4

MX

An intuitive and non-imposing Matrix Language

Final Report

Rashel Rojas
Wilderness Oberman
Mauricio Guerrero

Aaron Jackson

December 21, 2021

Introduction

Language Tutorial

Dependencies

Compiling the MX compiler
Compiling an MX program
Sample Program

Language Manual

Lexical conventions
Comments
Identifiers
Key words
Strings
Primitive Types
Types
Implicit Casting on Arithmetic Operations
Operators
Unary Operators
Assignment operator
Matrix Operators
Relational Operators
Logic Operators
Order of Precedence
Separators
Declarations
Declaring primitive types:
Initializing variables:
Functions
Statements
Expression statements
Conditional statements
While statement
For statement
Return statement
Scope
Function calls
Sample Code

Project Plan

O 0 0 0 X0 X0 X0 N N N 2 AN L L L I A

ke e e ek ek ek e e e e e pd ek e e
B LW LW W W W W W WRN NN~~~ —= OO

[y
|

Processes
Planning
Specification
Development
Testing

Style Guide

Timeline

Roles and Responsibility

Tools

Project Log

Architectural Design
Architecture Overview
mx.ml (Aaron)
Scanner.ml (Rashel, Mauricio, Wilderness, Aaron)
Parser.mly (Rashel, Mauricio, Wilderness, Aaron)
Ast.ml (Rashel, Mauricio, Wilderness, Aaron)
Semant.ml (Aaron)
Sast.ml (Aaron)
Codegen.ml (Aaron)
mx.c (Wilderness, Aaron)

Test Plan
Two Representative Programs
Test Suite and Automation
Roles

Lessons Learned
Aaron Jackson
Wilderness Oberman
Rashel Rojas
Mauricio Guerrero

Appendix
Project Log
References
Project Code

Scanner.mll (Rashel Rojas, Wilderness Oberman, Aaron Jackson, Mauricio Guerrero)
Parser.mly (Rashel Rojas, Wilderness Oberman, Aaron Jackson, Mauricio Guerrero)
Ast.ml (Rashel Rojas, Wilderness Oberman, Aaron Jackson, Mauricio Guerrero)

semant.ml (Aaron Jackson)

sast.ml (Aaron Jackson)

codegen.ml (Aaron Jackson)

mx.c (Wilderness Oberman, Aaron Jackson)

Makefile (Rashel Rojas, Wilderness Oberman, Aaron Jackson, Mauricio Guerrero)
Tests

Jtestall.sh

Test Suite

66
72
74
85

95
95
99

Introduction

Our proposed language, MX, aims to offer programmers an intuitive and efficient means
of creating and manipulating matrices.

Although matrices are robust and powerful mathematical structures that are paramount to
various fields of Computer Science - attempting to navigate them often results in
unnecessary complexities. Moreover, most typical programming languages lack the
coherent means of handling matrices without the additional importation of an outside
library of some sort. Thus, MX seeks to make matrix processing all the more simpler
through providing a streamlined experience of maneuvering matrices.

MX seeks to overhaul the current matrix handling experience by providing one that
should be both intuitive and familiar to programmers. MX aims to be intuitive to
programmers through its inclusion of the matrix as a data type. By doing this, it hopes to
offer users an uncomplicated means of handling matrices that is not too dissimilar from
how they might operate more common data types. Moreover, as much of MX follows
typical C and Java syntax, it hopes to provide programmers a familiar coding experience
that is effortless to pick up on. Programmers will be free to decide for themselves how
involved or peripheral they would like MX’s matrix handling capabilities to be in their
work. Lastly, MX will contain a vigorous built-in library of functions which aims to
efficiently automate even the most complex matrix operations. Through implementing
standard matrix operations by means of its inclusion as a data type, and providing more
intricate manipulations as built-in functions, MX will supply programmers with the
components necessary to construct their own complex matrix related functions.

Language Tutorial

2.1. Dependencies

Before jumping in, we recommend running this language and all of its associated
tests with the following requirements installed:

e (lang/LLVM version 13.0.0
® Ocaml 4.12.0

We don’t anticipate any major differences in the functionality of the language but
we have noticed that members with different versions of LLVM and OCaml
would receive different error messages for Fatal Exceptions - thus causing tests to
fail on one machine and pass on another. The above configurations were used to
write the tests and all tests should pass with these settings.

2.2.

2.3.

2.4.

Compiling the MX compiler
Upon unzipping the mx.zip file, cd into the MX/ directory and run:

S make

This command should both build the mx.native compiler and also run all of our
tests via the .testall.sh script.

Compiling an MX program

We’ve provided a script that both builds the mx.native compiler and uses it to
compile an argument provided on the command line. To test this script, make a
file in your root directory called hello.mx fill it with the following:

int main () {
prints (“Hello World!”);
return 0;

After saving the file, in the root directory, run:

./cmx.sh hello.mx

This should both build an executable file and also execute it.

Sample Program

This sample program is provided as a brief tour of the MX syntax. In this snippet
of code, you will be able to view examples of Function Declarations, Control
Flow, 5 of the 6 MX data types (void excluded), Variable Declarations, Variable
Initialization, the MX Matrix Literal, Function calls and Single and Multi line
comments. Much of the syntax is based on Micro C.

int gcd(int a, int b) {
while (a != b) {

if (a > b) a = a - b;
else b = b - a;
}

return a;

int main ()

String s; Matrix m; bool b; float f; int a;

"Hello World";
= 2.1;

2;

false;
[(11,21,03,411;

83 0O © th 0
Il

4

print (gcd(2,14))
print (gcd(3,15));
print (gcd(99,121));

#A single line comment

/* A multi line
comment */
return O;

Language Manual

3.1. Lexical conventions
3.1.1. Comments
e The # character begins single-line comments
e /* begins a multi-line comment and * / terminates multi-line
comments.

3.1.2. Identifiers
e Identifiers are sequences of letters and digits, in which the first
character has to be a letter. Inclusive of lowercase and uppercase
letters. Identifiers may contain underscores. The type of the

identifier as well as its initial value must be specified upon
declaration of the identifier.

3.1.3. Key words
e The following identifiers are reserved and may not be used

otherwise
e int e Dbool
e float e String
e for ® False
® return ® Matrix
e if e while
® eclse ® True
e void

e The following identifiers are reserved for function names. A
function may not be declared using the following keywords

® main e numCols

® numRows e transformation
® print matrix ® prints

® identity ® print matrix

e printf e Printb

e pi ® print

3.1.4. Strings
e A sequence of zero or more characters (lowercase/upper case),
digits, enclosed in double quotes. Strings with only one character
are still considered to be variables of type String and not type char.

3.2. Primitive Types
3.2.1. Types
e int - signed integer type, 4 bytes
e float -signed floating-point type, 8 bytes
® Dbool - has the value of true/false, 1 byte
e void -used for functions that do not return a value.
e Matrix - MX’s Matrix data type which consists of elements of

type int only.

3.2.2. Implicit Casting on Arithmetic Operations
e If there is an arithmetic operation between an int and float (i.e.
addition, subtraction, multiplication, division), then cast the int
value to a float.

e Note: Assignment (=, +=, -=, *=) and relational
(<, >, 1=, ==, etc.) operators do not support int to float casting.

3.3. Operators
3.3.1. Unary Operators
® !expr
® -expr
3.3.2. Assignment operator
e Values may be assigned to variables via the following syntax:
0 Identifier = expr;
o Where the value in expression will be assigned to the
identifier

e The values of the results of arithmetic operations may also be
assigned via the following syntax:
o0 ID += Expr
m Assignment by sum
0 ID —-= EXpr
m Assignment by difference
o ID *= Expr
m Assignment by product
o Note: Assignment operators (=, +=, -=, *=) do not support
int to float casting

3.3.3. Arithmetic Operators
® FExpr + EXpr
o The result is the sum of the expressions. This operation
may only be performed between expressions of type int and
type float. If performed between an expression of type int
and another expression of type float (i.e. int a + float b), the
int is converted to a float and the type of the sum is of type
float.
® FExpr - EXpr
o The result is the difference of the expressions. The same
type considerations for addition apply.
® [Lxpr * Expr
o The result is the product of the expressions. The same type
considerations for addition apply.
® Expr / Expr
o The result is the quotient of the expressions. The same type
considerations for addition apply.

3.3.4. Matrix Operators

The following section details operators that are specific to MX’s Matrix data type
and the operations that can be performed between multiple expressions of type
Matrix and, to a lesser extent, type int.

® Matrix +. Matrix
o The result is the sum of two expressions of type Matrix.
This operation may only be performed between two
expressions of type Matrix whose elements are of type int.
® Matrix —-. Matrix
o The result is the difference between two expressions of
type Matrix. This operation may only be performed
between two expressions of type Matrix whose elements
are of type int.
® Matrix *. Matrix
o The result is the product of two expressions of type Matrix.
This operation may only be performed between two
expressions of type Matrix whose elements are of type int.
® Matrix **. Expr

o This operator indicates scalar multiplication between an
expression of type Matrix and another expression of type
int. Associativity is irrelevant.

® Matrix’

o This operator returns the transpose of a matrix. Return type

is Matrix.

3.3.5. Relational Operators

3

The following operators are reserved for comparison between two expressions.
Each operator yields 1 if the comparison is True and 0 if it is false. Comparison
between expressions requires that each expression be of the same type. The last
two operators have lower precedence than the first four.

® FExpr < EXpr
® FExpr > EXpr
® FIxpr <= Expr
® Expr >= ExXpr
® FExpr == EXpr
® FExpr != Expr
°

Note: Relational operators do not support inf to float casting.

3.6. Logic Operators

® Expr && Expr
® ILxpr || Expr
e !FExpr

3.3.7. Order of Precedence
Precedence | Description Associativity
0 Grouping or Function call left-to-right
[] Array subscripting
- Unary minus right-to-left
! Logical NOT
¢ Transpose
*/ Arithmetic multiplication and division left-to-right

*, Matrix-matrix multiplication,

ok scalar-matrix multiplication

% Modulus

+ - Arithmetic addition and subtraction left-to-right
+. - Matrix addition and subtraction

<<= Less than, less than or equal to left-to-right
>>= Greater than, greater than or equal to

=== Is equal to, is not equal to left-to-right
&& Logical AND left-to-right
| Logical OR left-to-right
= Assignment right-to-left
t= .= *= Assignment operators

, Separates expressions left-to-right

3.4. Separators
3.4.1. Semicolon at the end of every statement (not including end of for/while
loop blocks, if/else statements)
3.4.2. Curly braces in for loops, while loops, if//else

343, OI01{}s,.
3.4.4. Ignore whitespace (don’t make it a token)
3.5. Declarations

All variables should be declared with their type specification and identifier only. Users
will not be allowed to declare and initialize variables in the same line.

3.5.1. Declaring primitive types:

® type var name;

3.5.2. Initializing variables:
e Variables may only be initialized after they have been declared and
not on the same line. For example, an int variable a that stores a
value of 2 may be declared and initialized as such:

3.5.3.

o Int a;
o a = 2;
e The following however is an incorrect method of initializing a
variable and will throw an error:
o Int a = 2;
Functions
e All functions must be defined when being declared. Function
names include letters/digits (lowercase/uppercase) and when
declaring functions, it should specify the return type as shown
below in datatype:

datatype foo (datatype parameterl, .. , datatype
parameter n) {

}
All functions are public.
e Every MX program should contain amain () function, which
starts every program.

3.6. Statements

3.6.1.

3.6.2.

3.6.3.

3.6.4.

Expression statements
e Expression statements take the form of “expr;”
Conditional statements
e Conditional statements may take the forms of:
o If (expr) { stmt; }
o If (expr) { stmt; } else { stmt; }

While statement
e while (expr) {
stmt;

For statement
e for(expr 1, expr 2, expr 3) {
stmt;

3.6.5. Return statement
e [fa function is of type void (As declared in its declaration), a
return statement is not required. Otherwise, a return statement is
required.

return expr;

3.7. Scope

Declarations made within functions are visible only within those functions (i.e. their
scope). A declaration is not visible to declarations that came before it. You cannot declare
an already declared variable, but redefining variables is allowed.

3.8. Function calls
3.8.1. Functions may be called using the following syntax:

e function name (parameter 1, .. , parameter n)

3.9. Sample Code

Basic syntax: example of a user defined function for determining the greatest common
divisor of two integers

int gcd(int x, int y)

{

example of a simple user-defined function
while (x !=y)
{

if (x > y)

X -=Y;
else
-= X
}

return x;

int main ()

{
int x 3
int y 5
int z = gcd(x, y);
printf("%d", z); # prints 3
return 0;

Simple program illustrating built in declaration and manipulation of
matrices in our language

int main()
{

Matrix mi;
Matrix m2;
Matrix m3;
Matrix m4;

ml = [[9, 1], [2, 3]]; # matrix declaration

print_matrix(ml);

m2 = [[3, 4], [4, 5]];

print_matrix(m2);

m3 = *. m2}
print_matrix(m3);

m4 = ml' +. m2;
print_matrix(m4);

return 0;

C-program approximation of matrix manipulation. As you can see, our language will
improve the way in which matrices are added, subtracted, etc. (less lines of code).

#tinclude <stdio.h>
#include <stdlib.h>

void add(int m[2][2], int n[2][2], int sum[2][2])
{

void multiply(int m[2][2], int n[2][2], int res[2][2])
{

}

void transpose(int matrix[2][2], int trans[2][2])

{

}

void print_matrix(int matrix[2][2])

{

}

int main()

{

4.

Project Plan

4.1.

Processes

4.1.1.

4.1.2.

Planning

Our MX Team was formed directly after the first lecture. We had not
known each other prior to this course and immediately set up a when2meet
to decide on an initial meeting time. After the initial meeting, we set a new
time for a weekly meeting, logged it in Google Calendar which we also
populated with other important events and deadlines, set up a shared
Google Drive folder for any project related documents (such as this Final
Report) and began brainstorming ideas for possible languages. As some
members of the group had familiarity with matrices and coded
implementations of them, and we figured that there would be a plethora of
resources at our disposal as many other groups would have made matrix
languages in the past, we decided to settle on a Matrix language (MX) for
our own project.

Soon, we ended up also setting another scheduled weekly meeting time -
which would take place directly after our weekly discussion with our TA
and allow us to debrief on any feedback we received. As deadlines
approached however, much of our scheduled meeting times were
exchanged for more frequent and spontaneous gatherings as we all thought
it best to work on the project together. Thus, much of the earlier
deliverables that defined what the language would look like such as the
proposal, LRM, Parser and AST were worked on together, whereas other
implementations that dealt moreso with actually implementing the
specifications we defined were worked on individually.

Specification

Our specification process ended up being somewhat mild. At its very core,
MX is a C-like language with a Matrix data type and that is the language
that, more or less, we were able to make. Specification would come in the

4.1.3.

4.1.4.

form however of editing our LRM to more closely resemble the syntax
and language functionality that we actually ended up / had the time to
implement. Getting the Matrix data type to work and mesh well with the
language was a priority so other features such as a variety of assignment
operators or declaring and initializing a variable in the same line had,
sadly, had to be cut.

