be public declarations.

is allowed for function literals, since they cannot be public declarations.

If the types are ambiguous, though, type annotations are still required of course.

If the types are ambiguous, though, type annotations are still required of course.

The type of a function literal is unique and opaque,

The type of a function literal is unique and opaque,

but can be casted to a function pointer like

but can be casted to a function pointer like

fn(T): T

fn(T): T

.

.

Note that annotations like

Note that annotations like

@abi("C")

@abi("C")

 can still be applied

 can still be applied

to function literals just like function declarations.

to function literals just like function declarations.

Closure Literals

Closure Literals

Closure literals are very similar to function literals—in fact,

Closure literals are very similar to function literals—in fact,

they are a superset of function literals—except they also have a closure context.

they are a superset of function literals—except they also have a closure context.

That is, they can “enclose” over values in the current scope.

That is, they can “enclose” over values in the current scope.

The syntax for a closure literal is simply a normal function literal with an anonymous struct literal, the

The syntax for a closure literal is simply a normal function literal with an anonymous struct literal, the

closure context, following the

closure context, following the

fn

fn

.

.

The closure context is an anonymous struct literal

The closure context is an anonymous struct literal

in that it has no named struct type. That is, instead of

in that it has no named struct type. That is, instead of

Example

Example

{

{

a

a

:

:

0

0

,

,

 b

 b

:

:

0.0

0.0

,

,

 c

 c

:

:

""

""

}

}

it would just be

it would just be

{

{

a

a

:

:

0

0

,

,

 b

 b

:

:

0.0

0.0

,

,

 c

 c

:

:

""

""

}

}

The fields in this closure context struct

The fields in this closure context struct

are then immediately available within the function body

are then immediately available within the function body

as if they were immediately destructured.

as if they were immediately destructured.

The type of a closure literal is unique and opaque.

The type of a closure literal is unique and opaque.

Unlike function literals (in which there is no context),

Unlike function literals (in which there is no context),

the type of closure literals cannot be casted to a bare function pointer.

the type of closure literals cannot be casted to a bare function pointer.

The closure function corresponds to a method on the closure context struct,

The closure function corresponds to a method on the closure context struct,

and as such, cannot be casted to a function pointer

and as such, cannot be casted to a function pointer

since there is an implicit

since there is an implicit

*Self

*Self

 argument.

 argument.

Thus, the only way to accept a closure as an argument is by using generics,

Thus, the only way to accept a closure as an argument is by using generics,

which ensures there is no pointer indirection

which ensures there is no pointer indirection

and the closure can be inlined into the call site.

and the closure can be inlined into the call site.

Range Literals

Range Literals

Range literals denote an integer range.

Range literals denote an integer range.

There are a few different forms of ranges,

There are a few different forms of ranges,

which we will define in terms of set interval notation

which we will define in terms of set interval notation

as to what integers the range includes.

as to what integers the range includes.

Here,

Here,

n

n

 refers to the parent length that the range applies to.

 refers to the parent length that the range applies to.

Range

Range

Interval

Interval

a..b

a..b

[a, b)

[a, b)

a..

a..

[a, n)

[a, n)

..b

..b

[0, b)

[0, b)

..

..

[0, n)

[0, n)

a..=b

a..=b

[a, b]

[a, b]

..=b

..=b

[0, b]

[0, b]

a..+b

a..+b

[a, a + b)

[a, a + b)

a..+=b

a..+=b

[a, a + b]

[a, a + b]

a..-b

a..-b

[a, n - b)

[a, n - b)

a..-=b

a..-=b

[a, n - b]

[a, n - b]

..-b

..-b

[0, n - b)

[0, n - b)

..-=b

..-=b

[a, n - b]

[a, n - b]

Function Calls

Function Calls

Method Calls

Method Calls

Blocks

Blocks

Control Flow

Control Flow

Pattern Matching

Pattern Matching

Conditionals

Conditionals

match

match

if

if

if

if

 evaluates a block conditionally.

 evaluates a block conditionally.

The syntax for this is

The syntax for this is

expr

expr

.if

.if

block

block

.

.

It is syntax sugar for a

It is syntax sugar for a

match

match

:

:

expr

expr

.match { true =>

.match { true =>

block

block

, false => (), }

, false => (), }

else

else

An

An

else

else

 may immediately follow an

 may immediately follow an

if

if

 expression,

 expression,

in which case the whole thing becomes an if-else expression.

in which case the whole thing becomes an if-else expression.

The syntax for this is

The syntax for this is

expr

expr

.if

.if

block

block

else

else

 block

 block

.

.

It is syntax sugar for a

It is syntax sugar for a

match

match

:

:

expr

expr

.match { true =>

.match { true =>

block

block

, false =>

, false =>

block

block

, }

, }

,

,

where the

where the

block

block

 are in the same order as in the if-else expression.

 are in the same order as in the if-else expression.

Normally the

Normally the

expr

expr

 following an

 following an

else

else

 must be a

 must be a

block

block

,

,

but it can also be another if expression.

but it can also be another if expression.

Labels

Labels

Loops

Loops

while

while

for

for

A

A

for

for

 loop allows you to iterate through an iterator.

 loop allows you to iterate through an iterator.

An iterator is just a type

An iterator is just a type

Iter

Iter

 that has

 that has

a

a

fn next(self: Self) -> Option<T>

fn next(self: Self) -> Option<T>

 method,

 method,

where

where

T

T

 is the element type we are iterating over.

 is the element type we are iterating over.

The syntax for this is

The syntax for this is

expr

expr

.for

.for

 binding block

 binding block

,

,

where the

where the

expr

expr

 is a value that has

 is a value that has

a

a

.into_iter()

.into_iter()

 method returning the iterator,

 method returning the iterator,

the

the

binding

binding

 is the binding for the element name,

 is the binding for the element name,

and

and

block

block

 is the block of the

 is the block of the

for

for

 loop.

 loop.

It is syntax sugar for:

It is syntax sugar for:

{ let iter =

{ let iter =

expr

expr

.into_iter(); true.while { let

.into_iter(); true.while { let

binding

binding

= iter.next().?;

= iter.next().?;

block

block

 } }

 } }

defer

defer

Error Handling

Error Handling

try

try

Panicking

Panicking

In C*, all fallible functions and operations return either

In C*, all fallible functions and operations return either

Result

Result

 or

 or

Option

Option

 to indicate an error or exceptional case.

 to indicate an error or exceptional case.

Normally errors are handled by bubbling up the error with

Normally errors are handled by bubbling up the error with

.?

.?

or handling the error directly in a

or handling the error directly in a

match

match

 or other

 or other

Option

Option

/

/

Result

Result

 methods.

 methods.

However, in certain cases you either don’t care about

However, in certain cases you either don’t care about

handling the exceptional case or you can determine that

handling the exceptional case or you can determine that

the error case is statically impossible but the compiler cannot.

the error case is statically impossible but the compiler cannot.

In this case, you may wish to simply get the

In this case, you may wish to simply get the

Some

Some

 or

 or

Ok

Ok

 value

 value

out of the

out of the

Option

Option

 or

 or

Result

Result

.

.

This can be done by panicking on a

This can be done by panicking on a

None

None

 or

 or

Err

Err

.

.

Panicking in C* means the program will immediately print out an error message

Panicking in C* means the program will immediately print out an error message

and then

and then

abort

abort

, i.e., calls the libc function

, i.e., calls the libc function

abort

abort

.

.

No cleanup or unwinding is done in this case.

No cleanup or unwinding is done in this case.

In particular,

In particular,

defer

defer

s on the stack are not run because the stack is not unwound.

s on the stack are not run because the stack is not unwound.

Because of this, panicking should only be done under extreme circumstances,

Because of this, panicking should only be done under extreme circumstances,

such as statically determining the error case is impossible.

such as statically determining the error case is impossible.

If you want unwinding and

If you want unwinding and

defer

defer

s to run,

s to run,

simply use

simply use

.?

.?

 to bubble up the errors.

 to bubble up the errors.

The way to panic is to call

The way to panic is to call

.unwrap()

.unwrap()

 on a

 on a

Result

Result

.

.

This is the only fundamental way to panic in C*.

This is the only fundamental way to panic in C*.

All other functions that panic or may panic ultimately call

All other functions that panic or may panic ultimately call

Result.unwrap

Result.unwrap

.

.

For example,

For example,

Option.unwrap

Option.unwrap

 converts the

 converts the

Option

Option

into a

into a

Result

Result

 and then calls

 and then calls

.unwrap()

.unwrap()

 on it.

 on it.

The same is true for

The same is true for

Option.expect

Option.expect

 and

 and

Result.expect

Result.expect

,

,

which allow you to set an error message to be printed.

which allow you to set an error message to be printed.

The error message that

The error message that

Result.unwrap

Result.unwrap

 prints to

 prints to

stderr

stderr

 is implementation defined,

 is implementation defined,

but it calls

but it calls

E.error_message

E.error_message

 to obtain the error message of the

 to obtain the error message of the

e: E

e: E

 in

 in

Err(e)

Err(e)

.

.

Thus, to

Thus, to

.unwrap()

.unwrap()

 a

 a

Result<T, E>

Result<T, E>

,

,

E

E

 must have such a

 must have such a

.error_message()

.error_message()

 method.

 method.

It may also print a (function call) stack trace or error return trace,

It may also print a (function call) stack trace or error return trace,

but that is not guaranteed.

but that is not guaranteed.

There is one other option as well besides panicking.

There is one other option as well besides panicking.

If you know for certain that the error case is impossible,

If you know for certain that the error case is impossible,

you may call

you may call

Result.unwrap_unchecked()

Result.unwrap_unchecked()

.

.

This does not panic if the

This does not panic if the

Result

Result

 is

 is

Err

Err

,

,

but it is undefined behavior.

but it is undefined behavior.

Operators

Operators

Operator

Operator

Arity

Arity

In-

In-

Place

Place

Type

Type

Description

Description

Example

Example

+

+

binary

binary

no

no

arithmetic

arithmetic

addition

addition

2 + 2

2 + 2

,

,

4.0 +

4.0 +

2.0

2.0

-

-

binary

binary

no

no

arithmetic

arithmetic

subtraction

subtraction

2 - 2

2 - 2

,

,

4.2 - 2.2

4.2 - 2.2

*

*

binary

binary

no

no

arithmetic

arithmetic

multiplication

multiplication

2 * 2

2 * 2

,

,

4.0 * 2.0

4.0 * 2.0

/

/

binary

binary

no

no

arithmetic

arithmetic

division

division

2 / 2

2 / 2

,

,

4.0 / 2.0

4.0 / 2.0

%

%

binary

binary

no

no

arithmetic

arithmetic

modulus

modulus

2 % 2

2 % 2

-

-

unary

unary

no

no

arithmetic

arithmetic

negation

negation

-a

-a

==

==

binary

binary

no

no

relational

relational

equal to

equal to

a == 2

a == 2

!=

!=

binary

binary

no

no

relational

relational

not equal to

not equal to

a != 2

a != 2

>

>

binary

binary

no

no

relational

relational

greater than

greater than

a > 2

a > 2

<

<

binary

binary

no

no

relational

relational

less than

less than

a < 2

a < 2

>=

>=

binary

binary

no

no

relational

relational

greater than or equal

greater than or equal

to

to

a >= 2

a >= 2

<=

<=

binary

binary

no

no

relational

relational

less than or equal to

less than or equal to

a <= 2

a <= 2

&&

&&

binary

binary

no

no

logical

logical

and

and

a && b

a && b

||

||

binary

binary

no

no

logical

logical

or

or

a || b

a || b

!

!

,

,

.!

.!

unary

unary

no

no

logical

logical

not

not

!a

!a

&

&

binary

binary

no

no

bitwise

bitwise

and

and

|

|

binary

binary

no

no

bitwise

bitwise

or

or

^

^

binary

binary

no

no

bitwise

bitwise

xor

xor

~

~

,

,

.~

.~

unary

unary

no

no

bitwise

bitwise

not

not

<<

<<

binary

binary

no

no

bitwise

bitwise

left shift

left shift

>>

>>

binary

binary

no

no

bitwise

bitwise

right shift

right shift

[]

[]

binary

binary

no

no

indexing

indexing

index a slice

index a slice

a[1]

a[1]

[]

[]

binary

binary

no

no

indexing

indexing

index a slice

index a slice

a[1]

a[1]

+=

+=

binary

binary

yes

yes

arithmetic

arithmetic

addition

addition

-=

-=

binary

binary

yes

yes

arithmetic

arithmetic

subtraction

subtraction

*=

*=

binary

binary

yes

yes

arithmetic

arithmetic

multiplication

multiplication

/=

/=

binary

binary

yes

yes

arithmetic

arithmetic

division

division

%=

%=

binary

binary

yes

yes

arithmetic

arithmetic

modulus

modulus

&&=

&&=

binary

binary

yes

yes

logical

logical

and

and

||=

||=

binary

binary

yes

yes

logical

logical

or

or

&=

&=

binary

binary

yes

yes

bitwise

bitwise

and

and

|=

|=

binary

binary

yes

yes

bitwise

bitwise

or

or

^=

^=

binary

binary

yes

yes

bitwise

bitwise

xor

xor

<<=

<<=

binary

binary

yes

yes

bitwise

bitwise

left shift

left shift

>>=

>>=

binary

binary

yes

yes

bitwise

bitwise

right shift

right shift

++

++

unary

unary

yes

yes

arithmetic

arithmetic

increment

increment

--

--

unary

unary

yes

yes

arithmetic

arithmetic

decrement

decrement

.&

.&

unary

unary

no

no

reference

reference

reference

reference

.&mut

.&mut

unary

unary

no

no

reference

reference

mutable reference

mutable reference

.*

.*

unary

unary

no

no

reference

reference

dereference

dereference

.*mut

.*mut

unary

unary

no

no

reference

reference

mutable dereference

mutable dereference

.?

.?

unary

unary

no

no

control

control

flow

flow

try

try

Operator

Operator

Arity

Arity

In-

In-

Place

Place

Type

Type

Description

Description

Example

Example

Arithmetic operators operate on expressions of the same number type

Arithmetic operators operate on expressions of the same number type

and evaluate to the same number type as well.

and evaluate to the same number type as well.

.$cast<>()

.$cast<>()

 can be used here when the operands are of different type.

 can be used here when the operands are of different type.

%

%

,

,

++

++

, and

, and

--

--

 are not allowed for floats.

 are not allowed for floats.

Relational operators operate on expressions of the same type

Relational operators operate on expressions of the same type

and evaluate to a

and evaluate to a

bool

bool

.

.

Logical operators operate on

Logical operators operate on

bool

bool

 expressions and evaluate to a

 expressions and evaluate to a

bool

bool

.

.

Bitwise operators operate on expressions of the same number type

Bitwise operators operate on expressions of the same number type

and evaluate to the same number type as well.

and evaluate to the same number type as well.

The except is the shift operators:

The except is the shift operators:

<<

<<

,

,

>>

>>

,

,

<<=

<<=

, and

, and

>>=

>>=

,

,

whose right operand is the minimum unsigned integer type

whose right operand is the minimum unsigned integer type

that may be shifted by (i.e. the bit size of the left operand).

that may be shifted by (i.e. the bit size of the left operand).

Otherwise it would be UB.

Otherwise it would be UB.

For example, if the left operand is

For example, if the left operand is

u64

u64

, then the right operand is

, then the right operand is

u6

u6

.

.

For signed integer types as the left operand,

For signed integer types as the left operand,

the sign bit is extended when shifting.

the sign bit is extended when shifting.

For indexing operators, see

For indexing operators, see

slices

slices

and

and

arrays

arrays

, which may be indexed.

, which may be indexed.

In-place

In-place

operator

operator

=

=

s evalute to

s evalute to

()

()

.

.

Generics

Generics

Generics in C* are always monomorphized.

Generics in C* are always monomorphized.

Constant Evaluation

Constant Evaluation

Builtin Functions

Builtin Functions

Lang Types

Lang Types

Lang types are standard library types that the compiler knows about and may use.

Lang types are standard library types that the compiler knows about and may use.

They are:

They are:

Option

Option

Result

Result

For example, they are used for the

For example, they are used for the

.?

.?

 try operator.

 try operator.

Option

Option

enum

enum

Option

Option

<

<

T

T

>

>

{

{

Some

Some

(

(

T

T

)

)

,

,

None

None

,

,

}

}

Result

Result

enum

enum

Result

Result

<

<

T

T

,

,

E

E

>

>

{

{

Ok

Ok

(

(

T

T

)

)

,

,

Err

Err

(

(

E

E

)

)

,

,

}

}

4. Project Plan

4. Project Plan

Our team originally planned to have weekly meetings with most of our communication over Discord. We

Our team originally planned to have weekly meetings with most of our communication over Discord. We

began by specifying our goals for the project and how we would accomplish them. As we were creating

began by specifying our goals for the project and how we would accomplish them. As we were creating

the language, we realized we were overambitious without the amount of functionalities we wanted to

the language, we realized we were overambitious without the amount of functionalities we wanted to

include. This led to us having a session cutting down unnecessary features that could be implemented

include. This led to us having a session cutting down unnecessary features that could be implemented

later. We began by creating each component of the compiler separately. We began by creating the

later. We began by creating each component of the compiler separately. We began by creating the

scanner, then the ast, then the parser and so on. Although this may be a feasible way to approach the

scanner, then the ast, then the parser and so on. Although this may be a feasible way to approach the

project, we realized that this was not the most efficient nor was it the easiest way to create the language.

project, we realized that this was not the most efficient nor was it the easiest way to create the language.

We found that it was better to attack the problem functionality by functionality which meant having the

We found that it was better to attack the problem functionality by functionality which meant having the

end-to-end setup and then slowly incorporating more features. We found that this was also an easier way

end-to-end setup and then slowly incorporating more features. We found that this was also an easier way

to assign tasks and test the correctness of our compiler. Because of team and time management

to assign tasks and test the correctness of our compiler. Because of team and time management

breakdowns, we decided to separate our project and complete it individually. Due to the limited time and

breakdowns, we decided to separate our project and complete it individually. Due to the limited time and

the bad communication between our team members I decided to utilize MicroC as a starting off point so

the bad communication between our team members I decided to utilize MicroC as a starting off point so

that I could then add and modify it to the features that Cstar has. When adding each new feature, I tested

that I could then add and modify it to the features that Cstar has. When adding each new feature, I tested

before merging with the other features. All the test cases are added to the testing suite which

before merging with the other features. All the test cases are added to the testing suite which

automatically tests using the test script.

automatically tests using the test script.

The software develompment tools used are as follows:

The software develompment tools used are as follows:

Libraries and Languages: Ocaml Version 4.11.1 and LLVM Version 10.0.0

Libraries and Languages: Ocaml Version 4.11.1 and LLVM Version 10.0.0

Software: Visual Studio Code

Software: Visual Studio Code

OS: Ubuntu 20.04

OS: Ubuntu 20.04

Original Roles and Responsibilities

Original Roles and Responsibilities

Name

Name

Role

Role

Shannon Jin

Shannon Jin

Manager

Manager

Khyber Sen

Khyber Sen

Language Guru

Language Guru

Ryan Lee

Ryan Lee

System Architect

System Architect

Joanne Wang

Joanne Wang

Tester

Tester

5. Architectural Design

5. Architectural Design

The block diagram for the Cstar compiler is shown below:

The block diagram for the Cstar compiler is shown below:

Scanner - scanner.mll

Scanner - scanner.mll

The scanner takes in a Cstar source program of ASCII inputs and generates tokens for identifiers,

The scanner takes in a Cstar source program of ASCII inputs and generates tokens for identifiers,

keywords, operators, and values. The commenting definition and logic is done through this step and

keywords, operators, and values. The commenting definition and logic is done through this step and

ignores whitespace. The tokens are then sent the parser.

ignores whitespace. The tokens are then sent the parser.

Parser - parser.mly

Parser - parser.mly

The parser takes in the generated tokens from the scanner and creates an abstract syntax tree (AST)

The parser takes in the generated tokens from the scanner and creates an abstract syntax tree (AST)

which defines the context-free grammar for Cstar. The parser is implemented by Ocamlyacc and parses

which defines the context-free grammar for Cstar. The parser is implemented by Ocamlyacc and parses

the token stream into a list which is then used match using the grammar.

the token stream into a list which is then used match using the grammar.

Semantic Checker -semant.ml

Semantic Checker -semant.ml

The semantic checker traverses the AST and converts it into a semantically checked abstract syntax tree

The semantic checker traverses the AST and converts it into a semantically checked abstract syntax tree

(SAST). The SAST has generally the same structure as the AST but with a type associated with it. It checks

(SAST). The SAST has generally the same structure as the AST but with a type associated with it. It checks

whether the source code is semantically correct including errors like duplicates or function declarations.

whether the source code is semantically correct including errors like duplicates or function declarations.

Code Generator -

Code Generator -

codegen.ml

codegen.ml

http://codegen.ml

fn

fn

int

int

main

main

(

(

)

)

{

{

if

if

(

(

false

false

)

)

print

print

(

(

20

20

)

)

;

;

print

print

(

(

10

10

)

)

;

;

return

return

0

0

;

;

}

}

The code generator takes in the SAST and generates code the LLVM IR. It traverses the SAST and turns

The code generator takes in the SAST and generates code the LLVM IR. It traverses the SAST and turns

each node into LLVM code in order to build the LLVM module. It also generates the code necessary to

each node into LLVM code in order to build the LLVM module. It also generates the code necessary to

initialize a function instance. It is written using the OCaml LLVM library.

initialize a function instance. It is written using the OCaml LLVM library.

6. Test Plan

6. Test Plan

The test plan covers all the functionality that Cstar entails and tests different edge cases. An example test

The test plan covers all the functionality that Cstar entails and tests different edge cases. An example test

program is shown below along with its expected output. The automation is done using

program is shown below along with its expected output. The automation is done using

testall.sh

testall.sh

 so that it

 so that it

automatically compares the outcome and outputs and error if it differs. All tests are located in the

automatically compares the outcome and outputs and error if it differs. All tests are located in the

cstar/tests folder and will generate either a .out or .err file. An example program test program and the

cstar/tests folder and will generate either a .out or .err file. An example program test program and the

output is shown below:

output is shown below:

test-if2.cs

test-if2.cs

test-if2.out

test-if2.out

10

10

7. Lessons Learned

7. Lessons Learned

This project has taught me a lot about not only the stages that go into creating a language and a compiler

This project has taught me a lot about not only the stages that go into creating a language and a compiler

but more importantly the teamwork and the importance of having a well-balanced, well communicating

but more importantly the teamwork and the importance of having a well-balanced, well communicating

team. I think our project started off on the wrong foot when only one member had a strong grasp and

team. I think our project started off on the wrong foot when only one member had a strong grasp and

opinion of the functionalities we were building. Looking back I wish we had taken more ownership of

opinion of the functionalities we were building. Looking back I wish we had taken more ownership of

what we were creating instead of relying one team member. I think this was also attributed to the fact

what we were creating instead of relying one team member. I think this was also attributed to the fact

that we felt that the person with each specific role should take charge of that section so we allowed more

that we felt that the person with each specific role should take charge of that section so we allowed more

leniency on foreign parts of the project. However this was not beneficial to the team overall and led to a

leniency on foreign parts of the project. However this was not beneficial to the team overall and led to a

breakdown. I also learned that it’s critical to set milestones throughout the semester and to stick to them

breakdown. I also learned that it’s critical to set milestones throughout the semester and to stick to them

even if there isn’t a hard deadline. Having a strong team leader who manages and pushes the team is

even if there isn’t a hard deadline. Having a strong team leader who manages and pushes the team is

extremely important so that the team doesn’t fall behind and push the project to the side. Overall, this

extremely important so that the team doesn’t fall behind and push the project to the side. Overall, this

project has taught me so much about working with other people when developing code. I realized that

project has taught me so much about working with other people when developing code. I realized that

it’s more important to emphasize teamwork and strong communication rather than indivitual abilities. It’s

it’s more important to emphasize teamwork and strong communication rather than indivitual abilities. It’s

also important to have an explicit breakdown of responsibilities when it comes to creating the compiler.

also important to have an explicit breakdown of responsibilities when it comes to creating the compiler.

When there are question it’s critical to clarify them so that the entire team is on the same page and no

When there are question it’s critical to clarify them so that the entire team is on the same page and no

duplicate work is done. Time management and laying out the project timeline at the very beginning is

duplicate work is done. Time management and laying out the project timeline at the very beginning is

also a very necessary step that I believe will lead to sucess.

also a very necessary step that I believe will lead to sucess.