Development

For early deliverables such as the Scanner, Parser and AST, we all thought
that it would be best to code these up together as these interfaces would
define the general structure of the MX language. For the Hello World
deliverable, we all worked individually to “figure out” the MicroC
architecture and how we could adopt it for our own language. Once one of
us had figured it out, we all regrouped and worked together on getting our
mx.native compiler to actually compile a simple MX source file and ended
up being able to compile and execute gcd.mx - which we submitted for our
hello world deliverable. Afterwards, we iterated on our Parser and AST
multiple times to better tailor them to how we’d like our language to be
handled in the back-end files (Semant.ml, Codegen, etc). Once done, we
worked individually on reconfiguring these same back-end files to
accommodate the Matrix datatype and its functionality. Once we had a
basic pipeline up and running, we were able to begin writing our Matrix
library and simultaneously write tests for it as we went along.

Testing

Because our language is very similar to the C language, we began our
project by borrowing lines from the MicroC project. When developing the
Scanner and Parser for our language, we used Ocamllex and Ocamlyacc,
respectively, to confirm that they were working correctly. When we began
adding more features, we tested our code by running simple examples
such as printing strings, printing matrices, etc. Once we started writing
built-in functions for matrices, we tested each one with test files that were
run as a collection via a test script, testall.sh. We created passing and
failing test cases and had the script compare their outputs to the expected
outputs in the .out and .err files in our test suite. We also added test files
for other components of our language such as if blocks, variable
assignment, user-created functions, etc.

4.2.

Style Guide

As all files were either worked on with everyone present or with only 1-2 people
assigned to a file, we did not determine it necessary to have a style guide.
Moreover, and a bit more honestly, we also did not have the foresight to develop

one.

We however, did have some general rules that were informally acknowledged and
agreed upon. These rules are as follows:

Ocaml

(@

Single line “let-in” statements may go on the same line

For Multi-line “let-in” statements, “let” and “in” should occupy their own
lines and all content between them must be indented by one tab.

All arrows for a pattern matching should be vertically aligned.

If the content following an arrow in a pattern match is multi-lined, then the
arrow should be on its own line and the proceeding content should be
indented to be vertically aligned with the beginning of the content of all
other pattern matches.

Attempt to align all vertical lines of each pattern match case.

Be mindful to comment seemingly trivial code.

Follow Standard indentation guidelines regarding braces.
Matrix function names should be analogous to their names in codegen.ml

Variable and function names should be camel case.

General

Make meaningful commit messages.

Alert everyone once you’ve pushed to the Repo.

Functionality over style - get the code working whatever way makes sense
to you then format later if possible.

Have fun!

4.3. Timeline

Oct. 3rd - Oct. 9th Language Proposal developed and
submitted.

Oct. 24th - Oct. 31st Repository made; LRM developed and
submitted; began working on parser.

Oct. 31st - Nov. 6th Parser complete; Scanner complete.

Nov. 7th - Nov. 13th Completed hello world deliverable;

developed bash script to run hello
world deliverable;

Nov. 14th - Nov. 20th Included Print String support;

Nov. 21st - Nov. 27th Iterated on Parser Matrix declaration
rules;

Nov. 28th - Dec. 4th Linked Matrix Library; General

pipeline for Matrix datatype up and
running; Makefile updated to
incorporate C library.

Dec. 5th - Dec. 11th Can now initialize Matrices;
Semant.ml error checks on matrix
literals; SMx structure changed; More
Matrix functions added to the Matrix
library.

Dec. 12th - Dec. 19th More functions added to mx.c; Matrix
operators implemented; testing suite in
development; Final proposal, slides
and demo program in development

Dec. 20th - Dec. 22nd Fully developed Language, Final
Report and Presentation.

4.4. Roles and Responsibility

For better or worse, team MX never decided on clearly defined roles and, instead,
decided on a structure wherein we would all help out where we could. For a

4.5.

4.6.

somewhat clearer image of what team members actually ended up working on,
please reference the following table:

Member Responsibilities
Aaron Jackson Language Guru, Co-manager, System
Architect
Rashel Rojas Language Guru, Co-manager, Tester
Wilderness Oberman Language Guru, Matrix Expert
Mauricio Guerrero Language Guru, Tester
Tools
4.5.1. Languages: Ocaml 4.12.0, LLVM / Clang 13.0.0., C, bash
4.5.2. Environment: Linux
4.5.3. Version Control: Github
4.54. Code Editor: Visual Studio Code
4.5.5. Documentation: Google Drive Suite
4.5.6. Operating Systems: Windows
4.5.7. Communication: SMS
Project Log

Please see appendix for project log

Architectural Design

5.1. Architecture Overview

. mil ‘

1

mx Source Semantic
File | Scanner |~tu:u|cen5){ Farser }—) AST —» T
Code
mx.c mebe —— T *| generator |* SAST
.0
| LLVM IR |
math_h M
L %f executable

Tl

mx.ml compiles into the mx.native compiler / driver file that calls the scanner,
parser, semant and codegen to act on the .mx source file and translate it into

Scanner.ml (Rashel, Mauricio, Wilderness, Aaron)

The scanner is the first interface that acts upon the .mx source code. The scanner
“scans” over the code and performs lexical analysis through aggregating the
inputted code into tokens which are then passed on to MX’s parser. If the scanner
passes over any illegal characters it will reject it and throw an error.

5.2. mx.ml (Aaron)
LLVM IR.

5.3.

54.

Parser.mly (Rashel, Mauricio, Wilderness, Aaron)

MX’s parser is based upon an unambiguous context-free grammar for the
arrangement of tokens found in the source code of MX source files. The parser

5.5.

5.6.

5.7.

5.8.

5.9.

receives these tokens from the scanner and, based on their arrangement, uses them
to generate an abstract syntax tree. If there are any irregular

Ast.ml (Rashel, Mauricio, Wilderness, Aaron)

MX’s abstract syntax tree represents the structure of the code of a MX source
file.

Semant.ml (Aaron)

MX’s Semant file parses through the AST produced by the Parser and performs a
semantic analysis on it to ensure that it is semantically correct. While performing
semantic analysis, the semantic checker extends and translates the AST into an
analogous SAST which features information regarding types. If the AST is
semantically correct, the semantic checker then outputs an SAST.

Sast.ml (Aaron)

MX’s semantic abstract syntax tree represents the structure of the code of an MX
source file with typing information included.

Codegen.ml (Aaron)

Once provided the SAST, MX’s codegen is responsible for generating the LLVM
IR code of an MX source file. The codegen also links in a bitcode (.bc) build of
MX’s C matrix library (mx.c) to represent the Matrix data type.

mx.c (Wilderness, Aaron)

mx.c is MX’s Matrix library built in C. This library contains information about
the Matrix datatype as well as various functions and operations for the Matrix
data type. A bitcode build of this file (mx.bc) is linked in the codegen and an
output build (mx.o) is linked with the MX executable file once the C compiler has
been called on the machine code implementation of the MX source file.

6. Test Plan

6.1.

Two Representative Programs

The program below shows a simple example of matrix declaration, the transpose
of a matrix, and the printing of matrices. The apostrophe on the sixth line
indicates the transpose operation, in which the rows of matrix m will become the
columns of matrix n.

int main () {
Matrix m;
Matrix n;

m= [[2,4],[6,8],[10,12]1];
n=m';

print matrix(m);

print matrix(n);

return O;

Below is the LLVM file generated for this program (sample-program1.11).

Below is our second program, which demonstrates some of our matrix operations:
addition, subtraction, multiplication, and scalar multiplication.

int main () {
Matrix ml;
Matrix m2;

ml = [[1,2],([3,4]];
m2 = [[2,4],16,8]];

print matrix(ml +. m2);
print matrix(ml -. m2);

print matrix(ml *. m2);
print matrix(m2 **. 3);

The LLVM code generated for this program is shown below.

6.2.

Test Suite and Automation

Note: All of our tests and their respective outputs can be found in the appendix.

Our testing script, testall. sh, was adopted from the MicroC compiler and
modified for our language. We used it to automatically run all of the tests in our
test suite.

Our test suite can be found in our tests/ folder and consists of three types of
files: .mx, .out,and .err. Test cases that we expect to compile and run
successfully begin with “test-""and those that we do not begin with “fail-".
Our testing script works by comparing the output of each . mx file to the expected
output, which can be found in the corresponding . out and . err files for
successful and failing test cases, respectively.

We chose test cases such that they provided a comprehensive view into all of the
possible exceptions that a typical coder using our language would encounter and
normal cases that that user would create. Our test cases can be broken down into
these main categories:

Variable declaration

Arithmetic operations on integers and floats
Matrix declaration and operations

Control flow

Function creation

Logical/relational operators

Printing

N kAE DD =

When our testing script is run, this is the expected result. The “OK” next to each
test case indicates that it ran successfully (the output matches what is in the
corresponding . out/. err file).

clang -emit-1lvm -o mx.bc -c mx.c -Wno-varargs
opam exec -- \

ocamlbuild -use-ocamlfind mx.native -pkgs 1llvm,llvm.analysis,llvm.bitreader
Finished, targets (9 cached) in
cc -C -0 mX.0 mx.c
./testall.sh
test-arithmetic...OK
test-assignment...OK
test-assignop...0K
test-for...0K
test-func...0K
test-ged...OK
test-hello...OK
test-if...0K
test-logicalops...OK
test-matrixAdd...OK
test-matrixIdentity...OK
test-matrixMul2...0OK
test-matrixMul...OK
test-matrix...OK
test-matrixRotation...OK
test-matrixRowsColumns. . .OK
test-matrixScalar...0K
test-matrixSub...0K
test-matrixTransformation...OK
test-matrixTranspose...0K
test-relationalops...OK
test-sampleprograml. . .OK
test-sampleprogram2...0K
test-transposel...OK
test-while...OK
fail-addl...OK
fail-add2...0K
fail-add3...0K
fail-add4...0K
fail-arithmetic2...0K
fail-arithmetic3...0K
fail-arithmetic...OK
fail-assignl...OK
fail-assign2...0K
fail-assign3...0K
fail-assignop...0K
fail-dead...OK
fail-for...0K
fail-funcargl..
fail-funcarg2..
fail-funcarg3..

fail-identityl...O0K
fail-identity2...0K
fail-if...0K
fail-matrix-declaration...OK
fail-matrixfunctionl...OK
fail-matrixfunction2...0K
fail-multl...OK
fail-mult2...0K
fail-mult3...0K
fail-mult4...0K
fail-nomain...OK
fail-numcols...OK
fail-numrows. . .OK
fail-opand...OK
fail-printb...0K
fail-printmatrix1...0K
fail-print...OK
fail-prints...OK
fail-reservedfuncs...OK
fail-scalemultl...OK
fail-scalemult2...0K
fail-subtractl...OK
fail-subtract2...0K
fail-transforml...OK
fail-transform2...0K
fail-transposel...OK
fail-transpose2...0K
fail-undecvar...0K
fail-whilel...OK

6.3. Roles

The testing script, testall. sh, was adopted from the MicroC compiler and
modified for our language by Mauricio. The fail test cases in the tests/ folder
were written by Rashel and the passing test cases were written by Rashel and
Mauricio.

7.

Lessons Learned

7.1.

7.2.

Aaron Jackson

Speaking candidly, initially, I was not very enthusiastic about this project and just
wanted to get it over with for the sake of completion. I was not very interested in
understanding how a language operated / functioned and the steep learning curve
that I was anticipating also did not do much to spark my interest. And, while most
of those things are still true - I think that, the more work and effort I put in to
actually understanding the material, the more I was able to actually enjoy the
work that I was doing on the project. Even OCaml became somewhat marginally
more enjoyable to use as I found myself having to implement it in various areas of
our project such as the codegen file.

My piece of advice for anyone that may be as unenthused about this project as I
was is to just rip off the band-aid and dive headfirst into the material instead of
avoiding it. It will be difficult and annoying at first - but it does get a lot easier
and more enjoyable the more you use it or even attempt to use it. If you’re like
me, you will fail to implement a lot of the things you initially set out to implement
- but failing at that one thing may give you insight into implementing an entirely
different thing so nothing is truly ever a waste of time! More concretely however -
spend a lot of time looking at the LLVM OCaml bindings (and be sure to ask the
TAs / Stephen what those actually are). I realized very late into our project just
what the point of the llvm.moe page was and I wish I had realized sooner as it
would have made implementing features in our language much simpler!

Moreover, I also highly recommend assigning group members specific
responsibilities from the get-go instead of leaving things up in the air until
someone decides to work on it. We did not assign specific responsibilities and I
feel that that resulted in a dynamic where one person would work on completing a
task and build domain experience in that area - but since no one else did, they
were unable to assist in future tasks regarding that area, which would lead to an
uneven distribution of labor. In addition to specific roles, I highly recommend
maybe assigning two people to each role (who can maybe pair-program together)
so that there is at least one other person with knowledge regarding a topic that can
assist / help pick up the workload.

Wilderness Oberman

When I learned that a group project was a necessary requirement for this class, I
don’t know which I dreaded more, the idea of working on a group project or

7.3.

designing a new language. The best advice I can offer is to choose your
teammates wisely; [was fortunate enough to find a group that equally divided
responsibilities for building our language, with each member working on a part
that played on their strengths. Although our original design idea was a bit
ambitious, and we wanted to include every single possible matrix function that
existed in linear algebra, it was necessary to set realistic goals and be flexible with
the language design for the completion of this project. Using the LRM as an
overall roadmap to building our language was helpful, but it’s important to realize
that by the time you finally get your language to compile and complete basic
operations, your language may look entirely different than what you had intended.
Designing and building a new language can seem like an impossible undertaking,
but using the MicroC code as the base of our language was extremely helpful in
understanding the complex OCaml code found in the Semant.ml and Codegen.
While there have been many times that [have been frustrated that certain
functions did not exist in C/C++, I have a better understanding as to why certain
design features were/were not implemented. Probably the most important lesson
that I learned was that neither OCaml nor C are particularly “friendly” for coding
matrix operations and I’d like to warn future PLT students that if you believe
writing a matrix language will be easy, it will not.

Rashel Rojas

When I found out that I would need to create a compiler to graduate with a degree
in Software Systems, | was definitely dreading taking this class. To be honest, |
had never really thought about how a compiler worked, or knew what a compiler
really was. It was always just there in the background and somehow it let me
complete all of my previous coding assignments. But now I can say that I finally
understand how it all comes together - but that’s not to say that this project wasn’t
hard. In terms of technical challenges, one of the main challenges for me was
understanding how all of the main files worked together to create something as
complex as a compiler. What made things more difficult was working with an
existing code base. Since our language was very similar to the C language, we
began working with the MicroC compiler and modified segments to suit our
language. However, some of these files were very long and cluttered with a lot of
OCaml code, which, for someone at the start of their OCaml learning experience,
required many hours trying to understand what each line was doing, and how that
file then related to another file, and so on. This project definitely included a large
learning curve, but you can only do as well as the amount of time and effort you
put in, which I think we all learned. I’m definitely very thankful to have a team

7.4.

that was determined to make a functional language. I learned a lot about working
on a team, such as the importance of setting deadlines, communicating effectively
to update everyone on what was added to our shared repo, and so on.

The lessons I’ve learned can be advice for future students taking this class. Start
early, set weekly deadlines, meet at least once a week with your team and TA.
Once you can get the Hello World deliverable working, split up the remaining
work such that half of the team works on a subset of features to add and the other
half on a different subset of features. This way, there’s at least two people
working together and because they’re working on similar/same features, they can
consult each other with questions instead of needing to update the entire team.
Also, don’t just try to add as many features as you can in one push. Instead, write
a few test cases for each new feature that you implement. Furthermore, don’t be
afraid to reach out to your or other TAs! Be transparent with them about any
issues your team is having - they’re there to help.