8. Appendix

8. Appendix

Source Files

Source Files

cstar.ml

cstar.ml

http://testall.sh
http://cstar.ml

(* Top-level of the Cstar compiler: scan & parse the input,

(* Top-level of the Cstar compiler: scan & parse the input,

 check the resulting AST and generate an SAST from it, generate LLVM IR,

 check the resulting AST and generate an SAST from it, generate LLVM IR,

 and dump the module *)

 and dump the module *)

type action = Ast | Sast | LLVM_IR | Compile

type action = Ast | Sast | LLVM_IR | Compile

let () =

let () =

 let action = ref Compile in

 let action = ref Compile in

 let set_action a () = action := a in

 let set_action a () = action := a in

 let speclist = [

 let speclist = [

 ("-a", Arg.Unit (set_action Ast), "Print the AST");

 ("-a", Arg.Unit (set_action Ast), "Print the AST");

 ("-s", Arg.Unit (set_action Sast), "Print the SAST");

 ("-s", Arg.Unit (set_action Sast), "Print the SAST");

 ("-l", Arg.Unit (set_action LLVM_IR), "Print the generated LLVM IR");

 ("-l", Arg.Unit (set_action LLVM_IR), "Print the generated LLVM IR");

 ("-c", Arg.Unit (set_action Compile),

 ("-c", Arg.Unit (set_action Compile),

 "Check and print the generated LLVM IR (default)");

 "Check and print the generated LLVM IR (default)");

] in

] in

 let usage_msg = "usage: ./cstar.native [-a|-s|-l|-c] [file.cs]" in

 let usage_msg = "usage: ./cstar.native [-a|-s|-l|-c] [file.cs]" in

 let channel = ref stdin in

 let channel = ref stdin in

 Arg.parse speclist (fun filename -> channel := open_in filename) usage_msg;

 Arg.parse speclist (fun filename -> channel := open_in filename) usage_msg;

 let lexbuf = Lexing.from_channel !channel in

 let lexbuf = Lexing.from_channel !channel in

 let ast = Parser.program Scanner.token lexbuf in

 let ast = Parser.program Scanner.token lexbuf in

 match !action with

 match !action with

 Ast -> print_string (Ast.string_of_program ast)

 Ast -> print_string (Ast.string_of_program ast)

 | _ -> let sast = Semant.check ast in

 | _ -> let sast = Semant.check ast in

 match !action with

 match !action with

 Ast -> ()

 Ast -> ()

 | Sast -> print_string (Sast.string_of_sprogram sast)

 | Sast -> print_string (Sast.string_of_sprogram sast)

 | LLVM_IR -> print_string (Llvm.string_of_llmodule (Codegen.translate sast))

 | LLVM_IR -> print_string (Llvm.string_of_llmodule (Codegen.translate sast))

 | Compile -> let m = Codegen.translate sast in

 | Compile -> let m = Codegen.translate sast in

 Llvm_analysis.assert_valid_module m;

 Llvm_analysis.assert_valid_module m;

 print_string (Llvm.string_of_llmodule m)

 print_string (Llvm.string_of_llmodule m)

scanner.mll

scanner.mll

(* Ocamllex scanner for Cstar *)

(* Ocamllex scanner for Cstar *)

{ open Parser }

{ open Parser }

let digit = ['0' - '9']

let digit = ['0' - '9']

let digits = digit+

let digits = digit+

let ascii = ([' '-'!' '#'-'[' ']'-'~'])

let ascii = ([' '-'!' '#'-'[' ']'-'~'])

let escape = '\\' ['\\' ''' '"' 'n' 'r' 't']

let escape = '\\' ['\\' ''' '"' 'n' 'r' 't']

let string_lit = '"'((ascii|escape)* as lxm)'"'

let string_lit = '"'((ascii|escape)* as lxm)'"'

rule token = parse

rule token = parse

 [' ' '\t' '\r' '\n'] { token lexbuf } (* Whitespace *)

 [' ' '\t' '\r' '\n'] { token lexbuf } (* Whitespace *)

| "/*" { comment lexbuf } (* Comments *)

| "/*" { comment lexbuf } (* Comments *)

| '(' { LPAREN }

| '(' { LPAREN }

| ')' { RPAREN }

| ')' { RPAREN }

| '{' { LBRACE }

| '{' { LBRACE }

| '}' { RBRACE }

| '}' { RBRACE }

| ';' { SEMI }

| ';' { SEMI }

| ',' { COMMA }

| ',' { COMMA }

| '+' { PLUS }

| '+' { PLUS }

| '-' { MINUS }

| '-' { MINUS }

| '*' { TIMES }

| '*' { TIMES }

| '/' { DIVIDE }

| '/' { DIVIDE }

| '=' { ASSIGN }

| '=' { ASSIGN }

| "==" { EQ }

| "==" { EQ }

| "!=" { NEQ }

| "!=" { NEQ }

| '<' { LT }

| '<' { LT }

| "<=" { LEQ }

| "<=" { LEQ }

| '<' { LT }

| '<' { LT }

| "<=" { LEQ }

| "<=" { LEQ }

| ">" { GT }

| ">" { GT }

| ">=" { GEQ }

| ">=" { GEQ }

| "&" { AND }

| "&" { AND }

| "|" { OR }

| "|" { OR }

| "!" { NOT }

| "!" { NOT }

| "if" { IF }

| "if" { IF }

| "else" { ELSE }

| "else" { ELSE }

| "for" { FOR }

| "for" { FOR }

| "while" { WHILE }

| "while" { WHILE }

| "return" { RETURN }

| "return" { RETURN }

| "int" { INT }

| "int" { INT }

| "bool" { BOOL }

| "bool" { BOOL }

| "float" { FLOAT }

| "float" { FLOAT }

| "void" { VOID }

| "void" { VOID }

| "true" { BLIT(true) }

| "true" { BLIT(true) }

| "false" { BLIT(false) }

| "false" { BLIT(false) }

| '.' { DOT }

| '.' { DOT }

| '?' { QMARK }

| '?' { QMARK }

| "=>" { ARROW }

| "=>" { ARROW }

| "||" { OROR }

| "||" { OROR }

| "&&" { ANDAND }

| "&&" { ANDAND }

| '@' { AT }

| '@' { AT }

| '%' { PERCENT }

| '%' { PERCENT }

| "<<" { LSHIFT }

| "<<" { LSHIFT }

| ">>" { RSHIFT }

| ">>" { RSHIFT }

| "let" { LET }

| "let" { LET }

| "continue" { CONTINUE }

| "continue" { CONTINUE }

| "break" { BREAK }

| "break" { BREAK }

| "try" { TRY }

| "try" { TRY }

| "match" { MATCH }

| "match" { MATCH }

| "defer" { DEFER }

| "defer" { DEFER }

| "undefer" { UNDEFER }

| "undefer" { UNDEFER }

| "in" { IN }

| "in" { IN }

| "mut" { MUT }

| "mut" { MUT }

| "use" { USE }

| "use" { USE }

| "fn" { FN }

| "fn" { FN }

| "pub" { PUB }

| "pub" { PUB }

| ".." { DOTDOT }

| ".." { DOTDOT }

| "union" { UNION }

| "union" { UNION }

| "enum" { ENUM }

| "enum" { ENUM }

| "struct" { STRUCT }

| "struct" { STRUCT }

| "impl" { IMPL }

| "impl" { IMPL }

| "const" { CONST }

| "const" { CONST }

| "string" { STRING }

| "string" { STRING }

| "trait" { TRAIT }

| "trait" { TRAIT }

| "//" { scomment lexbuf } (* Single-line Comment *)

| "//" { scomment lexbuf } (* Single-line Comment *)

| digits as lxm { LITERAL(int_of_string lxm) }

| digits as lxm { LITERAL(int_of_string lxm) }

| digits '.' digit* (['e' 'E'] ['+' '-']? digits)? as lxm { FLIT(lxm) }

| digits '.' digit* (['e' 'E'] ['+' '-']? digits)? as lxm { FLIT(lxm) }

| ['a'-'z' 'A'-'Z']['a'-'z' 'A'-'Z' '0'-'9' '_']* as lxm { ID(lxm) }

| ['a'-'z' 'A'-'Z']['a'-'z' 'A'-'Z' '0'-'9' '_']* as lxm { ID(lxm) }

| string_lit { STRING_LITERAL(lxm) }

| string_lit { STRING_LITERAL(lxm) }

| eof { EOF }

| eof { EOF }

| _ as char { raise (Failure("illegal character " ^ Char.escaped char)) }

| _ as char { raise (Failure("illegal character " ^ Char.escaped char)) }

and comment = parse

and comment = parse

 "*/" { token lexbuf }

 "*/" { token lexbuf }

| _ { comment lexbuf }

| _ { comment lexbuf }

and scomment = parse

and scomment = parse

 "\n" { token lexbuf }

 "\n" { token lexbuf }

| _ { scomment lexbuf }

| _ { scomment lexbuf }

parser.mly

parser.mly

/* Ocamlyacc parser for Cstar */

/* Ocamlyacc parser for Cstar */

%{

%{

open Ast

open Ast

%}

%}

%token SEMI LPAREN RPAREN LBRACE RBRACE COMMA PLUS MINUS TIMES DIVIDE ASSIGN

%token SEMI LPAREN RPAREN LBRACE RBRACE COMMA PLUS MINUS TIMES DIVIDE ASSIGN

%token NOT EQ NEQ LT LEQ GT GEQ AND OR

%token NOT EQ NEQ LT LEQ GT GEQ AND OR

%token RETURN IF ELSE FOR WHILE INT BOOL FLOAT VOID STRING

%token RETURN IF ELSE FOR WHILE INT BOOL FLOAT VOID STRING

%token DOT QMARK ARROW OROR ANDAND AT PERCENT LSHIFT RSHIFT DOTDOT

%token DOT QMARK ARROW OROR ANDAND AT PERCENT LSHIFT RSHIFT DOTDOT

%token LET CONTINUE BREAK TRY MATCH DEFER UNDEFER IN MUT USE PUB

%token LET CONTINUE BREAK TRY MATCH DEFER UNDEFER IN MUT USE PUB

%token FN UNION ENUM STRUCT IMPL CONST TRAIT

%token FN UNION ENUM STRUCT IMPL CONST TRAIT

%token <int> LITERAL

%token <int> LITERAL

%token <bool> BLIT

%token <bool> BLIT

%token <string> ID FLIT

%token <string> ID FLIT

%token <string> STRING_LITERAL

%token <string> STRING_LITERAL

%token EOF

%token EOF

%start program

%start program

%type <Ast.program> program

%type <Ast.program> program

%nonassoc NOELSE

%nonassoc NOELSE

%nonassoc ELSE

%nonassoc ELSE

%right ASSIGN

%right ASSIGN

%left OR OROR

%left OR OROR

%left AND ANDAND

%left AND ANDAND

%left LSHIFT RSHIFT

%left LSHIFT RSHIFT

%left EQ NEQ

%left EQ NEQ

%left LT GT LEQ GEQ

%left LT GT LEQ GEQ

%left PLUS MINUS PERCENT

%left PLUS MINUS PERCENT

%left TIMES DIVIDE

%left TIMES DIVIDE

%right NOT

%right NOT

%%

%%

program:

program:

 decls EOF { $1 }

 decls EOF { $1 }

decls:

decls:

 { ([], []) }

 { ([], []) }

 | decls vdecl { (($2 :: fst $1), snd $1) }

 | decls vdecl { (($2 :: fst $1), snd $1) }

 | decls fdecl { (fst $1, ($2 :: snd $1)) }

 | decls fdecl { (fst $1, ($2 :: snd $1)) }

fdecl:

fdecl:

 FN typ ID LPAREN formals_opt RPAREN LBRACE vdecl_list stmt_list RBRACE

 FN typ ID LPAREN formals_opt RPAREN LBRACE vdecl_list stmt_list RBRACE

 { { typ = $2;

 { { typ = $2;

 fname = $3;

 fname = $3;

 formals = List.rev $5;

 formals = List.rev $5;

 locals = List.rev $8;

 locals = List.rev $8;

 body = List.rev $9 } }

 body = List.rev $9 } }

formals_opt:

formals_opt:

 { [] }

 { [] }

 | formal_list { $1 }

 | formal_list { $1 }

formal_list:

formal_list:

 typ ID { [($1,$2)] }

 typ ID { [($1,$2)] }

 | formal_list COMMA typ ID { ($3,$4) :: $1 }

 | formal_list COMMA typ ID { ($3,$4) :: $1 }

typ:

typ:

 INT { Int }

 INT { Int }

 | BOOL { Bool }

 | BOOL { Bool }

 | FLOAT { Float }

 | FLOAT { Float }

 | BOOL { Bool }

 | BOOL { Bool }

 | FLOAT { Float }

 | FLOAT { Float }

 | VOID { Void }

 | VOID { Void }

vdecl_list:

vdecl_list:

 { [] }

 { [] }

 | vdecl_list vdecl { $2 :: $1 }

 | vdecl_list vdecl { $2 :: $1 }

vdecl:

vdecl:

 typ ID SEMI { ($1, $2) }

 typ ID SEMI { ($1, $2) }

stmt_list:

stmt_list:

 { [] }

 { [] }

 | stmt_list stmt { $2 :: $1 }

 | stmt_list stmt { $2 :: $1 }

stmt:

stmt:

 expr SEMI { Expr $1 }

 expr SEMI { Expr $1 }

 | RETURN expr_opt SEMI { Return $2 }

 | RETURN expr_opt SEMI { Return $2 }

 | LBRACE stmt_list RBRACE { Block(List.rev $2) }

 | LBRACE stmt_list RBRACE { Block(List.rev $2) }

 | IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }

 | IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }

 | IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }

 | IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }

expr_opt:

expr_opt:

 { Noexpr }

 { Noexpr }

 | expr { $1 }

 | expr { $1 }

expr:

expr:

 LITERAL { Literal($1) }

 LITERAL { Literal($1) }

 | FLIT { Fliteral($1) }

 | FLIT { Fliteral($1) }

 | STRING_LITERAL { StringLit($1) }

 | STRING_LITERAL { StringLit($1) }

 | BLIT { BoolLit($1) }

 | BLIT { BoolLit($1) }

 | ID { Id($1) }

 | ID { Id($1) }

 | expr PLUS expr { Binop($1, Add, $3) }

 | expr PLUS expr { Binop($1, Add, $3) }

 | expr MINUS expr { Binop($1, Sub, $3) }

 | expr MINUS expr { Binop($1, Sub, $3) }

 | expr TIMES expr { Binop($1, Mult, $3) }

 | expr TIMES expr { Binop($1, Mult, $3) }

 | expr DIVIDE expr { Binop($1, Div, $3) }

 | expr DIVIDE expr { Binop($1, Div, $3) }

 | expr EQ expr { Binop($1, Equal, $3) }

 | expr EQ expr { Binop($1, Equal, $3) }

 | expr NEQ expr { Binop($1, Neq, $3) }

 | expr NEQ expr { Binop($1, Neq, $3) }

 | expr LT expr { Binop($1, Less, $3) }

 | expr LT expr { Binop($1, Less, $3) }

 | expr LEQ expr { Binop($1, Leq, $3) }

 | expr LEQ expr { Binop($1, Leq, $3) }

 | expr GT expr { Binop($1, Greater, $3) }

 | expr GT expr { Binop($1, Greater, $3) }

 | expr GEQ expr { Binop($1, Geq, $3) }

 | expr GEQ expr { Binop($1, Geq, $3) }

 | expr AND expr { Binop($1, And, $3) }

 | expr AND expr { Binop($1, And, $3) }

 | expr OR expr { Binop($1, Or, $3) }

 | expr OR expr { Binop($1, Or, $3) }

 | expr ANDAND expr { Binop($1, BitAnd, $3) }

 | expr ANDAND expr { Binop($1, BitAnd, $3) }

 | expr OROR expr { Binop($1, BitOr, $3) }

 | expr OROR expr { Binop($1, BitOr, $3) }

 | expr LSHIFT expr { Binop($1, Lshift, $3) }

 | expr LSHIFT expr { Binop($1, Lshift, $3) }

 | expr RSHIFT expr { Binop($1, Rshift, $3) }

 | expr RSHIFT expr { Binop($1, Rshift, $3) }

 | expr PERCENT expr { Binop($1, Mod, $3) }

 | expr PERCENT expr { Binop($1, Mod, $3) }

 | MINUS expr %prec NOT { Unop(Neg, $2) }

 | MINUS expr %prec NOT { Unop(Neg, $2) }

 | NOT expr { Unop(Not, $2) }

 | NOT expr { Unop(Not, $2) }

 | ID ASSIGN expr { Assign($1, $3) }

 | ID ASSIGN expr { Assign($1, $3) }

 | ID LPAREN args_opt RPAREN { Call($1, $3) }

 | ID LPAREN args_opt RPAREN { Call($1, $3) }

 | LPAREN expr RPAREN { $2 }

 | LPAREN expr RPAREN { $2 }

args_opt:

args_opt:

 { [] }

 { [] }

 | args_list { List.rev $1 }

 | args_list { List.rev $1 }

args_list:

args_list:

 expr { [$1] }

 expr { [$1] }

 | args_list COMMA expr { $3 :: $1 }

 | args_list COMMA expr { $3 :: $1 }

ast.ml

ast.ml

http://ast.ml

(* Abstract Syntax Tree *)

(* Abstract Syntax Tree *)

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Greater | Geq |

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Greater | Geq |

 And | Or | Mod | BitAnd| BitOr | Lshift | Rshift

 And | Or | Mod | BitAnd| BitOr | Lshift | Rshift

type publicity = Public | Private

type publicity = Public | Private

type mutability = {mut : bool}

type mutability = {mut : bool}

type uop = Neg | Not

type uop = Neg | Not

type typ = Int | Bool | Float | Void | Null | String

type typ = Int | Bool | Float | Void | Null | String

type bind = typ * string

type bind = typ * string

type expr =

type expr =

 Literal of int

 Literal of int

 | Fliteral of string

 | Fliteral of string

 | BoolLit of bool

 | BoolLit of bool

 | StringLit of string

 | StringLit of string

 | Id of string

 | Id of string

 | Binop of expr * op * expr

 | Binop of expr * op * expr

 | Unop of uop * expr

 | Unop of uop * expr

 | Assign of string * expr

 | Assign of string * expr

 | Call of string * expr list

 | Call of string * expr list

 | Noexpr

 | Noexpr

 | Nullexpr

 | Nullexpr

type stmt =

type stmt =

 Block of stmt list

 Block of stmt list

 | Expr of expr

 | Expr of expr

 | Return of expr

 | Return of expr

 | If of expr * stmt * stmt

 | If of expr * stmt * stmt

type func_decl = {

type func_decl = {

 typ : typ;

 typ : typ;

 fname : string;

 fname : string;

 formals : bind list;

 formals : bind list;

 locals : bind list;

 locals : bind list;

 body : stmt list;

 body : stmt list;

 }

 }

type program = bind list * func_decl list

type program = bind list * func_decl list

(* Pretty-printing *)

(* Pretty-printing *)

let string_of_op = function

let string_of_op = function

 Add -> "+"

 Add -> "+"

 | Sub -> "-"

 | Sub -> "-"

 | Mult -> "*"

 | Mult -> "*"

 | Div -> "/"

 | Div -> "/"

 | Equal -> "=="

 | Equal -> "=="

 | Neq -> "!="

 | Neq -> "!="

 | Less -> "<"

 | Less -> "<"

 | Leq -> "<="

 | Leq -> "<="

 | Greater -> ">"

 | Greater -> ">"

 | Geq -> ">="

 | Geq -> ">="

 | And -> "&"

 | And -> "&"

 | Or -> "|"

 | Or -> "|"

 | Mod -> "%"

 | Mod -> "%"

 | BitAnd -> "&&"

 | BitAnd -> "&&"

 | BitOr -> "||"

 | BitOr -> "||"

 | Lshift -> "<<"

 | Lshift -> "<<"

 | Rshift -> ">>"

 | Rshift -> ">>"

let string_of_uop = function

let string_of_uop = function

let string_of_uop = function

let string_of_uop = function

 Neg -> "-"

 Neg -> "-"

 | Not -> "!"

 | Not -> "!"

let rec string_of_expr = function

let rec string_of_expr = function

 Literal(l) -> string_of_int l

 Literal(l) -> string_of_int l

 | Fliteral(l) -> l

 | Fliteral(l) -> l

 | BoolLit(true) -> "true"

 | BoolLit(true) -> "true"

 | BoolLit(false) -> "false"

 | BoolLit(false) -> "false"

 | Id(s) -> s

 | Id(s) -> s

 | StringLit(s) -> s

 | StringLit(s) -> s

 | Binop(e1, o, e2) ->

 | Binop(e1, o, e2) ->

 string_of_expr e1 ^ " " ^ string_of_op o ^ " " ^ string_of_expr e2

 string_of_expr e1 ^ " " ^ string_of_op o ^ " " ^ string_of_expr e2

 | Unop(o, e) -> string_of_uop o ^ string_of_expr e

 | Unop(o, e) -> string_of_uop o ^ string_of_expr e

 | Assign(v, e) -> v ^ " = " ^ string_of_expr e

 | Assign(v, e) -> v ^ " = " ^ string_of_expr e

 | Call(f, el) ->

 | Call(f, el) ->

 f ^ "(" ^ String.concat ", " (List.map string_of_expr el) ^ ")"

 f ^ "(" ^ String.concat ", " (List.map string_of_expr el) ^ ")"

 | Noexpr -> ""

 | Noexpr -> ""

 | Nullexpr -> "null"

 | Nullexpr -> "null"

let rec string_of_stmt = function

let rec string_of_stmt = function

 Block(stmts) ->

 Block(stmts) ->

 "{\n" ^ String.concat "" (List.map string_of_stmt stmts) ^ "}\n"

 "{\n" ^ String.concat "" (List.map string_of_stmt stmts) ^ "}\n"

 | Expr(expr) -> string_of_expr expr ^ ";\n";

 | Expr(expr) -> string_of_expr expr ^ ";\n";

 | Return(expr) -> "return " ^ string_of_expr expr ^ ";\n";

 | Return(expr) -> "return " ^ string_of_expr expr ^ ";\n";

 | If(e, s, Block([])) -> "if (" ^ string_of_expr e ^ ")\n" ^ string_of_stmt s

 | If(e, s, Block([])) -> "if (" ^ string_of_expr e ^ ")\n" ^ string_of_stmt s

 | If(e, s1, s2) -> "if (" ^ string_of_expr e ^ ")\n" ^

 | If(e, s1, s2) -> "if (" ^ string_of_expr e ^ ")\n" ^

 string_of_stmt s1 ^ "else\n" ^ string_of_stmt s2

 string_of_stmt s1 ^ "else\n" ^ string_of_stmt s2

let string_of_typ = function

let string_of_typ = function

 Int -> "int"

 Int -> "int"

 | Bool -> "bool"

 | Bool -> "bool"

 | Float -> "float"

 | Float -> "float"

 | Void -> "void"

 | Void -> "void"

 | Null -> "null"

 | Null -> "null"

 | String -> "string"

 | String -> "string"

let string_of_vdecl (t, id) = string_of_typ t ^ " " ^ id ^ ";\n"

let string_of_vdecl (t, id) = string_of_typ t ^ " " ^ id ^ ";\n"

let string_of_fdecl fdecl =

let string_of_fdecl fdecl =

 string_of_typ fdecl.typ ^ " " ^

 string_of_typ fdecl.typ ^ " " ^

 fdecl.fname ^ "(" ^ String.concat ", " (List.map snd fdecl.formals) ^

 fdecl.fname ^ "(" ^ String.concat ", " (List.map snd fdecl.formals) ^

 ")\n{\n" ^

 ")\n{\n" ^

 String.concat "" (List.map string_of_vdecl fdecl.locals) ^

 String.concat "" (List.map string_of_vdecl fdecl.locals) ^

 String.concat "" (List.map string_of_stmt fdecl.body) ^

 String.concat "" (List.map string_of_stmt fdecl.body) ^

 "}\n"

 "}\n"

let string_of_program (vars, funcs) =

let string_of_program (vars, funcs) =

 String.concat "" (List.map string_of_vdecl vars) ^ "\n" ^

 String.concat "" (List.map string_of_vdecl vars) ^ "\n" ^

 String.concat "\n" (List.map string_of_fdecl funcs)

 String.concat "\n" (List.map string_of_fdecl funcs)

sast.ml

sast.ml

(* Semantically-checked Abstract Syntax Tree *)

(* Semantically-checked Abstract Syntax Tree *)

open Ast

open Ast

type sexpr = typ * sx

type sexpr = typ * sx

and sx =

and sx =

 SLiteral of int

 SLiteral of int

 | SFliteral of string

 | SFliteral of string

 | SBoolLit of bool

 | SBoolLit of bool

 | SStringLit of string

 | SStringLit of string

 | SId of string

 | SId of string

http://sast.ml

 | SStringLit of string

 | SStringLit of string

 | SId of string

 | SId of string

 | SBinop of sexpr * op * sexpr

 | SBinop of sexpr * op * sexpr

 | SUnop of uop * sexpr

 | SUnop of uop * sexpr

 | SAssign of string * sexpr

 | SAssign of string * sexpr

 | SCall of string * sexpr list

 | SCall of string * sexpr list

 | SNoexpr

 | SNoexpr

 | SNullexpr

 | SNullexpr

type sstmt =

type sstmt =

 SBlock of sstmt list

 SBlock of sstmt list

 | SExpr of sexpr

 | SExpr of sexpr

 | SReturn of sexpr

 | SReturn of sexpr

 | SIf of sexpr * sstmt * sstmt

 | SIf of sexpr * sstmt * sstmt

type sfunc_decl = {

type sfunc_decl = {

 styp : typ;

 styp : typ;

 sfname : string;

 sfname : string;

 sformals : bind list;

 sformals : bind list;

 slocals : bind list;

 slocals : bind list;

 sbody : sstmt list;

 sbody : sstmt list;

 }

 }

type sprogram = bind list * sfunc_decl list

type sprogram = bind list * sfunc_decl list

(* Pretty-printing *)