Mauricio Guerrero

When I found out I had to take a compilers class, I genuinely thought it would be
one of the best and worst experiences of my life. Needless to say, it was both.

This class as well as Operating Systems are notorious for students talking about
how much work they have to do and how it seems like they have so little time to
do everything they must do. They were right. Though the course material is
rigorous, the satisfaction of understanding how computers work makes it all worth
it in the end.

Before this class, I had not idea how compilers worked or the power of functional
based programming languages such as Ocaml. I learned that patience and
communication is key when understanding difficult concepts such as compilers
and functional programming. I also learned that having a consistent schedule with
weekly meetings with your team is just as important as starting as soon as you
can. Because this semester goes by fast and so much material is covered in every
lecture. You should also not be too ambitious when it comes to programming
features you want your language to implement. Get the groundwork of your
language set first, and if there is enough time, implement the other ideas you had
in mind. You should also split work evenly between all of your team members and
have one of them be the leader that makes sure everyone else is held accountable
for their jobs. Don’t be afraid to ask questions to your TA as well. They are there
to help you. You also have Professor Edwards himself. You can book an

appointment with him and ask him any questions you and your team might have.
This class is worth your time, so give it your best!

8. Appendix
8.1. Project Log

commit a23f99ce78556d50610b2f423cd52530522523 (HEAD -> main, origin/main,
origin/HEAD)

Merge: a5a37 17d9ded

Author: Rashel Rojas <rdr2139@columb1a edu>

Date: Wed Dec

Merge branch 'main' of https://github.com/54aaron/MX

commit a5a3762d29f0ec1b963cc15d679eb7351c67b9
Author: Rashel Rojas <rdr2139@columbia.edu>
..skipping..
commit a23199ce78556d50610b2f423cd52530522523 (HEAD -> main, origin/main,
origin/HEAD)
Merge: a5a37 17d9ded
Author: Rashel Rojas <rdr2139@columb1a edu>
Date: Wed Dec

Merge branch 'main' of https://github.com/54aaron/MX

commit a5a3762d29f0ec1b903cc15d679eb7351c67b9
Author: Rashel Rojas <rdr2139@columb1a edu>
Date: Wed Dec

finished adding more test cases

commit d9d6da83dc20d78655c0422c343041f63f5e34
Author: aaron <ar32145@columb1a edu>
Date: Wed Dec

cleaned up LRM
commit dd2fcead25bl122aaeac3c7520be9edda508ca

Author: Rashel Rojas <rdr2139@columb1a edu>
Date: Wed Dec

removed comment from parser

commit aadd677528eb7a66c4ec324bd5c1c700fboo7608
Author: Rashel Rojas <rdr2139@columb1a edu>
Date: Wed Dec
.skipping...
commit a23199ce78556d50610b2f423cd52530522523 (HEAD -> main, origin/main,
origin/HEAD)
Merge: a5a37 17d9déd
Author: Rashel Rojas <rdr2139@columb1a edu>
Date: Wed Dec

Merge branch 'main' of https://github.com/54aaron/MX

commit a5a3762d29f0ec1b903cc15d679eb7351c67b9
Author: Rashel Rojas <rdr2139@columb1a edu>
Date: Wed Dec

finished adding more test cases

commit d9d6da83dc20d78655c0422c343041f63f5e34
Author: aaron <ar32145@columb1a edu>
Date: Wed Dec

cleaned up LRM

commit dd2fcead25bl122aaeac3c7520be9edda508ca
Author: Rashel Rojas <rdr2139@columb1a edu>
Date: Wed Dec

removed comment from parser
commit aad4d677528eb7a66c4ec324bd5c1c7001bo07608

Author: Rashel Rojas <rdr2139@columb1a edu>
Date: Wed Dec

fixed formatting for printing matrices

commit efc7e1816b75102ec422ecea7605a2755
Author: mg4145 <mg4145@columb1a edu>
Date: Tue Dec

Renamed transpose files and fixed order in transformation files

commit f90e3edc7ee366ce97f188a55896e103cd7c612b
Author: mg4145 <mg4145@columb1a edu>
Date: Tue Dec

Wrote test files for rotations and transformations

commit Sfbleb59beb82ddebld36c8157a49d4782b38410
Author: Rashel Rojas <rdr2139@columb1a edu>
Date: Tue Dec

removed unnecessary test files from MX folder

commit 14fe86d95d1312e3781b880c4de43b4f027b89ac
Author: aaron <ar32145@c01umb1a edu>
Date: Tue Dec

demo done

commit £5561e955735ebd@f032900ctb47dfdcbad6bace
Merge: f7cle e

Author: aaron <ar32145@c01umb1a edu>

Date: Tue Dec

Merge branch 'main' of https://github.com/54aaron/MX into main

commit €9e243879cd7731842007410F37ff1730f
Merge: 4f7badd 1d697ea

Author: mg4145 <mg4145@columb1a edu>

Date: Tue Dec

Merge branch 'main' of https://github.com/54aaron/MX

commit 4f7baddd6717c40a210b3f8740d8dc85d2a2c5d1
Author: mg4145 <mg4145@columb1a edu>
Date: Tue Dec

Wrote files mx and out files for while loops
commit 1d697eae81c1690620ec7bb78cdd2aa%9e25d2ac8

Author: Rashel Rojas <rdr2139@columb1a edu>
Date: Tue Dec

added non-matrix-related test cases

commit be7al731df2e86694f6baa397755d85240d
Author: mg4145 <mg4145@columb1a edu>
Date: Tue Dec

Wrote mx/out files for for loops testing

commit cbc734e58b035d046190fc41dbcc7749394b
Author: mg4145 <mg4145@columb1a edu>
Date: Tue Dec

Wrote mx and out files for test-if

commit f7cle7blbb48ccBee7870f32bb242e7fd18d46
Author: aaron <ar32145@columb1a edu>
Date: Tue Dec

Demo file finished - might iterate on it later

commit fcad3b5657de8cfabdeaf60c611fbd831a3c50
Merge: e3e7 f4cb821

Author: aaron <ar32145@columb1a edu>

Date: Tue Dec

Merge branch 'main' of https://github.com/54aaron/MX into main

commit f4cb821329fb46440415716079abf5132c292ff3
Merge: e6fdda2 a63a5cl

Author: mg4145 <mg4145@columb1a edu>

Date: Tue Dec

Merge branch 'main' of https://github.com/54aaron/MX
commit e6fdda23bbb91cd307e05ea9743d048153f1bo64
Author: mg4145 <mg4145@columb1a edu>
Date: Tue Dec

Created .gitignore file

commit e885eab639863ccb8f1d548185fbeda342d3718e
Author: mg4145 <mg4l45@columbia.edu>

Date: Tue Dec
Added mx/out for scalar matrix multiplication
commit bOb1877e578668736cdcf4fd4ele36e?

Author: mg4145 <mg4145@columb1a edu>
Date: Tue Dec

Created mx/out files for matrix identity

commit af70de55711d2164d8e51a2845261f7b083e
Author: mg4145 <mg4145@columb1a edu>
Date: Tue Dec

Added files for rows and columns

commit a81134d3166aaelab609de5a431058248f5adb3b
Author: mg4145 <mg4145@columb1a edu>
Date: Tue Dec

Added transpose matrix tests and out files
commit a63a5c1682cfadf56cb3c204318b5f5f7a0485d4

Author: Rashel Rojas <rdr2139@columb1a edu>
Date: Tue Dec

finished adding all fail cases
commit 1feb34193bb2164b994396fa681997a84477a1d9

Author: mg4145 <mg4145@columb1a edu>
Date: Mon Dec

Added second test/out for matrix multiplication

commit f09b774fa70306e34c61833352816e3cc
Author: mg4145 <mg4145@columb1a edu>
Date: Mon Dec

Added test and out files for matrix multiplication
commit e344482934f5a720caldfbc525efea78233a4941

Author: mg4145 <mg4145@columb1a edu>
Date: Mon Dec

Added mx and out file for matrix sub

commit 4f4763aa49cbab41a5cf36dd2b7f16cd6ba26139
Author: mg4145 <mg4145@columb1a edu>
Date: Mon Dec

Wrote dot out file test add matrix file

commit b15f7d0c53d86e3e70b163711f46366667cb24286
Author: mg4145 <mg4145@columb1a edu>
Date: Mon Dec

Wrote mx file for adding matrices

commit e3e7956d18efeed9dd96dcc@a5c75e5547118
Merge: 5be2711 el

Author: aaron <arj2l145@columbia.edu>

Date: Mon Dec :

Merge branch 'main' of https://github.com/

commit 5be27114f0f23a4da5c87363eb07755el6f2ccde
Author: aaron <ar32145@columb1a edu>
Date: Mon Dec

pi function fully integrated

commit b33aabde2ab66ed726a2b84a95d2d2eddel0c13b
Author: aaron <ar32145@columb1a edu>
Date: Mon Dec

pi in semant

commit 1a9d@b85ed117b77a83a0f7546b9bafbad82dd7f
Author: aaron <ar32145@columb1a edu>
Date: Mon Dec

added pi function to codegen
commit e14141dave76ed5415d3bd25eec04897d55

Author: Rashel Rojas <rdr2139@columb1a edu>
Date: Mon Dec

aaron/MX into main

removed unnecessary fail files from MX folder

commit e78f40f67152329085b12dd67b105ec5e14132d9
Author: wo2168 < +wo2168@users.noreply.github.com>
Date: Mon Dec g

added pi

commit 2d5ceb69a9cf547e795e66f0bale1857al171clfc
Author: aaron <arj2l145@columbia.edu>
Date: Mon Dec :45:

Int to float casting works on basic operators alone

commit bd12406c65885671d61T0b28c5e12fdf1711217
Author: aaron <arj2145@columbia.edu>
Date: Mon Dec :40:

int to float casting working in direction float + int

commit d3e028f552eleb6dcdleed73d4c75c33c7576f8cc
Author: aaron <arj2l45@columbia.edu>
Date: Mon Dec :35:

working on implicit int to float casting

commit cc143dc1b3d33fcc9448e9ae4f8adc496c858
Merge: dbb883c

Author: aaron <arj2l45@columbia.edu>

Date: Mon Dec 35338

Merge branch 'main' of https://github.com/54aaron/MX into main

commit c936f5ed54181fb0lalde6clfe983342a
Author: aaron <arj2l145@columbia.edu>
Date: Mon Dec :53:

aborted adding increment and decrement - would change structure of
language - too late to do that

commit efefa8611fc7fda22134a779cea72d0328bf9317
Author: aaron <arj2l145@columbia.edu>

Date: Mon Dec
added both to semant

commit bbacc57d6fe0cfa294603118e66a86668
Author: aaron <ar32145@columb1a edu>
Date: Mon Dec

working on increment and decrement, added them to Scanner

commit dbb883c05d8c6cdl1fb556fbf9dab9f045c698993
Author: Rashel Rojas <rdr2139@columb1a edu>
Date: Mon Dec

finished added fail cases for matrix functions

commit b7da38a490ca82a7ecPaebfea742ed0c30406cct
Merge: 1f6b115 cc5a@12

Author: aaron <ar32145@c01umb1a edu>

Date: Mon Dec

Merge branch 'main' of https://github.com/54aaron/MX into main
commit 1f6b11505ad@50142572d8d5803045977de25a21

Author: aaron <arj2l145@columbia.edu>
Date: Mon Dec 2

all assignment operators working nothing broke

commit cc5a012beb2246f46c34e00041f8c72bdoB5566b2
Author: Rashel Rojas <rdr2139@columb1a edu>
Date: Mon Dec

fixed small formatting error in one test file
commit clf62f@7afe60d9afod384ef70adb9cOc0523d8c
Author: aaron <ar32145@c01umb1a edu>

Date: Mon Dec

minus assign and times assign added to codegen and semant. removed
divide assign

commit fdl1Paed6defdee8805f9c2129e7800938C

Author: Rashel Rojas <rdr2139@columbia.edu>
Date: Mon Dec :28:

fixed small syntax error in mx.c

commit c65ae72e2c02a893fa4b6d5048be38cf5a2af981
Merge: 7ef3e6l ds4e

Author: Rashel Rojas <rdr2139@columbia.edu>
Date: Mon Dec 126:

Merge branch 'main' of https://github.com/54aaron/MX

commit 7ef3e61a358204e7blb6f59baf4f2d6acle3a24d
Author: Rashel Rojas <rdr2139@columbia.edu>
Date: Mon Dec :25:

added failure test files for mxmult, scalar multiplication,
transformations, transpose, identity, and printing of matrices

commit ab22b4a4f971696a74881549bblfe61b5a726505
Author: aaron <arj2l145@columbia.edu>
Date: Mon Dec

added minusassign and timesassign to parser and ast

commit 11b7a3009a437dbf68ed5df926658adb9e967d46
Author: aaron <arj2l45@columbia.edu>
Date: Mon Dec g

Assignment operator - Plus assign done
commit d846071d6766e90e43b042bd45c940935c3c5
Author: wo2168 < +wo2168@users.noreply.github.com>
Date: Mon Dec :
formatting
commit £26d3571f2e873233008b09bc3d9abc219b4fof0
Author: wo2168 < +wo02168@users.noreply.github.com>

Date: Mon Dec

edited transform comments

commit c54496994ad2faed30cd8dlec6bledaeaa5fc
Author: aaron <arj2l45@columbia.edu>
Date: Mon Dec :

make clean

commit bed@96a68cf892ec30f6f7c5e61b6878d693ee87
Author: aaron <arj2l45@columbia.edu>
Date: Mon Dec :34:

all prints outputs will have newline now

commit aeed@545cObad37e981be4671358ddcd4e911288
Author: aaron <arj2145@columbia.edu>
Date: Mon Dec :

num rows implemented

commit a22cf67398d4e0Ob3675cda96f251ac72f79b3367
Author: aaron <arj2l45@columbia.edu>
Date: Mon Dec :

numcols implemented
commit 3f54315efbecle846778f6b6ab1928112f68ff40

Author: aaron <arj2l45@columbia.edu>
Date: Sun Dec :38:

strings now print with new line, working on error checking for matrix

ops

commit aB5664ecea8bfedce25115ab793¢c9483570c7b
Author: Rashel Rojas <rdr2139@columbia.edu>
Date: Sun Dec :13:

added failure test files for matrix subtraction
commit a7b389f08ede6eldcdd4a24bala221751f2el33eb
Author: Rashel Rojas <rdr2139@columbia.edu>

Date: Sun Dec 100:

added more failure test cases

commit c4f0ac3f712e0592d3519201d4200691f8c75
Author: mg4145 <mg4l45@columbia.edu>
Date: Sat Dec :12:

Added missing semicolon, everything works again.