(* Pretty-printing *)

let rec string_of_sexpr (t, e) =

let rec string_of_sexpr (t, e) =

 "(" ^ string_of_typ t ^ " : " ^ (match e with

 "(" ^ string_of_typ t ^ " : " ^ (match e with

 SLiteral(l) -> string_of_int l

 SLiteral(l) -> string_of_int l

 | SBoolLit(true) -> "true"

 | SBoolLit(true) -> "true"

 | SBoolLit(false) -> "false"

 | SBoolLit(false) -> "false"

 | SFliteral(l) -> l

 | SFliteral(l) -> l

 | SStringLit(s) -> s

 | SStringLit(s) -> s

 | SId(s) -> s

 | SId(s) -> s

 | SBinop(e1, o, e2) ->

 | SBinop(e1, o, e2) ->

 string_of_sexpr e1 ^ " " ^ string_of_op o ^ " " ^ string_of_sexpr e2

 string_of_sexpr e1 ^ " " ^ string_of_op o ^ " " ^ string_of_sexpr e2

 | SUnop(o, e) -> string_of_uop o ^ string_of_sexpr e

 | SUnop(o, e) -> string_of_uop o ^ string_of_sexpr e

 | SAssign(v, e) -> v ^ " = " ^ string_of_sexpr e

 | SAssign(v, e) -> v ^ " = " ^ string_of_sexpr e

 | SCall(f, el) ->

 | SCall(f, el) ->

 f ^ "(" ^ String.concat ", " (List.map string_of_sexpr el) ^ ")"

 f ^ "(" ^ String.concat ", " (List.map string_of_sexpr el) ^ ")"

 | SNoexpr -> ""

 | SNoexpr -> ""

 | SNullexpr -> "null"

 | SNullexpr -> "null"

) ^ ")"

) ^ ")"

let rec string_of_sstmt = function

let rec string_of_sstmt = function

 SBlock(stmts) ->

 SBlock(stmts) ->

 "{\n" ^ String.concat "" (List.map string_of_sstmt stmts) ^ "}\n"

 "{\n" ^ String.concat "" (List.map string_of_sstmt stmts) ^ "}\n"

 | SExpr(expr) -> string_of_sexpr expr ^ ";\n";

 | SExpr(expr) -> string_of_sexpr expr ^ ";\n";

 | SReturn(expr) -> "return " ^ string_of_sexpr expr ^ ";\n";

 | SReturn(expr) -> "return " ^ string_of_sexpr expr ^ ";\n";

 | SIf(e, s, SBlock([])) ->

 | SIf(e, s, SBlock([])) ->

 "if (" ^ string_of_sexpr e ^ ")\n" ^ string_of_sstmt s

 "if (" ^ string_of_sexpr e ^ ")\n" ^ string_of_sstmt s

 | SIf(e, s1, s2) -> "if (" ^ string_of_sexpr e ^ ")\n" ^

 | SIf(e, s1, s2) -> "if (" ^ string_of_sexpr e ^ ")\n" ^

 string_of_sstmt s1 ^ "else\n" ^ string_of_sstmt s2

 string_of_sstmt s1 ^ "else\n" ^ string_of_sstmt s2

let string_of_sfdecl fdecl =

let string_of_sfdecl fdecl =

 string_of_typ fdecl.styp ^ " " ^

 string_of_typ fdecl.styp ^ " " ^

 fdecl.sfname ^ "(" ^ String.concat ", " (List.map snd fdecl.sformals) ^

 fdecl.sfname ^ "(" ^ String.concat ", " (List.map snd fdecl.sformals) ^

 ")\n{\n" ^

 ")\n{\n" ^

 String.concat "" (List.map string_of_vdecl fdecl.slocals) ^

 String.concat "" (List.map string_of_vdecl fdecl.slocals) ^

 String.concat "" (List.map string_of_sstmt fdecl.sbody) ^

 String.concat "" (List.map string_of_sstmt fdecl.sbody) ^

 "}\n"

 "}\n"

let string_of_sprogram (vars, funcs) =

let string_of_sprogram (vars, funcs) =

 String.concat "" (List.map string_of_vdecl vars) ^ "\n" ^

 String.concat "" (List.map string_of_vdecl vars) ^ "\n" ^

 String.concat "\n" (List.map string_of_sfdecl funcs)

 String.concat "\n" (List.map string_of_sfdecl funcs)

semant.ml

semant.ml

(* Semantic checking for the Cstar compiler *)

(* Semantic checking for the Cstar compiler *)

open Ast

open Ast

open Sast

open Sast

module StringMap = Map.Make(String)

module StringMap = Map.Make(String)

let check (globals, functions) =

let check (globals, functions) =

 let check_binds (kind : string) (binds : bind list) =

 let check_binds (kind : string) (binds : bind list) =

 List.iter (function

 List.iter (function

 (Void, b) -> raise (Failure ("illegal void " ^ kind ^ " " ^ b))

 (Void, b) -> raise (Failure ("illegal void " ^ kind ^ " " ^ b))

 | _ -> ()) binds;

 | _ -> ()) binds;

 let rec dups = function

 let rec dups = function

 [] -> ()

 [] -> ()

 | ((_,n1) :: (_,n2) :: _) when n1 = n2 ->

 | ((_,n1) :: (_,n2) :: _) when n1 = n2 ->

 raise (Failure ("duplicate " ^ kind ^ " " ^ n1))

 raise (Failure ("duplicate " ^ kind ^ " " ^ n1))

 | _ :: t -> dups t

 | _ :: t -> dups t

 in dups (List.sort (fun (_,a) (_,b) -> compare a b) binds)

 in dups (List.sort (fun (_,a) (_,b) -> compare a b) binds)

 in

 in

 check_binds "global" globals;

 check_binds "global" globals;

 let built_in_decls =

 let built_in_decls =

 let add_bind map (name, ty) = StringMap.add name {

 let add_bind map (name, ty) = StringMap.add name {

 typ = Void;

 typ = Void;

 fname = name;

 fname = name;

 formals = [(ty, "x")];

 formals = [(ty, "x")];

 locals = []; body = [] } map

 locals = []; body = [] } map

 in List.fold_left add_bind StringMap.empty [("print", Int);

 in List.fold_left add_bind StringMap.empty [("print", Int);

 ("printb", Bool);

 ("printb", Bool);

 ("printf", Float);

 ("printf", Float);

 ("printbig", Int)]

 ("printbig", Int)]

 in

 in

 let add_func map fd =

 let add_func map fd =

 let built_in_err = "function " ^ fd.fname ^ " may not be defined"

 let built_in_err = "function " ^ fd.fname ^ " may not be defined"

 and dup_err = "duplicate function " ^ fd.fname

 and dup_err = "duplicate function " ^ fd.fname

 and make_err er = raise (Failure er)

 and make_err er = raise (Failure er)

 and n = fd.fname

 and n = fd.fname

 in match fd with

 in match fd with

 _ when StringMap.mem n built_in_decls -> make_err built_in_err

 _ when StringMap.mem n built_in_decls -> make_err built_in_err

 | _ when StringMap.mem n map -> make_err dup_err

 | _ when StringMap.mem n map -> make_err dup_err

 | _ -> StringMap.add n fd map

 | _ -> StringMap.add n fd map

 in

 in

 let function_decls = List.fold_left add_func built_in_decls functions

 let function_decls = List.fold_left add_func built_in_decls functions

 in

 in

 let find_func s =

 let find_func s =

 try StringMap.find s function_decls

 try StringMap.find s function_decls

 with Not_found -> raise (Failure ("unrecognized function " ^ s))

 with Not_found -> raise (Failure ("unrecognized function " ^ s))

 in

 in

 let _ = find_func "main" in

 let _ = find_func "main" in

 let check_function func =

 let check_function func =

 check_binds "formal" func.formals;

 check_binds "formal" func.formals;

 check_binds "local" func.locals;

 check_binds "local" func.locals;

 let check_assign lvaluet rvaluet err =

 let check_assign lvaluet rvaluet err =

http://semant.ml

 let check_assign lvaluet rvaluet err =

 let check_assign lvaluet rvaluet err =

 if lvaluet = rvaluet then lvaluet else raise (Failure err)

 if lvaluet = rvaluet then lvaluet else raise (Failure err)

 in

 in

 let symbols = List.fold_left (fun m (ty, name) -> StringMap.add name ty m)

 let symbols = List.fold_left (fun m (ty, name) -> StringMap.add name ty m)

 StringMap.empty (globals @ func.formals @ func.locals)

 StringMap.empty (globals @ func.formals @ func.locals)

 in

 in

 let type_of_identifier s =

 let type_of_identifier s =

 try StringMap.find s symbols

 try StringMap.find s symbols

 with Not_found -> raise (Failure ("undeclared identifier " ^ s))

 with Not_found -> raise (Failure ("undeclared identifier " ^ s))

 in

 in

 let rec expr = function

 let rec expr = function

 Literal l -> (Int, SLiteral l)

 Literal l -> (Int, SLiteral l)

 | Fliteral l -> (Float, SFliteral l)

 | Fliteral l -> (Float, SFliteral l)

 | BoolLit l -> (Bool, SBoolLit l)

 | BoolLit l -> (Bool, SBoolLit l)

 | StringLit l -> (String, SStringLit l)

 | StringLit l -> (String, SStringLit l)

 | Noexpr -> (Void, SNoexpr)

 | Noexpr -> (Void, SNoexpr)

 | Nullexpr -> (Null, SNullexpr)

 | Nullexpr -> (Null, SNullexpr)

 | Id s -> (type_of_identifier s, SId s)

 | Id s -> (type_of_identifier s, SId s)

 | Assign(var, e) as ex ->

 | Assign(var, e) as ex ->

 let lt = type_of_identifier var

 let lt = type_of_identifier var

 and (rt, e') = expr e in

 and (rt, e') = expr e in

 let err = "illegal assignment " ^ string_of_typ lt ^ " = " ^

 let err = "illegal assignment " ^ string_of_typ lt ^ " = " ^

 string_of_typ rt ^ " in " ^ string_of_expr ex

 string_of_typ rt ^ " in " ^ string_of_expr ex

 in (check_assign lt rt err, SAssign(var, (rt, e')))

 in (check_assign lt rt err, SAssign(var, (rt, e')))

 | Unop(op, e) as ex ->

 | Unop(op, e) as ex ->

 let (t, e') = expr e in

 let (t, e') = expr e in

 let ty = match op with

 let ty = match op with

 Neg when t = Int || t = Float -> t

 Neg when t = Int || t = Float -> t

 | Not when t = Bool -> Bool

 | Not when t = Bool -> Bool

 | _ -> raise (Failure ("illegal unary operator " ^

 | _ -> raise (Failure ("illegal unary operator " ^

 string_of_uop op ^ string_of_typ t ^

 string_of_uop op ^ string_of_typ t ^

 " in " ^ string_of_expr ex))

 " in " ^ string_of_expr ex))

 in (ty, SUnop(op, (t, e')))

 in (ty, SUnop(op, (t, e')))

 | Binop(e1, op, e2) as e ->

 | Binop(e1, op, e2) as e ->

 let (t1, e1') = expr e1

 let (t1, e1') = expr e1

 and (t2, e2') = expr e2 in

 and (t2, e2') = expr e2 in

 let same = t1 = t2 in

 let same = t1 = t2 in

 let ty = match op with

 let ty = match op with

 Add | Sub | Mult | Div | Mod | Lshift | Rshift when same && t1 = Int -> Int

 Add | Sub | Mult | Div | Mod | Lshift | Rshift when same && t1 = Int -> Int

 | Add | Sub | Mult | Div when same && t1 = Float -> Float

 | Add | Sub | Mult | Div when same && t1 = Float -> Float

 | Equal | Neq when same -> Bool

 | Equal | Neq when same -> Bool

 | Less | Leq | Greater | Geq

 | Less | Leq | Greater | Geq

 when same && (t1 = Int || t1 = Float) -> Bool

 when same && (t1 = Int || t1 = Float) -> Bool

 | And | Or | BitAnd | BitOr when same && t1 = Bool -> Bool

 | And | Or | BitAnd | BitOr when same && t1 = Bool -> Bool

 | _ -> raise (

 | _ -> raise (

 Failure ("illegal binary operator " ^

 Failure ("illegal binary operator " ^

 string_of_typ t1 ^ " " ^ string_of_op op ^ " " ^

 string_of_typ t1 ^ " " ^ string_of_op op ^ " " ^

 string_of_typ t2 ^ " in " ^ string_of_expr e))

 string_of_typ t2 ^ " in " ^ string_of_expr e))

 in (ty, SBinop((t1, e1'), op, (t2, e2')))

 in (ty, SBinop((t1, e1'), op, (t2, e2')))

 | Call(fname, args) as call ->

 | Call(fname, args) as call ->

 let fd = find_func fname in

 let fd = find_func fname in

 let param_length = List.length fd.formals in

 let param_length = List.length fd.formals in

 if List.length args != param_length then

 if List.length args != param_length then

 raise (Failure ("expecting " ^ string_of_int param_length ^

 raise (Failure ("expecting " ^ string_of_int param_length ^

 " arguments in " ^ string_of_expr call))

 " arguments in " ^ string_of_expr call))

 else let check_call (ft, _) e =

 else let check_call (ft, _) e =

 let (et, e') = expr e in

 let (et, e') = expr e in

 let err = "illegal argument found " ^ string_of_typ et ^

 let err = "illegal argument found " ^ string_of_typ et ^

 " expected " ^ string_of_typ ft ^ " in " ^ string_of_expr e

 " expected " ^ string_of_typ ft ^ " in " ^ string_of_expr e

 in (check_assign ft et err, e')

 in (check_assign ft et err, e')

 in

 in

 let args' = List.map2 check_call fd.formals args

 let args' = List.map2 check_call fd.formals args

 in (fd.typ, SCall(fname, args'))

 in (fd.typ, SCall(fname, args'))

 in

 in

 in (fd.typ, SCall(fname, args'))

 in (fd.typ, SCall(fname, args'))

 in

 in

 let check_bool_expr e =

 let check_bool_expr e =

 let (t', e') = expr e

 let (t', e') = expr e

 and err = "expected Boolean expression in " ^ string_of_expr e

 and err = "expected Boolean expression in " ^ string_of_expr e

 in if t' != Bool then raise (Failure err) else (t', e')

 in if t' != Bool then raise (Failure err) else (t', e')

 in

 in

 let rec check_stmt = function

 let rec check_stmt = function

 Expr e -> SExpr (expr e)

 Expr e -> SExpr (expr e)

 | If(p, b1, b2) -> SIf(check_bool_expr p, check_stmt b1, check_stmt b2)

 | If(p, b1, b2) -> SIf(check_bool_expr p, check_stmt b1, check_stmt b2)

 | Return e -> let (t, e') = expr e in

 | Return e -> let (t, e') = expr e in

 if t = func.typ then SReturn (t, e')

 if t = func.typ then SReturn (t, e')

 else raise (

 else raise (

 Failure ("return gives " ^ string_of_typ t ^ " expected " ^

 Failure ("return gives " ^ string_of_typ t ^ " expected " ^

 string_of_typ func.typ ^ " in " ^ string_of_expr e))

 string_of_typ func.typ ^ " in " ^ string_of_expr e))

 | Block sl ->

 | Block sl ->

 let rec check_stmt_list = function

 let rec check_stmt_list = function

 [Return _ as s] -> [check_stmt s]

 [Return _ as s] -> [check_stmt s]

 | Return _ :: _ -> raise (Failure "nothing may follow a return")

 | Return _ :: _ -> raise (Failure "nothing may follow a return")

 | Block sl :: ss -> check_stmt_list (sl @ ss)

 | Block sl :: ss -> check_stmt_list (sl @ ss)

 | s :: ss -> check_stmt s :: check_stmt_list ss

 | s :: ss -> check_stmt s :: check_stmt_list ss

 | [] -> []

 | [] -> []

 in SBlock(check_stmt_list sl)

 in SBlock(check_stmt_list sl)

 in

 in

 { styp = func.typ;

 { styp = func.typ;

 sfname = func.fname;

 sfname = func.fname;

 sformals = func.formals;

 sformals = func.formals;

 slocals = func.locals;

 slocals = func.locals;

 sbody = match check_stmt (Block func.body) with

 sbody = match check_stmt (Block func.body) with

 SBlock(sl) -> sl

 SBlock(sl) -> sl

 | _ -> raise (Failure ("internal error: block didn't become a block?"))

 | _ -> raise (Failure ("internal error: block didn't become a block?"))

 }

 }

 in (globals, List.map check_function functions)

 in (globals, List.map check_function functions)

codegen.ml

codegen.ml

module L = Llvm

module L = Llvm

module A = Ast

module A = Ast

open Sast

open Sast

module StringMap = Map.Make(String)

module StringMap = Map.Make(String)

let translate (globals, functions) =

let translate (globals, functions) =

 let context = L.global_context () in

 let context = L.global_context () in

 let the_module = L.create_module context "MicroC" in

 let the_module = L.create_module context "MicroC" in

 let i32_t = L.i32_type context

 let i32_t = L.i32_type context

 and i8_t = L.i8_type context

 and i8_t = L.i8_type context

 and i1_t = L.i1_type context

 and i1_t = L.i1_type context

 and float_t = L.double_type context

 and float_t = L.double_type context

 and i8_pt = L.pointer_type (L.i8_type context)

 and i8_pt = L.pointer_type (L.i8_type context)

 and void_t = L.void_type context in

 and void_t = L.void_type context in

 let ltype_of_typ = function

 let ltype_of_typ = function

 A.Int -> i32_t

 A.Int -> i32_t

 | A.Bool -> i1_t

 | A.Bool -> i1_t

 | A.Float -> float_t

 | A.Float -> float_t

 | A.Void -> void_t

 | A.Void -> void_t

 | A.Null -> i32_t

 | A.Null -> i32_t

http://codegen.ml

 | A.Void -> void_t

 | A.Void -> void_t

 | A.Null -> i32_t

 | A.Null -> i32_t

 | A.String -> i8_pt

 | A.String -> i8_pt

 in

 in

 let global_vars : L.llvalue StringMap.t =

 let global_vars : L.llvalue StringMap.t =

 let global_var m (t, n) =

 let global_var m (t, n) =

 let init = match t with

 let init = match t with

 A.Float -> L.const_float (ltype_of_typ t) 0.0

 A.Float -> L.const_float (ltype_of_typ t) 0.0

 | _ -> L.const_int (ltype_of_typ t) 0

 | _ -> L.const_int (ltype_of_typ t) 0

 in StringMap.add n (L.define_global n init the_module) m in

 in StringMap.add n (L.define_global n init the_module) m in

 List.fold_left global_var StringMap.empty globals in

 List.fold_left global_var StringMap.empty globals in

 let printf_t : L.lltype =

 let printf_t : L.lltype =

 L.var_arg_function_type i32_t [| L.pointer_type i8_t |] in

 L.var_arg_function_type i32_t [| L.pointer_type i8_t |] in

 let printf_func : L.llvalue =

 let printf_func : L.llvalue =

 L.declare_function "printf" printf_t the_module in

 L.declare_function "printf" printf_t the_module in

 let printbig_t : L.lltype =

 let printbig_t : L.lltype =

 L.function_type i32_t [| i32_t |] in

 L.function_type i32_t [| i32_t |] in

 let printbig_func : L.llvalue =

 let printbig_func : L.llvalue =

 L.declare_function "printbig" printbig_t the_module in

 L.declare_function "printbig" printbig_t the_module in

 let function_decls : (L.llvalue * sfunc_decl) StringMap.t =

 let function_decls : (L.llvalue * sfunc_decl) StringMap.t =

 let function_decl m fdecl =

 let function_decl m fdecl =

 let name = fdecl.sfname

 let name = fdecl.sfname

 and formal_types =

 and formal_types =

 Array.of_list (List.map (fun (t,_) -> ltype_of_typ t) fdecl.sformals)

 Array.of_list (List.map (fun (t,_) -> ltype_of_typ t) fdecl.sformals)

 in let ftype = L.function_type (ltype_of_typ fdecl.styp) formal_types in

 in let ftype = L.function_type (ltype_of_typ fdecl.styp) formal_types in

 StringMap.add name (L.define_function name ftype the_module, fdecl) m in

 StringMap.add name (L.define_function name ftype the_module, fdecl) m in

 List.fold_left function_decl StringMap.empty functions in

 List.fold_left function_decl StringMap.empty functions in

 let build_function_body fdecl =

 let build_function_body fdecl =

 let (the_function, _) = StringMap.find fdecl.sfname function_decls in

 let (the_function, _) = StringMap.find fdecl.sfname function_decls in

 let builder = L.builder_at_end context (L.entry_block the_function) in

 let builder = L.builder_at_end context (L.entry_block the_function) in

 let int_format_str = L.build_global_stringptr "%d\n" "fmt" builder

 let int_format_str = L.build_global_stringptr "%d\n" "fmt" builder

 and float_format_str = L.build_global_stringptr "%g\n" "fmt" builder in

 and float_format_str = L.build_global_stringptr "%g\n" "fmt" builder in

 let local_vars =

 let local_vars =

 let add_formal m (t, n) p =

 let add_formal m (t, n) p =

 L.set_value_name n p;

 L.set_value_name n p;

 let local = L.build_alloca (ltype_of_typ t) n builder in

 let local = L.build_alloca (ltype_of_typ t) n builder in

 ignore (L.build_store p local builder);

 ignore (L.build_store p local builder);

 StringMap.add n local m

 StringMap.add n local m

 and add_local m (t, n) =

 and add_local m (t, n) =

 let local_var = L.build_alloca (ltype_of_typ t) n builder

 let local_var = L.build_alloca (ltype_of_typ t) n builder

 in StringMap.add n local_var m

 in StringMap.add n local_var m

 in

 in

 let formals = List.fold_left2 add_formal StringMap.empty fdecl.sformals

 let formals = List.fold_left2 add_formal StringMap.empty fdecl.sformals

 (Array.to_list (L.params the_function)) in

 (Array.to_list (L.params the_function)) in

 List.fold_left add_local formals fdecl.slocals

 List.fold_left add_local formals fdecl.slocals

 in

 in

 let lookup n = try StringMap.find n local_vars

 let lookup n = try StringMap.find n local_vars

 with Not_found -> StringMap.find n global_vars

 with Not_found -> StringMap.find n global_vars

 in

 in

 let rec expr builder ((_, e) : sexpr) = match e with

 let rec expr builder ((_, e) : sexpr) = match e with

 SLiteral i -> L.const_int i32_t i

 SLiteral i -> L.const_int i32_t i

 | SBoolLit b -> L.const_int i1_t (if b then 1 else 0)

 | SBoolLit b -> L.const_int i1_t (if b then 1 else 0)

 | SFliteral l -> L.const_float_of_string float_t l

 | SFliteral l -> L.const_float_of_string float_t l

 | SStringLit s -> L.build_global_stringptr s "tmp_string" builder

 | SStringLit s -> L.build_global_stringptr s "tmp_string" builder

 | SNoexpr -> L.const_int i32_t 0

 | SNoexpr -> L.const_int i32_t 0

 | SNullexpr -> L.const_null i32_t

 | SNullexpr -> L.const_null i32_t

 | SId s -> L.build_load (lookup s) s builder

 | SId s -> L.build_load (lookup s) s builder

 | SNullexpr -> L.const_null i32_t

 | SNullexpr -> L.const_null i32_t

 | SId s -> L.build_load (lookup s) s builder

 | SId s -> L.build_load (lookup s) s builder

 | SAssign (s, e) -> let e' = expr builder e in

 | SAssign (s, e) -> let e' = expr builder e in

 ignore(L.build_store e' (lookup s) builder); e'

 ignore(L.build_store e' (lookup s) builder); e'

 | SBinop ((A.Float,_) as e1, op, e2) ->

 | SBinop ((A.Float,_) as e1, op, e2) ->

 let e1' = expr builder e1

 let e1' = expr builder e1

 and e2' = expr builder e2 in

 and e2' = expr builder e2 in

 (match op with

 (match op with

 A.Add -> L.build_fadd

 A.Add -> L.build_fadd

 | A.Sub -> L.build_fsub

 | A.Sub -> L.build_fsub

 | A.Mult -> L.build_fmul

 | A.Mult -> L.build_fmul

 | A.Div -> L.build_fdiv

 | A.Div -> L.build_fdiv

 | A.BitAnd -> L.build_and

 | A.BitAnd -> L.build_and

 | A.BitOr -> L.build_or

 | A.BitOr -> L.build_or

 | A.Mod -> L.build_srem

 | A.Mod -> L.build_srem

 | A.Lshift -> L.build_shl

 | A.Lshift -> L.build_shl

 | A.Rshift -> L.build_ashr

 | A.Rshift -> L.build_ashr

 | A.Equal -> L.build_fcmp L.Fcmp.Oeq

 | A.Equal -> L.build_fcmp L.Fcmp.Oeq

 | A.Neq -> L.build_fcmp L.Fcmp.One

 | A.Neq -> L.build_fcmp L.Fcmp.One

 | A.Less -> L.build_fcmp L.Fcmp.Olt

 | A.Less -> L.build_fcmp L.Fcmp.Olt

 | A.Leq -> L.build_fcmp L.Fcmp.Ole

 | A.Leq -> L.build_fcmp L.Fcmp.Ole

 | A.Greater -> L.build_fcmp L.Fcmp.Ogt

 | A.Greater -> L.build_fcmp L.Fcmp.Ogt

 | A.Geq -> L.build_fcmp L.Fcmp.Oge

 | A.Geq -> L.build_fcmp L.Fcmp.Oge

 | A.And | A.Or ->

 | A.And | A.Or ->

 raise (Failure "internal error: semant should have rejected and/or on float")

 raise (Failure "internal error: semant should have rejected and/or on float")