commit a54e8b5d4b3e770bf310abcOb983fb894d678103
Author: wo2168 < +wo2168@users.noreply.github.com>
Date: Sat Dec :

added numrows & numcols

commit a2c26320e4e345d8ec5435f68403e4542286
Author: Rashel Rojas <rdr2139@columbia.edu>
Date: Sat Dec :48:

added some failure test cases
commit €a69a814a1672b59f250¢c5519112b011039901

Author: aaron <arj2l45@columbia.edu>
Date: Sat Dec :

renamed it

commit 4b66fbd33a337b42ad1502188e411b9723710909
Author: aaron <arj2l45@columbia.edu>
Date: Sat Dec :49:

it works :<
commit bOcb5234063fc77a7605cfb0+8019a222a01

Author: aaron <arj2l145@columbia.edu>
Date: Sat Dec 2

developing general compilation script

commit b0e50c8f67bfelecl031a66aa439eab3blc749
Author: aaron <arj2145@columbia.edu>
Date: Fri Dec :17:

fixed test-matrix

commit 9balcede929fB@e7ee2e5aab3acb343c1617c3bl7

Author: aaron <arj2l45@columbia.edu>
Date: Fri Dec K

edited matrix file to use die function instead of perror

commit c4d@a9278bedbl1101d638c7f1bbe83d332925e50
Author: aaron <arj2l145@columbia.edu>
Date: Fri Dec

transformation function works

commit cfd3cdbdd1d78b5b39a7d01ba8958dbe29625
Author: aaron <arj2l45@columbia.edu>
Date: Fri Dec :

added transformation to semant

commit f53a11c32a9c5ebbb2181cd4f953c7bbfea2d
Author: aaron <arj2l45@columbia.edu>
Date: Fri Dec :56:

added transformation function to codegen

commit d4077855abb902a642a44dbc2db63be751fe@3cd
Author: aaron <arj2l145@columbia.edu>
Date: Fri Dec :

fixed bugs in C library

commit d11b95fd3c45333439ddc53e3eee810clea
Merge: b948597 b72d

Author: aaron <arj2l145@columbia.edu>

Date: Fri Dec :

still doing git pull
commit b9485979f77fdeadd661dd855032cd2708e24c47

Author: aaron <arj2145@columbia.edu>
Date: Fri Dec 141

doing a git pull

commit b72d60a5257134d761f84060bfd67e41d2ae4

Author: wo2168 < +wo2168@users.noreply.github.com>
Date: Fri Dec g

edited transformation function

commit a2c4a345c8ecl4d56ff634e24a434b81F25F05
Author: mg4145 <mg4145@columb1a edu>
Date: Fri Dec

Updated test-matrix dot mx and dot out files.
commit ©d37flabe6c93e6455c329488e4d586202c8bfec

Author: aaron <arj2l45@columbia.edu>
Date: Thu Dec :

cleaned up print statements from C file

commit c@56@aac4c4a3ffbbl77fde5226297de84fbe2f7
Author: aaron <ar32145@c01umb1a edu>
Date: Thu Dec

did a make clean

commit c18c043705981817d0d7ab30439c73ea6fe9dd
Author: aaron <arj2l145@columbia.edu>
Date: Thu Dec :

Built in functions can now have multiple arguments
commit a911ce®4953f818f63311aaa743ef8dc45c1052c¢

Author: mg4145 <mg4145@columb1a edu>
Date: Thu Dec

Moved .out files to tests
commit £412dff61647287effb07972b223eb51f

Author: mg4145 <mg4145@columb1a edu>
Date: Thu Dec

Created fail file for out language mx

commit deea35led8a27172ec5aa3958180d346d3c019c3
Author: mg4145 <mg4l45@columbia.edu>

Date: Thu Dec

Added .err file for corresponding fail file
commit 1a44cf6420ac9f87b9088e300c707ba930041dfb
Author: mg4145 <mg4145@columb1a edu>
Date: Thu Dec

Added PHONY test variable
commit cb23a761f89d17d90b0a85f9ba791796b22e
Author: mg4145 <mg4145@columb1a edu>
Date: Thu Dec

Added test-matrix out file
commit aef6f6fe@ee988f1b55b037373aa432a8bl7cbcc
Author: mg4145 <mg4145@columb1a edu>
Date: Thu Dec

Added test-hello file
commit eeb6dab9c83e9fd3elle238eaab87041357el1

Author: mg4145 <mg4145@columb1a edu>
Date: Thu Dec

Added test-gcd file

commit bac87d237ca28ad5232950ef20af26ba781b9
Author: mg4145 <mg4145@columb1a edu>
Date: Thu Dec

Updated file to newest changes
commit fal36293bca2ac6536748c6cc626e814
Author: mg4145 <mg4145@columb1a edu>
Date: Thu Dec
Added -1m flag for mx.c compilation.
commit e637dfaeedaad5ade60cf42886810bba811bed99

Author: aaron <arj2l145@columbia.edu>
Date: Thu Dec

made scalar operator. No warnings woohoo!

commit ed206012bd701f1d420al1f7b7a71e2c5a90c406¢
Author: wo2168 < +wo2168@users.noreply.github.com>
Date: Thu Dec g

Delete matrix.c

commit 1a@ff7209631b4a43f053b89f53ca2e589d2198a
Merge: fadcede

Author: aaron <arj2l45@columbia.edu>

Date: Thu Dec :54:

just did a pull
commit c0830418bebl1f4552e5e1f682d4eb

Author: aaron <arj2l145@columbia.edu>
Date: Thu Dec :

identity up n running as a function

commit f4dc6de9574e4fd70cbcabea859525073b6954bd
Author: wo2168 < +w02168@users.noreply.github.com>
Date: Thu Dec :

Update mx.c

commit c6f2fa0670a4693958985ad2978736ebc02447ef
Author: wo2168 < +wo02168@users.noreply.github.com>
Date: Thu Dec :

update ID

commit f2835ce2fc677d4afb6fbl9a835d2d58e3a87656
Author: wo2168 < +wo02168@users.noreply.github.com>
Date: Thu Dec :

Update mx.c
commit b133172914003eb78f8d3e221b4adf6ffdblc

Merge: 3f3a981 2b76e86
Author: aaron <arj2l145@columbia.edu>

Date: Thu Dec
Merge branch 'main' of https://github.com/54aaron/MX into main

commit 33a9811899e213261b5030ec49129713924F82c
Author: aaron <arj2145@columbia.edu>
Date: Thu Dec :

going to pull

commit 2b76e86904401533f688b3557771053762964203
Author: wo2168 < +wo2168@users.noreply.github.com>
Date: Thu Dec g

updated rotation

commit cadcc90db8148ddfced826ce9a99690caec697
Author: wo2168 < +wo02168@users.noreply.github.com>
Date: Thu Dec :

added rotation matrix

commit f2ec6f2dbl146d3+3e10978670fc8da7905b1
Merge: a9b2d68 8a68d10

Author: aaron <arj2l145@columbia.edu>

Date: Thu Dec :

Merge branch 'main' of https://github.com/54aaron/MX into main

commit 8a68d10a61d37abaadab8603938baf2ec47d62cd
Author: wo2168 < +w02168@users.noreply.github.com>
Date: Thu Dec :

Update mx.c
commit e8463c5128a4b2cb®4c617bf3f44bd448b896237
Author: wo2168 < +wo2168@users.noreply.github.com>
Date: Thu Dec :

updated display, added identity & scalar mult

commit a9b2d681985541f1d1c5d933b97929e1758046€84
Author: aaron <arj2l145@columbia.edu>

Date: Thu Dec

got rid of a bunch of warnings and stuff

commit ddea®1d1cd377876e718719353dfa86b19f3a
Author: aaron <arj2145@columbia.edu>
Date: Thu Dec :

Mxsub working as an operator

commit bd501df8d3961724d3b232f5e1018a632c63eabb
Author: wo2168 < +wo2168@users.noreply.github.com>
Date: Thu Dec g

added sub & mult

commit d352ec5ea721fcb7b19205719470d63efbb5
Author: aaron <arj2l145@columbia.edu>
Date: Wed Dec :

Matrix addition working
commit c43fe096fbf106172419503403367158b7

Author: aaron <arj2145@columbia.edu>
Date: Wed Dec :51:

Transpose is both a unary operator and also a function
commit cfec35904e053e3bea54fbc2d5f3ad8c5089f1
Merge: a8b90 58ca749
Author: aaron <arj2145@columbia.edu>
Date: Wed Dec 144
did a git pull
commit a8b90416ab43cc470f9b7d6e8bde4931caaab0
Author: aaron <arj2l45@columbia.edu>

Date: Wed Dec 241 :

Transpose working as a function - will try to get working as a unary
operator (LMAOOOOO00000000)

commit fbf931f9f4bad28c2ad57f3afba54f18415e2df5

Author: aaron <arj2l45@columbia.edu>
Date: Wed Dec 109:

fixed row and column mix up

commit Cca74963bb8a250e9e7ed064216b72110415434
Author: Aaron Jackson < +54aaron@users.noreply.github.com>
Date: Mon Dec

Update mx.c

commit d8fcf982e68cd06c392d558ab8bb29f21394f
Author: Aaron Jackson < +54aaron@users.noreply.github.com>
Date: Mon Dec

Update mx.c

commit f2f09209c7a967db06d1f92292b68051d1ldlbel
Author: wo2168 < +wo2168@users.noreply.github.com>
Date: Mon Dec g

updated
commit 3fd43725defldf@el82ble7fbl5150afddlcef49

Author: wo2168 < +wo02168@users.noreply.github.
Date: Mon Dec 2

printmatrix added

commit ©de668a5161140d2a0dd7ed98830a50d341805c5
Author: wo2168 < +w02168@users.noreply.github.com>
Date: Mon Dec 5

added mxscale
commit dc8802241f6faaeb82f416642be6b40134b54
Author: wo2168 < +wo2168@users.noreply.github.
Date: Mon Dec :

Create matrix.c

commit dflfaec04balb3c880cfcc84ef5b395cel9474
Author: aaron <arj2l145@columbia.edu>

Date: Sun Dec

Matrix init and matrix store working (I think) changed Semant to get
rows and columns from matrix literal changed SMx to take tuple of elements,
rows, and columns, changed parser to reverse elems_list and rows_list and
added some more functions to the library and codegen

commit 7a8602adc18921bd80664cc5baec24b0003b558d8
Author: aaron <arj2l45@columbia.edu>
Date: Fri Dec :

fixed make clean
commit e€90116f273ball10098e08bd7be337a757b0f484e
Merge: 5Saf68fa ace86dd
Author: Aaron Jackson < +54aaron@users.noreply.github.com>
Date: Fri Dec

Merge pull request #2 from 54aaron/experiment

Experiment

commit ace86ddb8b6633eb63c56a5963e226c368b2c746 (origin/experiment)
Author: aaron <arj2145@columbia.edu>
Date: Fri Dec :

codegen pipeline working uhh made script thats all folks

commit a34d4854a41f7572e34309e36a56444cccad
Author: aaron <arj2l45@columbia.edu>
Date: Tue Nov 35908

mx pipeline functioning
commit cc85e818f06537a5ff2e872668af4ble618447bb
Author: aaron <arj2l145@columbia.edu>

Date: Tue Nov :57:

Got C file to link, added Mx case to semant case matching on line
will need to change this, added SMx of int list list on sast line 9 case
matching

commit e400a71ac9861bb454c72be5709b623318cdd852

Author: aaron <arj2l45@columbia.edu>
Date: Mon Nov :08:

Working on stuff

commit 5af68fal2dcb3a5812c23722983de32949eed2aa
Author: aaron <arj2l145@columbia.edu>
Date: Fri Nov

Matrix declaration editing in parser
commit Scefabe®32133b12c3334f0fc8ecPefe830a2dl2
Author: wo2168 < +wo2168@users.noreply.github.com>
Date: Tue Nov g

updated README to include compilation instructions

commit b30c41cf5d5e49b893dOb8bb5cf0115a2a3a847a
Author: aaron <arj2l45@columbia.edu>
Date: Tue Nov :37:

Print String Support
commit cebed7f5290ace9de084940221c8765
Merge: 5bb8289 876647
Author: Aaron Jackson < +54aaron@users.noreply.github.com>
Date: Tue Nov
Merge pull request #1 from 54aaron/hello world deliverable
Hello world deliverable
commit 87f6647de041d4d8f07caeeldb48e9075e58d692
(origin/hello_world_deliverable)
Author: aaron <arj2l145@columbia.edu>

Date: Thu Nov

included bash, deliverable complete

commit c48736b7a5fd9ee21d922a0c12644bb879d8f (origin/hello world)
Author: aaron <arj2l45@columbia.edu>
Date: Wed Nov :

gcd works!

commit ee27b8eadlc7596e65f45f5c555305bb8448ccb8
Author: aaron <arj2l145@columbia.edu>
Date: Wed Nov :25:

new stuff
commit 5bb8289b952a4ela23d2f265ceae7f49c2bc9140
Author: aaron <arj2145@columbia.edu>
Date: Mon Nov :

ast sast
commit aca7b9371cc67e929bc3a3fal67375c47f15
Author: aaron <arj2l45@columbia.edu>

Date: Sat Nov

changed transpose

commit fd5d7d712bc2613920b20fb322362e8c600cd7a9
Author: aaron <arj2l145@columbia.edu>

Date: Sat Nov
changed more stuff

commit bf6b2273e02d2de3d1897bfe6a78t9f2al7f7b
Merge: 4aelcOSc

Author: aaron <arj2l145@columbia.edu>

Date: Sat Nov :

Merge branch 'main' of https://github.com/
commit 4aelc9c70831d0309f20b8bfd2d649eadct46d84
Author: aaron <arj2l145@columbia.edu>
Date: Sat Nov

Scanner complete

commit cal9957534607cd8c9b64alb43bcleda

aaron/MX into main

Author: Mg4145 < +Mg4145@users.noreply.github.com>

Date: Fri Nov

Delete ast.ml

Wrong file extension. It should have been dot mli and not dot ml

commit c99934e598b448c7ef05ee323d3e046cd30
Author: mg4145 <mg4145@columbia.edu>
Date: Fri Nov :21:

Gave correct file extension/

commit bd53273675d940atfd4958a568d12286e
Author: aaron <arj2l45@columbia.edu>
Date: Fri Nov :

Parser complete

commit flael2c006d261240ddad6455e6ee524c360d
Author: aaron <arj2l145@columbia.edu>
Date: Wed Nov :

more parser work

commit fd1a6e6040169617e62505ed9eb1daa894bb3
Author: aaron <arj2145@columbia.edu>
Date: Wed Nov :

working on declaration

commit d33a954481ced4767880a27e2af172247ef5137c¢
Author: Rashel Rojas <rdr2139@columbia.edu>
Date: Sun Oct :15:

Testing by Rashel
commit ea@353e8365f96b8e6f6cd2fe28f5b6d2285463e
Author: wo02168 <wo2168@columbia.edu>
Date: Sun Oct
test
commit cc@1438b826c8dea52e1d33a9343917409a48132

Author: aaron <arj2l145@columbia.edu>
Date: Sun Oct

Added Matrix declarations, operations, and tokens to parser

commit e9d0@c93373bccd62a66cb186ff7d701e81761989
Author: mg4145 <mg4145@columb1a edu>
Date: Sat Oct

Included team members names
commit ba76f8ecc64ec34574b70cd374dfdf3891ad4e6f2
Author: mg4145 <mg4l45@columbia.edu>
Date: Sat Oct :

Added MAKEFILE. Subject to change.
commit c0fc8dael915e7f68f03b1579924604blecdl?
Author: mg4145 <mg4145@columb1a edu>
Date: Sat Oct

Ast template. Subject to change.

commit a3eede5517d7b99dee3a3e7a455cdab4990dfc

Author: mg4145 <mg4145@columb1a edu>
Date: Sat Oct

Added scanner ex from MicroC. Must be changed.

commit bf534bf67dadb59e987265a3¢c31024fa6ca82d09
Author: mgd4145 <mg4l45@columbia.edu>
Date: Sat Oct :

Created README and added basic information.
commit a6302831fb6320131695e0fabe824a3ale847F
Author: mg4145 <mg4l45@columbia.edu>
Date: Sat Oct

Renamed parser.mly.txt to parser.mly
commit £72e395c414a1a03d055a981180d7c2503a5740a

Author: mg4145 <mg4145@columb1a edu>
Date: Fri Oct

Included parserl.mly file

commit f39ba86a5f68d7a25fdc22d6f11d139da2b46753
+54aaron@users.noreply.github.com>

Author: Aaron Jackson <
Date: Fri Oct

Add files via upload
(END)

8.2. References

This project refers to previous Matrix language projects Matrx (Fall 2018) and
XIRTAM (Spring 2021) for guidelines to construct our own language. The MX
language is also built on top of Micro C.

8.3. Project Code

8.3.1. Scanner.mll (Rashel Rojas, Wilderness Oberman, Aaron Jackson,
Mauricio Guerrero)

{ open Parser }

let digit = ['@' - '9']
let digits = digit+

rule token parse
[l] I\tl I\r.l I\nl]
II/*II
II#II

{ token lexbuf }
comment lexbuf }
singlecomment lexbuf }

LBRACE }
RBRACE }
LBRACKET }
RBRACKET }
LPAREN }
RPAREN }

IF }
ELSE }

WHILE }
FOR }

ASSIGN }

PLUS }

MINUS }

TIMES }
DIVIDE }
PLUSASSIGN }
MINUSASSIGN }
TIMESASSIGN }

MXPLUS }

MXMINUS }

MXMX }

MXSCALE }

TRANSPOSE } (* ASK TA - CHANGE TO ~ *)

LEQ }
NEQ }

GEQ }
NOT }

OR }
AND }

SEMI }
COMMA }

"int" INT }
"Matrix" MATRIX }
"String" STRING }
"bool" BOOL }

"true" BLIT(true) }
"false" BLIT(false) }
"float" FLOAT }
"void" VOID }
"return” RETURN }
"null" NULL }

| '"to([~ ' 1* as lit) ‘"' { STRINGLIT(lit) }

| digit+ as 1xm
LITERAL(int_of string 1xm) }

| digit+ '.' digit* (['e' 'E'] ['+"' '-']? digits)? as 1xm
FLIT(1xm) }

| ['a'-'z" 'A'-'Z']['a'-"'z" 'A'-'Z' '©'-'9' ' _'1* as 1xm
ID(1xm) }

| eof

| _as ch
(Failure("illegal character " ~ Char.escaped ch)) }

and comment = parse
"*/" { token lexbuf }
| _ { comment lexbuf }

singlecomment = parse
"\n" { token lexbuf }
| _ { singlecomment lexbuf }

8.3.2. Parser.mly (Rashel Rojas, Wilderness Oberman, Aaron Jackson,
Mauricio Guerrero)

%{ open Ast %}

%token LPAREN RPAREN LBRACE RBRACE LBRACKET RBRACKET SEMI COMMA TRANSPOSE
%token PLUS MINUS TIMES DIVIDE ASSIGN EQ PLUSASSIGN MINUSASSIGN TIMESASSIGN
%token IF ELSE WHILE FOR NOT NOELSE

%token INT BOOL FLOAT STRING RETURN MATRIX VOID NULL

%token NEQ LT GT LEQ GEQ AND OR

%token MXPLUS MXMINUS MXMX MXSCALE

%»token <int> LITERAL

%»token <string> ID FLIT

%»token <bool> BLIT

%token <string> STRINGLIT

%»token EOF

%nonassoc NOELSE
%nonassoc ELSE

%right ASSIGN PLUSASSIGN MINUSASSIGN TIMESASSIGN DIVIDEASSIGN
%left OR

%left AND

%left EQ NEQ

%left LT GT LEQ GEQ

%left PLUS MINUS MXPLUS MXMINUS

%left TIMES DIVIDE MXMX MXSCALE

%right NOT

%left TRANSPOSE

%start program
%»type <Ast.program> program

%%
program: decls EOF { $1 }

decls: /* nothing */ { ([1, []) }
| decls vdecl { (($2 :: fst $1), snd $1) }
| decls fdecl { (fst $1, ($2 :: snd $1)) }

fdecl: +typ ID LPAREN formals_opt RPAREN
LBRACE vdecl list stmt list RBRACE {
{ typ = $1; fname = $2; formals = List.rev $4;
locals = List.rev $7; body = List.rev $8 } }

formals_opt: /* nothing */ { [] }
| formal list { $1 }

formal list: typ ID { [($1,%$2)] }
| formal list COMMA typ ID { ($3,%$4) :: $1 }

typ:
INT Int }
BOOL Bool }
STRING String }
FLOAT Float }
MATRIX Matrix(Int) }
VOID Void }

vdecl list: /* nothing */ { [] }
| vdecl list vdecl { $2 :: $1 }

typ ID SEMI { (%1, $2) }
/* | typ ID ASSIGN expr SEMI { (%$1,%2,
Assign($2,$4))}
| INT typ ID SEMI { ($2, $3) } int
matrix m;
| FLOAT typ ID SEMI { (%2, $3) } */

matrix_literal:
LBRACKET row_list RBRACKET
List.rev $2 } /* ASK TA */

row_list:
/* nothing */
[1}
| LBRACKET elems_list RBRACKET
[List.rev $2] } /* Matrix m = [[1,2,3]] */
| row _1list COMMA LBRACKET elems list RBRACKET
(List.rev $4)::$1 } /* Matrix m = [[1,2,3],[4,5,6],[7,8,9]] */

/* Matrix m = [,[1,2,3]] */

elems list:
LITERAL { [$1] }
| elems_list COMMA LITERAL { $3::$1 } /* ASK TA
*/

expr:
LITERAL
| FLIT
| BLIT
| 1D
| STRINGLIT
| matrix_literal
| expr PLUS expr
| expr MINUS expr
|
|
|
|
|
|

Literal($1) }
Fliteral($1) }
BoolLit($1) }

Id($1) }

Stringlit($1) }

Mx($1) }

Binop($1, Add, $3) }
Binop($1, Sub, $3) }
Binop($1, Mult, $3) }
Binop($1, Div, $3) }
Binop($1, Mxadd,$3) }
Binop($1, Mxsub, $3) }
Binop($1, Mxtimes, $3) }
Binop($1, Mxscale, $3) }
Unop(Transpose, $1) } /* our transpose

expr TIMES expr
expr DIVIDE expr
expr MXPLUS expr
expr MXMINUS expr
expr MXMX expr
expr MXSCALE expr

P s T N N N e e e

| expr TRANSPOSE
operation */

| expr EQ expr Binop($1, Equal, $3) }

| expr NEQ expr Binop($1, Neq, $3) }

| expr LT expr Binop($1, Less, $3) }

| expr LEQ expr Binop($1, Leq, $3) }

| expr GT expr Binop($1, Greater, $3) }

| expr GEQ expr Binop($1, Geq, $3) }

| expr AND expr Binop($1, And, $3) }

| expr OR expr Binop($1, Or, $3) }

| MINUS expr %prec NOT Unop(Neg, $2) } /* Ask TA about
this */

| NOT expr Unop(Not, $2) }

| ID ASSIGN expr Assign($1, $3) }

| ID PLUSASSIGN expr Plusassign($1, $3) }

| ID MINUSASSIGN expr Minusassign($1, $3) }

| ID TIMESASSIGN expr Timesassign($1, $3) }

| ID LPAREN args_opt RPAREN { Call($1, $3) }

| LPAREN expr RPAREN $2 }

/* Matrix m = [[1,2,3],[4,5,6]] */

stmt:
expr SEMI Expr $1

}
| RETURN expr_opt SEMI Return $2

}

| LBRACE stmt_list RBRACE
Block(List.rev $2) }

| IF LPAREN expr RPAREN stmt %prec NOELSE If($3, $5,
Block([])) }

| IF LPAREN expr RPAREN stmt ELSE stmt If($3, $5,
$7) }

| FOR LPAREN expr opt SEMI expr SEMI expr_opt RPAREN stmt For($3, $5,
$7, $9) 1}

| WHILE LPAREN expr RPAREN stmt While($3,
$5) }

stmt_list:
/* nothing */ { [] }
| stmt_list stmt { $2 :: $1 }

expr_opt:
/* nothing */ { Noexpr }
| expr { $1 }

args_opt:
/* nothing */ { [] }
| args list { List.rev $1 }

args_list:

expr { [$1] }
| args_list COMMA expr { $3 :: $1 }

8.3.3. Ast.ml (Rashel Rojas, Wilderness Oberman, Aaron Jackson, Mauricio
Guerrero)

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq
| Greater | Geq | And | Or | Mxadd | Mxsub | Mxtimes
Mxscale

type uop = Neg | Not | Transpose

type typ = Int | Bool | Float | Void | String | Matrix of typ

type bind = typ * string

type expr = Literal of int | Fliteral of string | BoollLit of bool
| Id of string
| Stringlit of string
| Mx of int list list
| Binop of expr * op * expr | Unop of uop * expr
| Assign of string * expr

| Plusassign of string * expr

| Minusassign of string * expr

| Timesassign of string * expr

| call of string * expr list

| Noexpr

type stmt = Block of stmt list

| Expr of expr

| Return of expr

| If of expr * stmt * stmt

| For of expr * expr * expr * stmt
| While of expr * stmt

type func_decl = { typ : typ;
fname : string;
formals : bind list;
locals : bind list;
body : stmt list; }

type program = bind list * func_decl list

let string_of_op = function
Add -> "+"
Sub -> "-"
Mult -> "*"
n

Leq -> "«<=
Greater -> ">"
Geq -> ">="

And -> "&&"

or -> "[|"
Mxadd -> "+."
Mxscale -> "** "

Mxsub -> "-.
Mxtimes -> "*."

string_of_uop = function
Neg -> "-"
Not -> "I"
Transpose -> "'"

rec string of expr = function

Literal(l) -> string of _int 1

Fliteral(l) -> 1

Stringlit(l) -> 1

BoolLit(true) -> "true"

BoolLit(false) -> "false"

Mx(1l) -> let flat list = List.flatten 1 in "\n[" ~ String.concat

(List.map string of_int flat list) ~ "]\n"

Id(s) -> s
Binop(el, o, e2) ->
string of _expr el ~ " " ~ string of op o ~ " " ~ string_of_expr

Unop(o, e) -> string of _uop o ~ string of_expr e
Assign(v, e) -> v ~ " =" A string of_expr e
Plusassign(v, e) -> v A~ " += " 2~ string of expr e
Minusassign(v, e) -> v ~ " -= " A string of expr e
Timesassign(v, e) -> v ~ " *= " 2~ string of_expr e
Call(f, el) -»>

f ~ "(" ~ String.concat
Noexpr -> ""

, " (List.map string_of expr el) ~ ")

rec string _of_stmt = function
Block(stmts) ->
"{\n" ~ String.concat

(List.map string_of_stmt stmts) ~
Il}\nll

| Expr(expr) -> string_of expr expr ~ ";\n";

| Return(expr) -> "return " ~ string _of_expr expr ~ ";\n";
| If(e, s, Block([])) -> "if (" ~ string_of expr e ~ ")\n" ~
string_of_stmt s
| If(e, s1, s2) -> "if (" ~ string_of _expr e ~ ")\n" ~
string_of_stmt s1 ~ "else\n" ” string of_stmt s2
| For(el, e2, e3, s) ->
“for (" ™ string_of _expr el A~

n

; "~ string_of_expr e2

string of _expr e3 ~ ") " ~ string of_stmt s
| Wwhile(e, s) -> "while (" ~ string_of expr e ~ ") " A
string_of_stmt s

let string of _typ = function
Int -> "int"
Bool -> "bool"
Float -> "float"
Void -> "void"
String -> "string"
Matrix _ -> "matrix"

let string of vdecl (t, id) = string of typ t ~ " " ~ id ~ ";\n"

let string_of_fdecl fdecl =
string of_typ fdecl.typ ~ " " ~
fdecl.fname ~ "(" ~ String.concat ", " (List.map snd fdecl.formals)

Il)\n{\nll A
String.concat "" (List.map string_of_vdecl fdecl.locals) *

String.concat "" (List.map string of_stmt fdecl.body) *
Il}\nll

let string_of_program (vars, funcs) =
String.concat "" (List.map string of_vdecl vars) ~ "\n" ~
String.concat "\n" (List.map string_of_fdecl funcs)

8.3.4. semant.ml (Aaron Jackson)

open Ast
open Sast

module StringMap = Map.Make(String)

let check (globals, functions) =

let check_binds (kind : string) (binds : bind list) =
List.iter (function
(Void, b) -> raise (Failure ("illegal void " ~ kind ~ " " 2 b))
| _ -> ()) binds;
let rec dups = function
[1->0
| ((_,n1) :: (,n2) ::) when nl = n2 ->

raise (Failure ("duplicate " ~ kind ~ " " 2~ nl))
| _ :: t -> dups t
in dups (List.sort (fun (_,a) (_,b) -> compare a b) binds)
in

check _binds "global" globals;

let built_in_decls =
let add_bind map (name, ty, ret) = StringMap.add name {
typ = ret;
fname = name;
formals =
(
let rec bind_funcs = (function
[1 ->1[]
| fst::snd -> (fst, "x")::(bind_funcs snd))
in
bind_funcs ty
)
locals = []; body = [] } map
in List.fold left add _bind StringMap.empty [
("print", [Int], Void);
("printb", [Bool], Void);
("printf", [Float], Void);
("prints", [String], Void);
("printbig", [Int], Void);
("transpose", [Matrix(Int)], Matrix(Int));
("numCols", [Matrix(Int)], Int);
("numRows", [Matrix(Int)], Int);
("transformation"”, [Matrix(Int); Int], Matrix(Int));
("identity", [Int], Matrix(Int));
("twoFunc", [Int; Int], Void);
("pi", [], Float);
("print_matrix", [Matrix(Int)], Void)
]

let add_func map fd =
let built_in_err = "function " ~ fd.fname ~ " may not be defined"
and dup_err = "duplicate function " ~ fd.fname
and make_err er = raise (Failure er)
and n = fd.fname
in match fd with

_ when StringMap.mem n built_in_decls -> make_err built_in_err
| _ when StringMap.mem n map -> make_err dup_err
| _ -> StringMap.add n fd map

let function_decls = List.fold left add func built in_decls functions
in

let find_func s =

try StringMap.find s function_decls

with Not found -> raise (Failure ("unrecognized function " ~ s))
in

let _ = find_func "main" in
let check function func =

check binds "formal" func.formals;
check _binds "local" func.locals;

let check _assign lvaluet rvaluet err =
if lvaluet = rvaluet then lvaluet else raise (Failure err)
in

let symbols = List.fold left (fun m (ty, name) -> StringMap.add name ty

StringMap.empty (globals @ func.formals @ func.locals

let type_of_ identifier s =
try StringMap.find s symbols
with Not found -> raise (Failure ("undeclared identifier " ~ s))

rec expr = function

Literal 1 -> (Int, SLiteral 1)
Fliteral 1 -> (Float, SFliteral 1)
Stringlit 1-> (String, SStringlit 1)
BoolLit 1 -> (Bool, SBoollLit 1)