) e1' e2' "tmp" builder

) e1' e2' "tmp" builder

 | SBinop (e1, op, e2) ->

 | SBinop (e1, op, e2) ->

 let e1' = expr builder e1

 let e1' = expr builder e1

 and e2' = expr builder e2 in

 and e2' = expr builder e2 in

 (match op with

 (match op with

 A.Add -> L.build_add

 A.Add -> L.build_add

 | A.Sub -> L.build_sub

 | A.Sub -> L.build_sub

 | A.Mult -> L.build_mul

 | A.Mult -> L.build_mul

 | A.Div -> L.build_sdiv

 | A.Div -> L.build_sdiv

 | A.And -> L.build_and

 | A.And -> L.build_and

 | A.Or -> L.build_or

 | A.Or -> L.build_or

 | A.BitAnd -> L.build_and

 | A.BitAnd -> L.build_and

 | A.BitOr -> L.build_or

 | A.BitOr -> L.build_or

 | A.Mod -> L.build_srem

 | A.Mod -> L.build_srem

 | A.Lshift -> L.build_shl

 | A.Lshift -> L.build_shl

 | A.Rshift -> L.build_ashr

 | A.Rshift -> L.build_ashr

 | A.Equal -> L.build_icmp L.Icmp.Eq

 | A.Equal -> L.build_icmp L.Icmp.Eq

 | A.Neq -> L.build_icmp L.Icmp.Ne

 | A.Neq -> L.build_icmp L.Icmp.Ne

 | A.Less -> L.build_icmp L.Icmp.Slt

 | A.Less -> L.build_icmp L.Icmp.Slt

 | A.Leq -> L.build_icmp L.Icmp.Sle

 | A.Leq -> L.build_icmp L.Icmp.Sle

 | A.Greater -> L.build_icmp L.Icmp.Sgt

 | A.Greater -> L.build_icmp L.Icmp.Sgt

 | A.Geq -> L.build_icmp L.Icmp.Sge

 | A.Geq -> L.build_icmp L.Icmp.Sge

) e1' e2' "tmp" builder

) e1' e2' "tmp" builder

 | SUnop(op, ((t, _) as e)) ->

 | SUnop(op, ((t, _) as e)) ->

 let e' = expr builder e in

 let e' = expr builder e in

 (match op with

 (match op with

 A.Neg when t = A.Float -> L.build_fneg

 A.Neg when t = A.Float -> L.build_fneg

 | A.Neg -> L.build_neg

 | A.Neg -> L.build_neg

 | A.Not -> L.build_not) e' "tmp" builder

 | A.Not -> L.build_not) e' "tmp" builder

 | SCall ("print", [e]) | SCall ("printb", [e]) ->

 | SCall ("print", [e]) | SCall ("printb", [e]) ->

 L.build_call printf_func [| int_format_str ; (expr builder e) |]

 L.build_call printf_func [| int_format_str ; (expr builder e) |]

 "printf" builder

 "printf" builder

 | SCall ("printbig", [e]) ->

 | SCall ("printbig", [e]) ->

 L.build_call printbig_func [| (expr builder e) |] "printbig" builder

 L.build_call printbig_func [| (expr builder e) |] "printbig" builder

 | SCall ("printf", [e]) ->

 | SCall ("printf", [e]) ->

 L.build_call printf_func [| float_format_str ; (expr builder e) |]

 L.build_call printf_func [| float_format_str ; (expr builder e) |]

 "printf" builder

 "printf" builder

 | SCall (f, args) ->

 | SCall (f, args) ->

 let (fdef, fdecl) = StringMap.find f function_decls in

 let (fdef, fdecl) = StringMap.find f function_decls in

 let llargs = List.rev (List.map (expr builder) (List.rev args)) in

 let llargs = List.rev (List.map (expr builder) (List.rev args)) in

 let result = (match fdecl.styp with

 let result = (match fdecl.styp with

 let llargs = List.rev (List.map (expr builder) (List.rev args)) in

 let llargs = List.rev (List.map (expr builder) (List.rev args)) in

 let result = (match fdecl.styp with

 let result = (match fdecl.styp with

 A.Void -> ""

 A.Void -> ""

 | _ -> f ^ "_result") in

 | _ -> f ^ "_result") in

 L.build_call fdef (Array.of_list llargs) result builder

 L.build_call fdef (Array.of_list llargs) result builder

 in

 in

 let add_terminal builder instr =

 let add_terminal builder instr =

 match L.block_terminator (L.insertion_block builder) with

 match L.block_terminator (L.insertion_block builder) with

 Some _ -> ()

 Some _ -> ()

 | None -> ignore (instr builder) in

 | None -> ignore (instr builder) in

 let rec stmt builder = function

 let rec stmt builder = function

 SBlock sl -> List.fold_left stmt builder sl

 SBlock sl -> List.fold_left stmt builder sl

 | SExpr e -> ignore(expr builder e); builder

 | SExpr e -> ignore(expr builder e); builder

 | SReturn e -> ignore(match fdecl.styp with

 | SReturn e -> ignore(match fdecl.styp with

 A.Void -> L.build_ret_void builder

 A.Void -> L.build_ret_void builder

 | _ -> L.build_ret (expr builder e) builder);

 | _ -> L.build_ret (expr builder e) builder);

 builder

 builder

 | SIf (predicate, then_stmt, else_stmt) ->

 | SIf (predicate, then_stmt, else_stmt) ->

 let bool_val = expr builder predicate in

 let bool_val = expr builder predicate in

 let merge_bb = L.append_block context "merge" the_function in

 let merge_bb = L.append_block context "merge" the_function in

 let build_br_merge = L.build_br merge_bb in

 let build_br_merge = L.build_br merge_bb in

 let then_bb = L.append_block context "then" the_function in

 let then_bb = L.append_block context "then" the_function in

 add_terminal (stmt (L.builder_at_end context then_bb) then_stmt)

 add_terminal (stmt (L.builder_at_end context then_bb) then_stmt)

 build_br_merge;

 build_br_merge;

 let else_bb = L.append_block context "else" the_function in

 let else_bb = L.append_block context "else" the_function in

 add_terminal (stmt (L.builder_at_end context else_bb) else_stmt)

 add_terminal (stmt (L.builder_at_end context else_bb) else_stmt)

 build_br_merge;

 build_br_merge;

 ignore(L.build_cond_br bool_val then_bb else_bb builder);

 ignore(L.build_cond_br bool_val then_bb else_bb builder);

 L.builder_at_end context merge_bb

 L.builder_at_end context merge_bb

 in

 in

 let builder = stmt builder (SBlock fdecl.sbody) in

 let builder = stmt builder (SBlock fdecl.sbody) in

 add_terminal builder (match fdecl.styp with

 add_terminal builder (match fdecl.styp with

 A.Void -> L.build_ret_void

 A.Void -> L.build_ret_void

 | A.Float -> L.build_ret (L.const_float float_t 0.0)

 | A.Float -> L.build_ret (L.const_float float_t 0.0)

 | t -> L.build_ret (L.const_int (ltype_of_typ t) 0))

 | t -> L.build_ret (L.const_int (ltype_of_typ t) 0))

 in

 in

 List.iter build_function_body functions;

 List.iter build_function_body functions;

 the_module

 the_module

Test Files

Test Files

fail-assign1.cs

fail-assign1.cs

{

{

int

int

 i;

 i;

bool

bool

 b;

 b;

 i =

 i =

false

false

;

;

/* Fail: assigning a bool to an integer */

/* Fail: assigning a bool to an integer */

}

}

fail-assign1.err

fail-assign1.err

Fatal error: exception Failure("illegal assignment int = bool in i = false")

Fatal error: exception Failure("illegal assignment int = bool in i = false")

fail-assign2.cs

fail-assign2.cs

fn int main()

fn int main()

{

{

 int i;

 int i;

 bool b;

 bool b;

 b = 20; /* Fail: assigning an integer to a bool */

 b = 20; /* Fail: assigning an integer to a bool */

}

}

fail-assign2.err

fail-assign2.err

Fatal error: exception Failure("illegal assignment bool = int in b = 20")

Fatal error: exception Failure("illegal assignment bool = int in b = 20")

fail-assign3.cs

fail-assign3.cs

fn void voidfn()

fn void voidfn()

{

{

 return;

 return;

}

}

fn int main()

fn int main()

{

{

 int i;

 int i;

 i = voidfn(); /* Fail: assigning a void to an integer */

 i = voidfn(); /* Fail: assigning a void to an integer */

}

}

fail-assign3.err

fail-assign3.err

Fatal error: exception Failure("illegal assignment int = void in i = voidfn()")

Fatal error: exception Failure("illegal assignment int = void in i = voidfn()")

fail-assign4.cs

fail-assign4.cs

fn int main()

fn int main()

{

{

 int i = 4;

 int i = 4;

 i = null; /* Fail: assigning a null to an integer */

 i = null; /* Fail: assigning a null to an integer */

}

}

fail-assign4.err

fail-assign4.err

Fatal error: exception Stdlib.Parsing.Parse_error

Fatal error: exception Stdlib.Parsing.Parse_error

fail-dead.cs

fail-dead.cs

fn int main()

fn int main()

{

{

 int i = 2;

 int i = 2;

 return i;

 return i;

 i = 32; /* Error: code after a return */

 i = 32; /* Error: code after a return */

}

}

fail-dead.err

fail-dead.err

Fatal error: exception Stdlib.Parsing.Parse_error

Fatal error: exception Stdlib.Parsing.Parse_error

fail-expr.cs

fail-expr.cs

fn void foo(int a, bool b)

fn void foo(int a, bool b)

{

{

 a + b; /* Error: int + bool */

 a + b; /* Error: int + bool */

}

}

fn int main()

fn int main()

{

{

 foo(2, true)

 foo(2, true)

 return 0;

 return 0;

}

}

fail-expr.err

fail-expr.err

Fatal error: exception Stdlib.Parsing.Parse_error

Fatal error: exception Stdlib.Parsing.Parse_error

fail-func1.cs

fail-func1.cs

fn int foo() {}

fn int foo() {}

fn int bar() {}

fn int bar() {}

fn int baz() {}

fn int baz() {}

fn void bar() {} /* Error: duplicate function bar */

fn void bar() {} /* Error: duplicate function bar */

fn int main()

fn int main()

{

{

 return 0;

 return 0;

}

}

fail-func1.err

fail-func1.err

Fatal error: exception Failure("duplicate function bar")

Fatal error: exception Failure("duplicate function bar")

fail-func2.cs

fail-func2.cs

fn int foo(int a, bool b, int c) { }

fn int foo(int a, bool b, int c) { }

fn void bar(int a, void b, int c) {} /* Error: illegal void formal b */

fn void bar(int a, void b, int c) {} /* Error: illegal void formal b */

fn int main()

fn int main()

{

{

 return 0;

 return 0;

}

}

fail-func2.err

fail-func2.err

Fatal error: exception Failure("illegal void formal b")

Fatal error: exception Failure("illegal void formal b")

fail-func3.cs

fail-func3.cs

fn void foo(int a, bool b)

fn void foo(int a, bool b)

{

{

}

}

fn int main()

fn int main()

{

{

 foo(20, true);

 foo(20, true);

 foo(20); /* Wrong number of arguments */

 foo(20); /* Wrong number of arguments */

}

}

fail-func3.err

fail-func3.err

Fatal error: exception Failure("expecting 2 arguments in foo(20)")

Fatal error: exception Failure("expecting 2 arguments in foo(20)")

fail-func4.cs

fail-func4.cs

fn void foo(int a, bool b)

fn void foo(int a, bool b)

{

{

}

}

fn void bar()

fn void bar()

{

{

}

}

fn int main()

fn int main()

{

{

 foo(20, true);

 foo(20, true);

 foo(20, bar()); /* int and void, not int and bool */

 foo(20, bar()); /* int and void, not int and bool */

}

}

fail-func4.err

fail-func4.err

Fatal error: exception Failure("illegal argument found void expected bool in bar()")

Fatal error: exception Failure("illegal argument found void expected bool in bar()")

fail-func5.cs

fail-func5.cs

fn void foo(int a, bool b)

fn void foo(int a, bool b)

{

{

}

}

fn int main()

fn int main()

{

{

 foo(20, true);

 foo(20, true);

 foo(20, 20); /* Fail: int, not bool */

 foo(20, 20); /* Fail: int, not bool */

}

}

fail-func5.err

fail-func5.err

Fatal error: exception Failure("illegal argument found int expected bool in 20")

Fatal error: exception Failure("illegal argument found int expected bool in 20")

fail-if1.cs

fail-if1.cs

fn int main()

fn int main()

{

{

 if (20) {} /* Error: int not bool type */

 if (20) {} /* Error: int not bool type */

}

}

fail-if1.err

fail-if1.err

Fatal error: exception Failure("expected Boolean expression in 20")

Fatal error: exception Failure("expected Boolean expression in 20")

fail-if2.cs

fail-if2.cs

fn int main()

fn int main()

{

{

 if (true) {

 if (true) {

 a; /* Error: undeclared variable */

 a; /* Error: undeclared variable */

 }

 }

}

}

fail-if2.err

fail-if2.err

Fatal error: exception Failure("undeclared identifier a")

Fatal error: exception Failure("undeclared identifier a")

fail-nomain.cs

fail-nomain.cs

fail-nomain.err

fail-nomain.err

Fatal error: exception Failure("unrecognized function main")

Fatal error: exception Failure("unrecognized function main")

fail-return.cs

fail-return.cs

fn int main()

fn int main()

{

{

 return true; /* Should return int */

 return true; /* Should return int */

}

}

fail-return.err

fail-return.err

Fatal error: exception Failure("return gives bool expected int in true")

Fatal error: exception Failure("return gives bool expected int in true")

test-add.cs

test-add.cs

fn int main()

fn int main()