Mx 1 ->

let rows .length 1 in

let cols .length (List.hd 1) in

let col check list = List.map (fun v -> if List.length v != cols then
(Failure "Matrix rows are not all the same length")) list in

ignore(col check 1); (Matrix(Int), SMx (1, rows, cols))

Noexpr -> (Void, SNoexpr)
Id s -> (type_of_identifier s, SId
Assign(var, e) as ex ->
let 1t = type of identifier var
and (rt, e') = expr e in
let err = "illegal assignment " ~ string of_typ 1t ~ " =
string of typ rt ~ " in " ~ string of expr ex
in (check _assign 1t rt err, SAssign(var, (rt, e')))
Plusassign(var, e) as ex ->
let 1t = type of identifier var
and (rt, e') = expr e in
let err = "illegal assignment " ~ string of typ 1t ~ " =
string_of _typ rt ~ " in " ~ string_of_expr ex
in (check assign 1t rt err, SPlusassign(var, (rt, e')))
Minusassign(var, e) as ex ->

let 1t = type of identifier var
and (rt, e') = expr e in
let err = "illegal assignment " ~ string of_typ 1t ~
string of typ rt ~ " in " ~ string of expr ex
in (check _assign 1t rt err, SMinusassign(var, (rt, e')))
| Timesassign(var, e) as ex ->
let 1t = type of identifier var
and (rt, e') = expr e in
let err = "illegal assignment " ~ string of_typ 1t ~ " =" 2
string of _typ rt ~ " in " ”~ string_of_expr ex
in (check assign 1t rt err, STimesassign(var, (rt, e')))
| Unop(op, e) as ex ->
let (t, e') = expr e in
let ty = match op with
Neg when t = Int || t = Float -> t
| Not when t = Bool -> Bool
| Transpose when t = Matrix(Int) -> t
| _ -> raise (Failure ("illegal unary operator " A
string _of uop op ”~ string of typ t *
" in " ~ string_of_expr ex))
in (ty, SUnop(op, (t, e')))
| Binop(el, op, e2) as e ->
let (t1, el') = expr el
and (t2, e2') = expr e2 in

let same = t1 t2 in

let ty = match op with
Add | Sub | Mult | Div same && t1
-> Int
| Add | Sub | Mult | Div same && t1
Float -> Float
| Add | Sub | Mult | Div (t1 = Float && t2
= Int) || (t1 = Int & t2 = Float) -> Float
| Mxadd | Mxsub | Mxtimes same && tl1 =
Matrix(Int) -> Matrix(Int)
| Mxscale tl = Matrix(Int)
& & t2 = Int -> (Matrix(Int))
Equal | Neq when same -> Bool
Less | Leq | Greater | Geq
when same && (t1 = Int || t1 = Float) -> Bool
And | Or when same && tl1l = Bool -> Bool

| _ -> raise (
Failure ("illegal binary operator " *
string of typ t1 ~ " " ~ string of opop »~ " " ~
string of typ t2 ~ " in " ~ string of expr e))
in (ty, SBinop((tl1, el'), op, (t2, e2")))
| call(fname, args) as call ->
let fd = find func fname in
let param_length = List.length fd.formals in
if List.length args != param_length then
raise (Failure ("expecting " ~ string_of_int param_length ~
" arguments in " ~ string of expr call))
else let check call (ft,) e =
let (et, e') = expr e in
let err = "illegal argument found " ~ string_of_typ et ~
" expected " ~ string of typ ft ~ " in " ” string of _expr e
in (check_assign ft et err, e')
in
let args' = List.map2 check call fd.formals args
in (fd.typ, SCall(fname, args'))

let check bool expr e =
let (t', e') = expr e
and err = "expected Boolean expression in " ~ string_of _expr e
in if t' != Bool then raise (Failure err) else (t', e')

in

rec check stmt = function
Expr e -> SExpr (expr e)
If(p, bl, b2) -> SIf(check bool expr p, check stmt bl, check stmt

For(el, e2, e3, st) ->

SFor(expr el, check bool expr e2, expr e3, check stmt st)

While(p, s) -> SWhile(check_bool expr p, check_stmt s)

Return e -> let (t, e') = expr e in

if t = func.typ then SReturn (t, e')

else raise (

Failure ("return gives " ~ string of typ t ~ " expected " ~
string of typ func.typ ~ " in " ~ string_of_expr e))

sl ->
rec check_stmt_list = function
[Return _ as s] -> [check stmt s]
| Return _ :: _ -> raise (Failure "nothing may follow a
return™)

| Block sl :: ss -> check_stmt_list (sl @ ss)

| s :: ss -> check_stmt s :: check _stmt list ss

|] -> [1]
in SBlock(check stmt list sl)

in
{ styp = func.typ;
sfname = func.fname;
sformals = func.formals;
slocals = func.locals;
sbody = match check_stmt (Block func.body) with
SBlock(sl) -> sl
| _ -> raise (Failure ("internal error: block didn't become a
block?"))
}

in (globals, List.map check function functions)

8.3.5. sast.ml (Aaron Jackson)

open Ast
type sexpr = typ * sx

and sx =
SLiteral of int
SFliteral of string
SBoolLit of bool
SMx of int list list * int * int
SId of string
SStringlit of string
SBinop of sexpr * op * sexpr
SUnop of uop * sexpr
SAssign of string * sexpr
SPlusassign of string * sexpr
SMinusassign of string * sexpr

| STimesassign of string * sexpr
| SCall of string * sexpr list
| SNoexpr

type sstmt =
SBlock of sstmt list
SExpr of sexpr
SReturn of sexpr
SIf of sexpr * sstmt * sstmt
SFor of sexpr * sexpr * sexpr * sstmt
SWhile of sexpr * sstmt

type sfunc_decl = { styp : typ;
sfname : string;

sformals : bind list;

slocals : bind list;

sbody : sstmt list; }

type sprogram = bind list * sfunc_decl list
(* Pretty-printing functions *)

let rec string _of sexpr (t, e) =
"(" ~ string of typ t A~ " : " ~ (match e with
SLiteral(l) -> string of int 1
SBoolLit(true) -> "true"
SBoolLit(false) -> "false"
SStringlit(l) -> 1
SFliteral(l) -> 1
SMx(1l, ,) -> let flat list = List.flatten 1 in "\n[" ~ String.concat
(List.map string_of_int flat_list) ~ "]\n"
SId(s) -> s
SBinop(el, o, e2) ->
string _of _sexpr el ~ " " ~ string of op o ~ " " ~ string of sexpr e2
SUnop(o, e) -> string_of uop o ~ string of _sexpr e
SAssign(v, e) -> v ~ " = " A string of_sexpr e
SPlusassign(v, e) -> v A~ " += " 2~ string _of_sexpr e
SMinusassign(v, e) -> v A~ " -= " 2~ string _of_sexpr e
STimesassign(v, e) -> v ~ " *= " A string of sexpr e
SCall(f, el) -»>
£ ~ "(" ~ String.concat ", " (List.map string_of_sexpr el) ~ ")
SNoexpr -> ""

)~)"

rec string_of_sstmt = function
SBlock(stmts) ->
"{\n" ~ String.concat "" (List.map string of sstmt stmts) ~ "}\n"
SExpr(expr) -> string of sexpr expr ~ ";\n";
SReturn(expr) -> "return " ~ string_of_sexpr expr ~ ";\n";
SIf(e, s, SBlock([])) ->
"if (" ~ string_of sexpr e * ")\n" ~ string of sstmt s
SIf(e, s1, s2) -> "if (" ~ string_of _sexpr e ~ ")\n" ~
string_of_sstmt s1 ~ "else\n" ~ string of sstmt s2
SFor(el, e2, e3, s) ->
"for (" ~ string of sexpr el ~* ; " N string_of_sexpr e2 ~ "
string_of_sexpr e3 ~ ") " ~ string_of_sstmt s
SWhile(e, s) -> "while (" ~ string_of sexpr e ~ ") " ~ string_of sstmt

let string_of_sfdecl fdecl =
string of typ fdecl.styp ~ " " A
fdecl.sfname ~ "(" ~ String.concat
“)\n{\n" 7
String.concat "" (List.map string _of vdecl fdecl.slocals) *
String.concat "" (List.map string of sstmt fdecl.sbody) ~

"}\n"

, " (List.map snd fdecl.sformals) *

let string of sprogram (vars, funcs) =
String.concat "" (List.map string of vdecl vars) ~ "\n" ~
String.concat "\n" (List.map string of sfdecl funcs)

8.3.6. codegen.ml (Aaron Jackson)

module L
module A
open Sast

module StringMap = Map.Make(String)

let translate (globals, functions) =
let context = L.global_context () in
let 1llmem = L.MemoryBuffer.of file "mx.bc" in
let 11lm = Llvm_bitreader.parse_bitcode context llmem in

the_module .create_module context "MX" in

i32_ t .132_type context

i8 t .i8 type context

il t .11 _type context

float_t .double_type context

string t .pointer type (L.i8 type context)

void t .void type context

matrix_t .pointer_type (match L.type by name 1lm "struct.Matrix"

None -> raise (Failure "struct.Matrix not defined")
Some t -> t)

ltype_of_typ = function
A.Int -> 132 t

A.Bool -> i1 t
A.String-> string_ t
A.Float -> float_t
A.Void -> void t
A.Matrix _ -> matrix_t

let global _vars : L.llvalue StringMap.t =
let global var m (t, n) =
let init = match t with
A.Float -> L.const_float (ltype of typ t)
| _ -> L.const_int (ltype of_typ t)
in StringMap.add n (L.define global n init the_module) m in
List.fold left global var StringMap.empty globals in

let printf_t : L.lltype =

L.var_arg_function_type i32_t [| L.pointer_type i8 t |] in
let printf_func : L.llvalue =

L.declare_function "printf" printf_t the_module in

let printbig t : L.1lltype =
L.function_type i32_t [| i32_t |] in
let printbig func : L.llvalue =
L.declare_function "printbig" printbig t the_module in

init_matrix_t =

L.function_type matrix_t [| i32_t; i32_t |] in

init matrix f =

L.declare_function "initMatrix" init_matrix_t the_module in

store _matrix t =

L.function_type matrix_t [|matrix_t; i32_t]|] in
store_matrix_f =

L.declare_function "store" store_matrix_t the_module in

print_matrix_t =

L.function_type matrix_t [|matrix_t]|] in

print_matrix f =

L.declare_function "display" print_matrix_t the module in

transpose_t =

L.function_type matrix_t [|matrix_t|] in

transpose_f =

L.declare_function "transpose" transpose_t the_module in

mxAdd_t =

L.function_type matrix_t [|matrix_t; matrix_t|] in
mxAdd_f =
L.declare_function "mxAdd" mxAdd t the module in

mxSub_t =

L.function_type matrix_t [|matrix_t; matrix_t|] in
mxSub_f =

L.declare_function "mxSub" mxSub_t the_module in

mxMult t =
L.function_type matrix_t [|matrix_t; matrix_t|] in
mxMult_f =
L.declare_function "mxMult" mxMult_t the_module in

identity t =

L.function_type matrix_t [[|i32_t]|] in

identity f =

L.declare_function "identity" identity_t the_module in

mxScale_t =
L.function_type matrix_t [|matrix_t;i32_t]|] in

mxScale f =
L.declare_function "mxScale" mxScale_t the_module in

twoFunc_t =

L.function_type matrix_t []|i32_t;i32 t]|] in
twoFunc_f =

L.declare_function "twoFunc" twoFunc_t the_module in

transformation t =

L.function_type matrix_t [|matrix_t;i32_t]|] in

transformation_f =

L.declare_function "transformation" transformation_t the_module in

numCols_t =

L.function_type i32_t [|matrix_t|] in

numCols f =

L.declare_function "numCols" numCols_t the_module in

numRows_t =
L.function_type i32_t [|matrix_t]|] in

numRows_f =
L.declare_function "numRows" numRows_t the_module in

pi_t =

L.function_type float t [||] in

pi f =

L.declare_function "pi" pi_t the_module in

let function_decls : (L.llvalue * sfunc_decl) StringMap.t =
let function_decl m fdecl =
let name = fdecl.sfname
and formal_types =
Array.of list (List.map (fun (t,_) -> ltype_of typ t) fdecl.sformals)
in let ftype = L.function type (ltype of typ fdecl.styp) formal types

StringMap.add name (L.define_function name ftype the_module, fdecl) m

List.fold left function_decl StringMap.empty functions in

let build_function_body fdecl =
let (the function,) = StringMap.find fdecl.sfname function_ decls in
let builder = L.builder_at_end context (L.entry_block the function) in

let int format str = L.build global stringptr "%d\n" "fmt" builder
and str_format_str = L.build _global stringptr "%s\n" "fmt" builder
and float_format_str L.build_global_stringptr "%g\n" "fmt" builder in

let local vars =
let add_formal m (t, n) p =
L.set value name n p;
let local = L.build alloca (ltype of typ t) n builder in
ignore (L.build store p local builder);
StringMap.add n local m

and add_local m (t, n) =

let local var = L.build alloca (ltype of typ t) n builder
in StringMap.add n local _var m

in

let formals = List.fold left2 add formal StringMap.empty
sformals

(Array.to_list (L.params the_function)) in
List.fold left add local formals fdecl.slocals

let lookup n = try StringMap.find n local_vars
with Not_found -> StringMap.find n global_vars
in

let rec expr builder ((_, e) : sexpr) = match e with

SLiteral i
SBoolLit b

SStringlit 1
builder
| SFliteral 1
| SNoexpr
| SId s
| SMx (1, rows, cols)

-> L.const_int i32 t i
L.const_int il_t (if b then 1 else

L.build global stringptr 1 "tmp"

-> L.const_float_of _string float_t 1
-> L.const_int i32 t
-> L.build load (lookup s) s builder
->

let m = L.build_call init_matrix_f

[| L.const_int i32_t rows; L.const_int i32 t cols |] "init_matrix" builder

in

let flat list = List.flatten 1 in
ignore(List.map (fun v ->

L.build_call store matrix f [| m ; L.const_int i32_t v |] "store matrix"

builder) flat list); m

| SAssign (s, e) -> let e' = expr builder e in
ignore(L.build store e' (lookup s) builder); e’

| SPlusassign (s, e) ->

| SMinusassign (s, e) ->

let el' (expr builder e) in
let e2' L.build load (lookup s) s builder

let

e' = L.build add el' e2' "tmp" builder in
ignore(L.build store e' (lookup s) builder);

let el’ (expr builder e) in
let e2' L.build load (lookup s) s builder

let

e =

| STimesassign (s, e) ->

let e
let e

let

e =

L.build sub e2' el' "tmp" builder in
ignore(L.build_store e' (lookup s) builder);

1[
2l

(expr builder e) in
L.build load (lookup s) s builder

L.build mul el' e2' "tmp" builder in
ignore(L.build store e' (lookup s) builder);

| sBinop (((A.Float,) as el), op, ((A.Int,) as e2)) ->
builder el
builder e2 in

let el’
and e2'

= expr
= expr

(match op with

and/or on

)

A.
.Sub
.Mult
.Div
.Equal
.Neq
.Less
.Leq
.Greater ->
.Geq
.And | A.Or
raise (Failure "internal error:

> > r>r >xr>xr > > > >

Add ->
->
->
->
->
->
->
->

->

float")
el' (L.build uitofp e2' float_t "tmp" builder) "tmp" builder

r— O O - - -

.build_fadd
.build fsub
.build_fmul
.build_fdiv
.build fcmp
.build_fcmp
.build fcmp
.build_fcmp
.build fcmp
.build_fcmp

.Fcmp.
.Fcmp.
.Fcmp.
.Fcmp.
.Fcmp.
.Fcmp.

A.Mxadd | A.Mxsub

Oeq
One
01t
Ole
Ogt
Oge
| A.Mxtimes | A.Mxscale ->
semant should have rejected

| SBinop (((A.Int,) as el), op, ((A.Float,) as e2)) -»

let el' =
and e2' =

(match op with

A.

Add

expr builder el
expr builder e2 in

-> L.build_fadd

and/or on

)

> > rr>r x> > > > >

.Sub
.Mult
.Div
.Equal
.Neq
.Less
.Leq
.Greater ->
.Geq
.And | A.Or
raise (Failure "internal error:

=2
->
->
=2
=2
->
=2

->

float")
(L.build_uitofp el' float_t "tmp" builder) e2' "tmp" builder

r r O OO - - &

.build fsub
.build_fmul
.build_fdiv
.build fcmp
.build_fcmp
.build_fcmp
.build fcmp
.build fcmp
.build_fcmp

.Fcmp.
.Fcmp.
.Fcmp.
.Fcmp.
.Fcmp.
.Fcmp.

A.Mxadd | A.Mxsub

Oeq
One
01t
Ole
Ogt
Oge
| A.Mxtimes | A.Mxscale ->
semant should have rejected

| SBinop (((A.Float,) as el), op, ((A.Float,) as e2)) ->
builder el

let el’
and e2'

= expr
= expr

(match op with

and/or on

A.
.Sub
Mult
.Div
.Equal
.Neq
.Less
R =To
.Greater ->
.Geq
.And | A.Or
raise (Failure "internal error:

> > > > > > > > > P>

Add ->
->
->
->
->
->
->
->

=2

float")
) el' e2' "tmp" builder

builder e2 in

r— O OO OO - -

.build_fadd
.build_fsub
.build_fmul
.build_fdiv
.build_fcmp
.build fcmp
.build fcmp
.build_fcmp
.build fcmp
.build_fcmp

.Fcmp.
.Fcmp.
.Fcmp.
.Fcmp.
.Fcmp.
.Fcmp.

A.Mxadd | A.Mxsub

| SBinop (el, op, e2) ->

let el' =
and e2' =

(match op with

A.
| A.Sub
| A.Mult

| A.Div

| A.And
| A.Or

Add

expr builder el
expr builder e2 in

-> L.build add el' e2'
-> L.build sub el' e2'
-> L.build mul el' e2'

Oeq
One
01t
Ole
Ogt
Oge
| A.Mxtimes | A.Mxscale ->
semant should have rejected

“"tmp" builder
“"tmp" builder
"tmp" builder

-> L.build_sdiv el' e2' "tmp" builder

-> L.build_and el' e2'
-> L.build or el' e2' "tmp" builder

“tmp" builder

| A .build icmp L.Icmp.Eq el' e2' "tmp" builder

| A .build_icmp L.Icmp.Ne el' e2' "tmp" builder

| A.Less .build_icmp L.Icmp.S1lt el' e2' "tmp" builder

| A.Leq .build icmp L.Icmp.Sle el' e2' "tmp" builder

| A.Greater -> L.build icmp L.Icmp.Sgt el' e2' "tmp" builder

| A.Geq -> L.build_icmp L.Icmp.Sge el' e2' "tmp" builder
.Mxadd -> L.build call mxAdd_f [| el1'; e2' |] "mxAdd" builder
.Mxsub -> L.build _call mxSub_f [| el1'; e2' |] "mxSub" builder
.Mxtimes -> L.build _call mxMult f [| el'; e2' |] "mxMult" builder
.Mxscale -> L.build_call mxScale f [| el'; e2' |] "mxScale" builder

SUnop(op, ((t,) as e)) ->
let e' = expr builder e in
(match op with
A.Neg when t = A.Float -> L.build fneg e' "tmp" builder
| A.Neg -> L.build neg e' "tmp" builder
| A.Transpose -> L.build_call transpose f [| e' |]
"transpose" builder
| A.Not -> L.build not e' "tmp" builder)

| scall ("print", [e]) | SCall ("printb", [e]) ->
L.build call printf_func [| int_format_str ; (expr builder e) |]
"printf" builder

SCall ("printbig", [e]) ->
L.build _call printbig func [| (expr builder e) |] "printbig"

SCall ("print_matrix", [e]) ->
L.build_call print_matrix_f [| (expr builder e) |] "printbig"
builder

SCall ("transpose", [e]) ->
L.build_call transpose_f [| (expr builder e) |] "transpose" builder

SCall ("printf", [e]) ->
L.build_call printf_func [| float_format_str ; (expr builder e) |]
"printf" builder

SCall ("prints", [e]) ->

L.build _call printf_func [| str_format_str ; (expr builder e) |]
"printf" builder

| scall ("twoFunc", [el; e2]) ->
L.build_call twoFunc_f [| (expr builder el); (expr builder e2) |]
"twoFunc" builder

| scall ("transformation", [el; e2]) ->
L.build_call transformation_f [| (expr builder el); (expr builder e2)
|] "transformation" builder

| scall ("identity", [e]) ->
L.build_call identity f [| (expr builder e) |] "identity" builder

SCall ("numCols", [e]) ->
.build_call numCols_f [| (expr builder e) |] "numCols" builder

SCall ("numRows", [e]) ->
.build _call numRows f [| (expr builder e) |] "numRows" builder

SCall ("pi",) -»>
.build call pi_ f [||] "pi" builder

SCall (f, args) ->
let (fdef, fdecl) = StringMap.find f function_decls in
let llargs = List.rev (List.map (expr builder) (List.rev args)) in
let result = (match fdecl.styp with
A.Void -> ""
| _ -> f ~ " _result") in
L.build _call fdef (Array.of list llargs) result builder

let add_terminal builder instr =
match L.block terminator (L.insertion_block builder) with
Some _ -> ()
| None -> ignore (instr builder) in

let rec stmt builder = function
SBlock sl -> List.fold left stmt builder sl
| SExpr e -> ignore(expr builder e); builder
| SReturn e -> ignore(match fdecl.styp with

A.Void -> L.build_ret_void builder

| _ -> L.build_ret (expr builder e) builder);
builder
| SIf (predicate, then_stmt, else_stmt) ->
let bool val = expr builder predicate in
let merge bb = L.append_block context "merge" the_function in
let build _br_merge = L.build_br merge_bb in

let then bb = L.append block context "then" the function in
add_terminal (stmt (L.builder_at _end context then_bb) then_stmt)
build_br_merge;

let else bb = L.append block context "else" the_ function in
add_terminal (stmt (L.builder_at_end context else bb) else stmt)
build_br_merge;

ignore(L.build cond_br bool val then_bb else bb builder);
L.builder_at_end context merge_bb

| SWwhile (predicate, body) ->
let pred_bb = L.append_block context "while" the_function in
ignore(L.build_br pred_bb builder);

let body bb = L.append_block context "while body" the_function in
add_terminal (stmt (L.builder_at_end context body bb) body)
(L.build_br pred_bb);

let pred_builder = L.builder_at_end context pred_bb in
let bool val = expr pred builder predicate in

let merge bb = L.append_block context "merge" the_function in
ignore(L.build cond_br bool val body bb merge bb pred builder);
L.builder_at_end context merge_bb

| SFor (el1, e2, e3, body) -> stmt builder
(SBlock [SExpr el ; SWhile (e2, SBlock [body ; SExpr e3])])

let builder = stmt builder (SBlock fdecl.sbody) in

add_terminal builder (match fdecl.styp with
A.Void -> L.build ret void
| A.Float -> L.build _ret (L.const_float float_t)
| t -> L.build_ret (L.const_int (ltype_of_typ t) 0))

in

List.iter build_function_body functions;
the_module

8.3.7. mx.c (Wilderness Oberman, Aaron Jackson)
<stdlib.h>
<stdio.h>
<string.h>
<math.h>

*message) {
perror(message);
exit(1);

Matrix {
num_rows;
num_cols;
*matrixAddr;
buildPosition;

} Matrix;

Matrix *store(Matrix *m, value) {

int position = m->buildPosition;
int curr_row = position / m->num_cols;

int curr_col position % m->num_cols;

m->matrixAddr[position] = value;
m->buildPosition = m->buildPosition + 1;

return m;

Matrix *initMatrix(int rows, int cols) {
int size = rows * cols;

int *p = malloc(sizeof(int*)*size);

for (int i = @; i <= size; i++) {
p[i] = ©;

Matrix *result = malloc(sizeof(struct Matrix));
result->num_cols = cols;

result->num_rows = rows;

result->matrixAddr = p;

result->buildPosition = 0;

return result;

int get(struct Matrix *m, int r, int c) {

int kill = @;

if (r > ((m->num_rows) - 1)) {
perror("row index out of range when setting matrix
kill = 1;

}

if (¢ > ((m->num_cols) - 1)) {

perror("col index out of range when setting matrix ");
kill = 1;

}

if(kill == 1) {
die("");

¥
int idx = ¢ + (r * (m->num_cols));

return m->matrixAddr[idx];

void set(struct Matrix *m, int r, int c, double v) {

int kill = @;

if (r > ((m->num_rows) - 1)) {
perror("row index out of range when setting matrix ");
kill = 1;

}

if (¢ > ((m->num_cols) - 1)) {
perror("col index out of range when setting matrix ");
kill = 1;

}

if(kill == 1) {
die("");

}

int idx = ¢ + (r * (m->num_cols));

m->matrixAddr[idx] = v;

int numCols(Matrix *input) {
int cols = input->num_cols;

return cols;

int numRows(Matrix *input) {
int rows = input->num_rows;

return rows;

double pi(int a) {
double pi = 2*acos(0.0);

return pi;

Matrix *mxAdd(Matrix *1lhs, Matrix *rhs) {

if (lhs->num_rows != rhs->num_rows || lhs->num_cols != rhs->num cols) {
die("Addition size mismatch.");
}
int rows = lhs->num_rows;
int cols= lhs->num cols;
Matrix *result = initMatrix(rows, cols);
for(int i = @; i < rows; i++) {
for(int j = @; j < cols; j++) {
int sum = get(lhs, i, j) + get(rhs, i, j);

set(result, i, j, sum);

}

return result;

Matrix *mxSub(Matrix *1lhs, Matrix *rhs) {

if (lhs->num_rows != rhs->num_rows || lhs->num_cols != rhs->num_cols) {

die("Subtraction size mismatch.");
}
int rows = lhs->num_rows;
int cols = lhs->num cols;
Matrix *result = initMatrix(rows, cols);
for(int i = @; i < rows; i++) {

for(int j = @; j < cols; j++) {

int res = get(lhs, i, j) - get(rhs, i, j);

set(result, i, j, res);

}

return result;

Matrix *mxMult(Matrix *1hs, Matrix *rhs) {

if (lhs->num_cols != rhs->num_rows) {

die("Multiplication size mismatch.");

int rows lhs->num_rows;
int cols rhs->num_cols;
Matrix *result = initMatrix(rows, cols);
for(int i = @; i < rows; i++) {
for(int j = @ ; j < cols; j++) {

for(int k = @; k < rhs->num_rows; k++) {

set(result, i, j, get(result, i, j) + (get(lhs, i, k) * get(rhs, k, 3)));

return result;

Matrix *mxScale(Matrix *input, int scalar) {
int rows = input->num_rows;
int cols input->num_cols;
Matrix *result = initMatrix(rows, cols);
for(int i = @; i < rows; i++) {
for(int j = @ ; j < cols; j++) {
int product = scalar * get(input,i,j);

set(result, i, j, product);

}

return result;

Matrix *identity(int dim) {

int rows = dim;
int cols = dim;
Matrix *result = initMatrix(rows, cols);
for(int i = @; i < rows; i++) {
for(int j = @ ; j < cols; j++) {
if(i == 3j) {
set(result, i, j, 1);
} else {
set(result, i, j, 0);

}

return result;
Matrix *transpose(Matrix *input) {
rows input->num_rows;
cols input->num_cols;
Matrix *result = initMatrix(cols, rows);
for(i=20; 1< rows; i++) {
for(j =0; j < cols; j++) {

set(result, j, i, get(input,i,j));

}

return result;

Matrix *transformation(Matrix *input, num) {

if(input->num_rows != 2) {

die("Invalid matrix size for 2D transformations");

rows = input->num_rows;
cols = input->num_cols;
Matrix *result = initMatrix(rows, cols);
Matrix *tmp = initMatrix(2, 2);
switch(num) {
case 1 :
set(tmp, 0, 9);
set(tmp, O, 1);
set(tmp, 1, 0, 1);
1, 1, 9);
result = mxMult(tmp, input);

set(tmp,

break;

case 2 :

set(tmp,
set(tmp,
set(tmp,
set(tmp,
result =
break;

case 3 :

set(tmp,
set(tmp,
set(tmp,
set(tmp,
result =
break;

case 4 :

set(tmp,
set(tmp,
set(tmp,
set(tmp,
result =
break;

case 5 :

set(tmp,
set(tmp,
set(tmp,
set(tmp,
result =
break;

case 6 :

set(tmp,
set(tmp,
set(tmp,

set(tmp,

result =
break;

case 7 :

9, 9);
9, -1);
1, -1);
1, 9);
mxMult (tmp,

9, 1);
9, 90);
1, 9, 9);
1, 1, -1);
mxMult (tmp,

0, 9, -1);
0, 1, 0);
1, 9, 9);
1, 1, 1);
mxMult (tmp,

9, 9);
9, 1);
1, 9, -1);
1, 1, 9);
mxMult (tmp,

9, -1);
9, 90);
1, 0, 9);
1, 1, -1);
mxMult (tmp,

set(tmp, 9);
set(tmp, -1);
set(tmp, 1);
set(tmp, 9);
result = mxMult(tmp, input);
break;

default :
printf("Invalid input.");

}

return result;

display(Matrix *input) {
rows = input->num_rows;
cols = input->num_cols;
printf("“\n");
for(i=20; 1< rows; i++) {
for(j =0; j < cols; j++) {
if (j ==0) {
printf("[%i,", get(input, i, j));
} else if (j == cols - 1) {
printf(" %i 1", get(input, i, j));
} else {
printf(" %i,", get(input, i, j));

}
printf("\n");

twoFunc(a, b){
printf("%d\n%d\n",a,b);

8.3.8. Mx.ml (Aaron Jackson)

type action = Ast | Sast | LLVM_IR | Compile

let () =
let action = ref Compile in
let set_action a () = action := a in
let speclist = [
("-a", Arg.Unit (set_action Ast), "Print the AST");
"-s", Arg.Unit (set_action Sast), "Print the SAST");
, Arg.Unit (set_action LLVM_IR), "Print the generated LLVM IR");
-c", Arg.Unit (set_action Compile),
"Check and print the generated LLVM IR (default)");
] in
let usage _msg = "usage: ./mx.native [-a|-s|-1|-c] [file.mx]" in
let channel = ref stdin in
Arg.parse speclist (fun filename -> channel := open_in filename)
usage_msg;

let lexbuf = Lexing.from_channel !channel in
let ast = Parser.program Scanner.token lexbuf in
match laction with
Ast -> print_string (Ast.string of program ast)
| _ -> let sast = Semant.check ast in
match laction with
Ast -> ()
| sast -> print_string (Sast.string of_sprogram sast)
| LLVM_IR -> print_string (Llvm.string of_llmodule (Codegen.translate
sast))
| Compile -> let m = Codegen.translate sast in
Llvm_analysis.assert_valid module m;
print_string (Llvm.string_of_llmodule m)