{

{

 print(20+10);

 print(20+10);

 return 0;

 return 0;

}

}

test-add.out

test-add.out

30

30

test-func1.cs

test-func1.cs

fn int add(int a, int b)

fn int add(int a, int b)

{

{

 return a + b;

 return a + b;

}

}

fn int main()

fn int main()

{

{

 int a;

 int a;

 a = add(20, 30);

 a = add(20, 30);

 print(a);

 print(a);

 return 0;

 return 0;

}

}

test-func1.out

test-func1.out

50

50

test-func2.cs

test-func2.cs

fn void printall(int a, int b, int c, int d)

fn void printall(int a, int b, int c, int d)

{

{

 print(a);

 print(a);

 print(b);

 print(b);

 print(c);

 print(c);

 print(d);

 print(d);

}

}

fn int main()

fn int main()

{

{

 printall(10, 20, 30, 40);

 printall(10, 20, 30, 40);

 return 0;

 return 0;

}

}

test-func2.out

test-func2.out

10

10

20

20

30

30

40

40

test-func3.cs

test-func3.cs

fn int sub(int a, int b)

fn int sub(int a, int b)

{

{

 int c;

 int c;

 c = a - b;

 c = a - b;

 return c;

 return c;

}

}

fn int main()

fn int main()

{

{

 int d;

 int d;

 d = sub(30, 20);

 d = sub(30, 20);

 print(d);

 print(d);

 return 0;

 return 0;

}

}

test-func3.out

test-func3.out

10

10

test-func4.cs

test-func4.cs

fn int foo(int a)

fn int foo(int a)

{

{

 return a;

 return a;

}

}

fn int main()

fn int main()

{

{

 return 0;

 return 0;

}

}

test-func4.out

test-func4.out

test-func5.cs

test-func5.cs

int a;

int a;

fn void foo(int x)

fn void foo(int x)

{

{

 a = x + 20;

 a = x + 20;

}

}

fn int main()

fn int main()

{

{

 foo(20);

 foo(20);

 print(a);

 print(a);

 return 0;

 return 0;

}

}

test-func5.out

test-func5.out

40

40

test-global1.cs

test-global1.cs

bool i;

bool i;

fn int main()

fn int main()

{

{

 int i; /* Should hide the global i */

 int i; /* Should hide the global i */

 i = 20;

 i = 20;

 print(i + i);

 print(i + i);

 return 0;

 return 0;

}

}

test-global1.out

test-global1.out

40

40

test-if1.cs

test-if1.cs

fn int main()

fn int main()

{

{

 if (true) print(20);

 if (true) print(20);

 print(10);

 print(10);

 return 0;

 return 0;

}

}

test-if1.out

test-if1.out

20

20

10

10

test-if2.cs

test-if2.cs

fn int main()

fn int main()

{

{

 if (false) print(20);

 if (false) print(20);

 print(10);

 print(10);

 return 0;

 return 0;

}

}

test-if2.out

test-if2.out

10

10

test-local.cs

test-local.cs

fn void foo(bool i)

fn void foo(bool i)

{

{

 int i; /* Should hide the bool i */

 int i; /* Should hide the bool i */

 i = 20;

 i = 20;

 print(i + i);

 print(i + i);

}

}

fn int main()

fn int main()

{

{

 foo(true);

 foo(true);

 return 0;

 return 0;

}

}

test-local.out

test-local.out

40

40

test-num.cs

test-num.cs

fn int main()

fn int main()

{

{

 print(20);

 print(20);

 return 0;

 return 0;

}

}

test-num.out

test-num.out

20

20

test-ops1.cs

test-ops1.cs

fn int main()

fn int main()

{

{

 print(1 + 2);

 print(1 + 2);

 print(1 - 2);

 print(1 - 2);

 print(1 * 2);

 print(1 * 2);

 print(1 % 2);

 print(1 % 2);

 print(100 / 2);

 print(100 / 2);

 print(99);

 print(99);

 printb(1 == 2);

 printb(1 == 2);

 printb(1 == 1);

 printb(1 == 1);

 print(99);

 print(99);

 printb(1 != 2);

 printb(1 != 2);

 printb(1 != 1);

 printb(1 != 1);

 print(99);

 print(99);

 printb(1 < 2);

 printb(1 < 2);

 printb(2 < 1);

 printb(2 < 1);

 print(99);

 print(99);

 printb(1 <= 2);

 printb(1 <= 2);

 printb(1 <= 1);

 printb(1 <= 1);

 printb(2 <= 1);

 printb(2 <= 1);

 print(99);

 print(99);

 printb(1 > 2);

 printb(1 > 2);

 printb(2 > 1);

 printb(2 > 1);

 print(99);

 print(99);

 printb(1 >= 2);

 printb(1 >= 2);

 printb(1 >= 1);

 printb(1 >= 1);

 printb(2 >= 1);

 printb(2 >= 1);

 /*print(99);

 /*print(99);

 printb(1 || 2);

 printb(1 || 2);

 printb(1 || 1);

 printb(1 || 1);

 printb(2 || 1);

 printb(2 || 1);

 print(99);

 print(99);

 printb(1 && 2);

 printb(1 && 2);

 printb(1 && 1);

 printb(1 && 1);

 printb(2 && 1);

 printb(2 && 1);

 print(99);

 print(99);

 printb(1 << 2);

 printb(1 << 2);

 printb(1 << 1);

 printb(1 << 1);

 printb(2 << 1);

 printb(2 << 1);

 print(99);

 print(99);

 printb(1 >> 2);

 printb(1 >> 2);

 printb(1 >> 1);

 printb(1 >> 1);

 printb(2 >> 1);

 printb(2 >> 1);

 return 0;*/

 return 0;*/

}

}

test-ops1.out

test-ops1.out

3

3

-1

-1

2

2

1

1

50

50

99

99

0

0

1

1

99

99

1

1

0

0

99

99

1

1

0

0

99

99

1

1

1

1

0

0

99

99

0

0

1

1

99

99

0

0

1

1

1

1

test-ops2.cs

test-ops2.cs

fn int main()

fn int main()

{

{

 printb(true);

 printb(true);

 printb(false);

 printb(false);

 printb(true & true);

 printb(true & true);

 printb(true & false);

 printb(true & false);

 printb(false & true);

 printb(false & true);

 printb(false & false);

 printb(false & false);

 printb(true | true);

 printb(true | true);

 printb(true | false);

 printb(true | false);

 printb(false | true);

 printb(false | true);

 printb(false | false);

 printb(false | false);

 printb(!false);

 printb(!false);

 printb(!true);

 printb(!true);

 print(-10);

 print(-10);

 print(--42);

 print(--42);

}

}

test-ops2.out

test-ops2.out

1

1

0

0

1

1

0

0

0

0

0

0

1

1

1

1

1

1

0

0

1

1

0

0

-10

-10

42

42

test-printbig.cs

test-printbig.cs

fn int main()

fn int main()

{

{

 printbig(72); /* H */

 printbig(72); /* H */

 printbig(69); /* E */

 printbig(69); /* E */

 printbig(76); /* L */

 printbig(76); /* L */

 printbig(76); /* L */

 printbig(76); /* L */

 printbig(79); /* O */

 printbig(79); /* O */

 printbig(32); /* */

 printbig(32); /* */

 printbig(87); /* W */

 printbig(87); /* W */

 printbig(79); /* O */

 printbig(79); /* O */

 printbig(82); /* R */

 printbig(82); /* R */

 printbig(76); /* L */

 printbig(76); /* L */

 printbig(68); /* D */

 printbig(68); /* D */

 return 0;

 return 0;

}

}

test-printbig.out

test-printbig.out

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XX

 XX

 XX

 XX

 XX

 XX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XX XX XX

 XX XX XX

 XX XX XX

 XX XX XX

 XX XX XX

 XX XX XX

 XX XX

 XX XX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XX

 XX

 XX

 XX

 XX

 XX

 XX

 XX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XX

 XX

 XX

 XX

 XX

 XX

 XX

 XX

 XXXXXXXXXX

 XXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XX XX

 XX XX

 XX XX

 XX XX

 XX XX

 XX XX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXX

 XXXXXXXXXX

 XXXXXXXXXX

 XXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXX

 XXXXXX

 XXXXXX

 XXXXXX

 XXXXXX

 XXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXX

 XXXXXXXXXX

 XXXXXXXXXX

 XXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XX XX

 XX XX

 XX XX

 XX XX

 XX XX

 XX XX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXX

 XXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XX XX

 XX XX

 XXXX XX

 XXXX XX

 XXXXXXXX XX

 XXXXXXXX XX

 XXXX XXXXXXXX

 XXXX XXXXXXXX

 XX XXXXXX

 XX XXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XX

 XX

 XX

 XX

 XX

 XX

 XX

 XX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XXXXXXXXXXXXXX

 XX XX

 XX XX

 XX XX

 XX XX

 XXXX XXXX

 XXXX XXXX

 XXXXXXXXXX

 XXXXXXXXXX

 XXXXXX

 XXXXXX

test-var1.cs

test-var1.cs

fn int main()

fn int main()

{

{

 int i;

 int i;

 i = 20;

 i = 20;

 print(i);

 print(i);

 return 0;

 return 0;

}

}

test-var1.out

test-var1.out

20

20

test-var2.cs

test-var2.cs

int i;

int i;

fn void foo(int x)

fn void foo(int x)

{

{

 i = x * 20;

 i = x * 20;

}

}

fn int main()

fn int main()

{

{

 foo(1);

 foo(1);

 print(i);

 print(i);

 return 0;

 return 0;

}

}

test-var2.out

test-var2.out

20

20

	C* - Final Report
	Authors

	Table of Contents
	1. Introduction
	2. Language Tutorial
	Writing a Cstar Program (.cs)

	3. Language Manual - What the Language Should Have Been
	Introduction
	A C* Program
	Modules
	Identifiers
	Keywords
	Comments
	// Single-Line Comments
	/* */ Nested, Multi-Line Comments
	/- Structural Comments

	pub Publicity
	Annotations
	use Declarations
	lets
	Value lets
	Type lets aka Type Aliases

	fn Function Declarations
	Generic Parameters
	Parameters
	Return Type
	Return Value
	Function Examples

	struct Declarations
	enum Declarations
	union Declarations *
	impl Blocks

	Type System
	Primitive Types
	() Unit Type
	bool Type
	Integer Types
	Float Types
	character Type

	Built-In Compound Types
	Reference Types
	Slice Types

	Array Types
	Pointer Types
	Tuple Types
	Function Types

	User-Defined Compound Types
	struct Types
	enum Types
	union Types

	Destructive Moves
	Expressions
	Literals
	Unit Literals
	Boolean Literals
	Number Literals
	Character Literals
	String Literals
	Struct Literals
	Tuple Literals
	Array Literals
	Enum Literals
	Union Literals
	Function Literals
	Closure Literals
	Range Literals

	Function Calls
	Method Calls

	Blocks
	Control Flow
	Pattern Matching
	Conditionals
	Labels
	Loops
	defer
	Error Handling

	Operators

	Generics
	Constant Evaluation
	Builtin Functions
	Lang Types
	Option
	Result

	4. Project Plan
	Original Roles and Responsibilities

	5. Architectural Design
	Scanner - scanner.mll
	Parser - parser.mly
	Semantic Checker -semant.ml
	Code Generator - codegen.ml

	6. Test Plan
	test-if2.cs
	test-if2.out

	7. Lessons Learned
	8. Appendix
	Source Files
	cstar.ml
	scanner.mll
	parser.mly
	ast.ml
	sast.ml
	semant.ml
	codegen.ml

	Test Files
	fail-assign1.cs
	fail-assign1.err
	fail-assign2.cs
	fail-assign2.err
	fail-assign3.cs
	fail-assign3.err
	fail-assign4.cs
	fail-assign4.err
	fail-dead.cs
	fail-dead.err
	fail-expr.cs
	fail-expr.err
	fail-func1.cs
	fail-func1.err
	fail-func2.cs
	fail-func2.err
	fail-func3.cs
	fail-func3.err
	fail-func4.cs
	fail-func4.err
	fail-func5.cs
	fail-func5.err
	fail-if1.cs
	fail-if1.err
	fail-if2.cs
	fail-if2.err
	fail-nomain.cs
	fail-nomain.err
	fail-return.cs
	fail-return.err
	test-add.cs
	test-add.out
	test-func1.cs
	test-func1.out
	test-func2.cs
	test-func2.out
	test-func3.cs
	test-func3.out
	test-func4.cs
	test-func4.out
	test-func5.cs
	test-func5.out
	test-global1.cs
	test-global1.out
	test-if1.cs
	test-if1.out
	test-if2.cs
	test-if2.out
	test-local.cs
	test-local.out
	test-num.cs
	test-num.out
	test-ops1.cs
	test-ops1.out
	test-ops2.cs
	test-ops2.out
	test-printbig.cs
	test-printbig.out
	test-var1.cs
	test-var1.out
	test-var2.cs
	test-var2.out