8.3.9. Makefile (Rashel Rojas, Wilderness Oberman, Aaron Jackson,
Mauricio Guerrero)

.PHONY: test
test: all testall.sh

./testall.sh

.PHONY : all

all : mx.native mx.o

mx.native : mx.bc
opam exec -- \

ocamlbuild -use-ocamlfind mx.native -pkgs 1lvm,llvm.analysis,llvm.bitreader

cc -o mx -DBUILD_TEST mx.c

mx.bc : mx.c

clang -emit-1lvm -0 mx.bc -c mx.c -Wno-varargs

.PHONY : clean
clean :

ocamlbuild -clean

rm -rf testall.log ocamlllvm *.diff *.exe *.s *.11 *.bc *.o0 tests/*.exe
tests/*.s tests/*.11

8.4. Tests
8.4.1. Jtestall.sh

LLI="11i"

LLC="11lc"

cc="cc"

="./mx.native"

ulimit -t 30
globallog=testall.log

rm -f $globallog

error=0
(0]

echo "Usage: testall.sh [options] [.mx files]"
echo "-k Keep intermediate files"
echo "-h Print this help"
exit 1
}
SignalError () ({
if [$error -eq 0] ; then
echo "FAILED"
error=1
fi
echo " §$1"

Compare () {
generatedfiles="$generatedfiles $3"
echo diff -b $1 $2 ">" $3 1>&2
diff -b "$1" "$2" > "$3" 2>&l1 || {
SignalError "$1 differs"
echo "FAILED $1 differs from $2" 1>&2
}

Run () {
echo $* 1>&2
eval $* || {
SignalError "$1 failed on $*"

return 1

}

RunFail () {
echo $* 1>&2
eval $* && {

SignalError "failed: $* did not report an error"

return 1
}
return O

}

Check () {
error=0
basename="echo $1 | sed 's/.*\\///

s/.mx//'"

reffile="echo $1 | sed 's/.mx$//'"
basedir=""echo $1 | sed 's/\/[*\/1*$//' /."
echo -n "S$basename..."
echo 1>&2
echo "###### Testing $basename" 1>&2
generatedfiles=""

generatedfiles="$generatedfiles ${basename}.ll ${basename}.s

${basename} .exe ${basename}.out" &&
Run "$MX" "$1" ">" "${basename}.ll" &&

Run "SLLC" "-relocation-model=pic" "${basename}.ll" ">" "${basename}.s"

Run "$CC" "-o" "${basename}.exe" "${basename}.s" "mx.c" "-1lm" &&
Run "./${basename} .exe" > "${basename}.out" &&

Compare ${basename}.out ${reffile}.out ${basename}.diff

if [$error -eq 0] ; then
if [Skeep -eq 0] ; then
rm -f $generatedfiles

fi
echo "OK"
echo "###### SUCCESS" 1>&2
else
echo "###### FAILED" 1>&2
globalerror=$error
fi

}

CheckFail () {
error=0
basename="echo $1 | sed 's/.*\\///

s/.mx//"'"

reffile="echo $1 | sed 's/.mx$//'"
basedir=""echo $1 | sed 's/\/[*\/1*$//' /."
echo -n "$basename..."
echo 1>&2
echo "###### Testing $basename" 1>&2
generatedfiles=""
generatedfiles="$generatedfiles ${basename}.err ${basename}.diff" &&
RunFail "$MX" "<" $1 "2>" "${basename}.err" ">>" $globallog &&

Compare ${basename}.err ${reffile}.err ${basename}.diff

if [$error -eq 0] ; then

if [Skeep -eq 0] ; then
rm -f $generatedfiles

fi

echo "OK"

echo "#i#i### SUCCESS" 1>&2

else
echo "###### FAILED" 1>&2
globalerror=$error
fi
}
hile getopts kdpsh c; do
case $c in
k)
keep=1

shift “expr $OPTIND - 1°
LLIFail () {
echo "Could not find the LLVM interpreter \"S$LLI\"."

echo "Check your LLVM installation and/or modify the LLI variable in
testall.sh"
exit 1

}
hich "$LLI" >> $globallog || LLIFail

files="tests/test-* . mx tests/fail-*.mx"
fi
for file in $files
do

case $file in

test-)

Check $file 2>> $globallog

fail-)
CheckFail $file 2>> $globallog

*)

echo "unknown file type $file"

globalerror=1

8.4.2. fail-addl.mx

int main () {
Matrix ml;
Matrix m2;
Matrix m3;

ml = [[113]1 [71113]};
mz = [[5,41,[3,6]11;

m3 =ml +. m2;

Expected output:
fail-add1.err

Fatal error: exception Failure("Matrix rows are not all the

same length")

8.4.3. fail-add2.mx

int main() {
Matrix m;
String s;
Matrix sum;

8.4.4.

8.4.5.

[((6,7,81,09,4,51,105,4,411;
s = "pineapples";

3
I

sum = m +. s; /* Fail: add a matrix and string */

Expected output:
fail-add2.err

Fatal error: exception Failure("illegal binary operator
matrix +. string in m +. s")

fail-add3.mx

int main() {
Matrix m;
int x;

Matrix sum;

m = [[9,4],[1,5]];
x = 45;

sum = m +. X; /* Fail: add a matrix and int */

Expected output:
fail-add3.err

Fatal error: exception Failure("illegal binary operator
matrix +. int in m +. x")

fail-add4.mx

int main() {
int 1i;
float j;

print (i +. J);

Expected output:

fail-add4.err

Fatal error: exception Failure("illegal binary operator int
+. float in 1 +. ")

8.4.6. fail-arithmetic2.mx

int main () {
String s;
int i;
int j;
i = 50;

i =3+ 1/ s;
print(j);

Expected output:
fail-arithmetic2.err

Fatal error: exception Failure("illegal binary operator int /
string in i / s")

8.4.7. fail-arithmetic3.mx

int main() {
String s;
int i;
bool b;
int J;

J=Db - 1i;
print(j);

Expected Output:
fail-arithmetic3.err

Fatal error: exception Failure("illegal binary operator bool
- int in b - i")

8.4.8. fail-arithmetic.mx

int main () {
int x;
x =10 + 3 —;

Expected Output:
fail-arithmetic.err

Fatal error: exception Stdlib.Parsing.Parse error

8.4.9. fail-assignl.mx

int main ()
{
int 1i;
bool b;
i = 42;
i = 10;
b = true;
b = false;
i = false; /* Fail: assigning a bool to an integer */

Expected Output:
fail-assignl.err

Fatal error: exception Failure("illegal assignment int = bool
in 1 = false")

8.4.10. fail-assign2.mx

int main ()

{

Matrix m;

int num;

m = [[1,3],[10,20]1];

num = 14;

m = 20; /* Fail: assigning a matrix to an integer */

7
num = 5;

Expected Output:
fail-assign2.err

Fatal error: exception Failure("illegal assignment matrix =
int in m = 20")

8.4.11. fail-assign3.mx

int main ()

{

String s;

"hello";
((1,2,31,16,4,51,109,3,511;

Expected Output:
fail-assign3.err

Fatal error: exception Failure("illegal assignment string =
matrix in s =

[1I2I3I6I4I519/3I5]

")

8.4.12. fail-assignop.mx

int main () {
String s;
int i;

s = "hello";
i=1;
1 += s;

Expected Output:
fail-assignop.err

Fatal error: exception Failure("illegal assignment int =
string in i += s")

8.4.13. fail-dead.mx

int main () {
int i;
return 1;

i=1;

Expected Output:
fail-dead.err

Fatal error: exception Failure("nothing may follow a return")

8.4.14. fail-for.mx

int main () {
int i;
for (1 =0 ; k<10 ; 1 =1 + 1) {
if (1 > 5) {
print (i * 2);

Expected Output:
fail-for.err

Fatal error: exception Failure ("undeclared identifier k")

8.4.15. fail-funcargl.mx

int foo(int x, int y, int z) {
int sum;

sum = X + y + z;

return sum;

int main () {
int secret;

secret = 100;

if (secret > 100) {
print (secret) ;

} else {
print (foo (3, 5));

Expected Output:
fail-funcargl.err

Fatal error: exception Failure ("expecting 3 arguments in
foo (3, 5)")

8.4.16. fail-funcarg2.mx

bool foo(int i, float f, bool tf) {
if (4 > 0 && £ > 3.5) {
return tf;
} else {
return false;

int main () {
bool result;
bool b;

b = true;
result = foo (5, b, 10.0);
printb (result) ;

Expected Output:
fail-funcarg2.err

Fatal error: exception Failure("illegal argument found bool
expected float in b")

8.4.17. fail-funcarg3.mx

int foo(int a, int b, int ¢, int b) {
return a * b / a;

int main() {

Expected Output:
fail-funcarg3.err

Fatal error: exception Failure("duplicate formal b")

8.4.18. fail-identityl.mx

int main () {
Matrix m;
String num;

num = "3";
m = identity (num);

Expected Output:
fail-identityl.err

Fatal error: exception Failure("illegal argument found string
expected int in num")

8.4.19. fail-identity2.mx

int main () {
Matrix m;
float f;

H
|

= 3.42;
identity (f);

Expected Output:
fail-identity2.err

Fatal error: exception Failure("illegal argument found float
expected int in f")

8.4.20. fail-if.mx

int main () {
int x;
x = 5;
if ("true"™) {

print (x);

Expected Output:
fail-if.err

Fatal error: exception Failure ("expected Boolean expression
in true")

8.4.21. fail-matrix-declaration.mx

int main() {
Matrix m;
m= [[2,2],[2,2]; /* parsing error */

Expected Output:
fail-matrix-declaration.err

Fatal error: exception Stdlib.Parsing.Parse error

8.4.22. fail-matrixfunctionl.mx

int main() {
Matrix m;

int 1i;

[[30,40,50,20],11,3,2,2],1[4,5,6,311:
i = 10;

8.4.23.

8.4.24.

i.numRows (m) ;

Expected Output:
fail-matrixfunctionl.err

Fatal error: exception Failure("illegal character

fail-matrixfunction2.mx

int main () {
Matrix m;
Matrix n;

([1,2],03,411;
(12,171, [34,2111;

3
I

3
Il

m.transformation (n) ;

Expected Output:
fail-matrixfunction2.err

Fatal error: exception Failure("illegal character

fail-mult1l.mx

int main () {
Matrix ml;
Matrix m2;
Matrix m3;

ml = [[4,3,5],[2,11];
mz = [[2,8,9),(2,4,5],(7,7,4]1;
m3 = ml *. m2;

}

Expected Output:

fail-multl.err

8.4.25.

8.4.26.

8.4.27.

Fatal error: exception Failure("Matrix rows are not all the

same length")

fail-mult2.mx

int main () {
String str;
Matrix m;
Matrix result;

str = "34";
m= [[6,7,34,1],13,4,9,12]1];

result = str *. m;

Expected output:
fail-mult2.err

Fatal error: exception Stdlib.Parsing.Parse error

fail-mult3.mx

int main() {
Matrix ml;
Matrix m2;
Matrix m3;

ml = [[4,3
mz2 = [[],[

m3 = ml *. m2;

Expected output:
fail-mult3.err

Fatal error: exception Stdlib.Parsing.Parse error

fail-mult4.mx

int main() {
String num;
Matrix mat;

Matrix multi;

num = "34";
mat = [[1,2],[3,4],[4,5],[5,8]1];
multi = mat *. num;

}

Expected output:

fail-mult4.err

Fatal error: exception Failure("illegal binary operator
matrix *. string in mat *. num")

8.4.28. fail-nomain.mx

String foo(String s) {
return s;

Expected output:
fail-nomain.err

Fatal error: exception Failure ("unrecognized function main")

8.4.29. fail-numcols.mx

int main () {
Matrix m;
int i;
int c;

m = [[30,40,50,20],([1,3,2,2],14,5,6,3]11;
i = 15;

numRows (1) ;

Q
Il

}
foo (String s) |
return s;

Expected output:

fail-numcols.err

Fatal error: exception Failure("illegal argument found int
expected matrix in i")

8.4.30. fail-numrows.mx

int main () {
Matrix m;

int i;
m = [[30,40,50,20],([1,3,2,2],1[4,5,6,3]11;
i = 30;

Expected output:
fail-numrows.err

Fatal error: exception Failure("illegal argument found int
expected matrix in i")

8.4.31. fail-opand.mx

int main() {
String s;
int 1i;
bool b;
bool bb;
int j;

i=3;

J = 4;

printb(i > 0 && J);

Expected output:
fail-opand.err

Fatal error: exception Failure("illegal binary operator bool
&& int in i > 0 && ")

8.4.32. fail-printb.mx

int main() {
bool bb;
String s;

bb = true;
s = "hello world!";
printb (bb) ;
printb(s);

Expected output:
fail-printb.err

Fatal error: exception Failure("illegal argument found string
expected bool in s")

8.4.33. fail-printmatrix1.mx

int main () {
Matrix m;
int i;

(1{1,3,5,061,103,9,7,91,1(4,4,4,5],1[6,7,6,41,1[1,2,3,4]1;
i = 3;

print matrix(i);

Expected output:
fail-printmatrix1.err

Fatal error: exception Failure("illegal argument found int
expected matrix in i")

8.4.34. fail-print.mx

int main () {

bool bb;

bb = false;
print (bb) ;

Expected output:
fail-print.err

Fatal error: exception Failure("illegal argument found bool
expected int in bb")

8.4.35. fail-prints.mx

int main() {
String s;
int j;

j = 10;

s = "hello world!";
print (j);

prints (3);

Expected output:
fail-prints.err

Fatal error: exception Failure("illegal argument found int
expected string in j")

8.4.36. fail-reservedfuncs.mx

Matrix identity () {
Matrix m;

m=([[1,0,0],(0,1,0],[0,0,1]11;
return m;
int main () {

Matrix n;

n = identity();

print matrix(n);

Expected output:
fail-reservedfuncs.err

Fatal error: exception Failure("function identity may not be
defined")

8.4.37. fail-scalemultl.mx

int main () {
int x;
Matrix m;
Matrix result;

X = 33
m= [[4,5,3], [5,5,6,7,8]];
result = m **. x;

}

Expected output:

fail-scalemullt.err

Fatal error: exception Failure("Matrix rows are not all the
same length")

8.4.38. fail-scalemult2.mx

int main() {
float x;
Matrix m;
Matrix result;

= 3.2;
([4,5,31,[5,5,6]];

b
|

3
Il

result = m **. x; /* Fail: scalar multiplication between
float and matrix */

}

8.4.39.

8.4.40.

Expected output:
fail-scalemult2.err

Fatal error: exception Failure("Matrix rows are not all the
same length")

fail-subtractl.mx

int main() {
Matrix ml;
Matrix m2;
Matrix m3;

ml = [[1,2,3,4]1,1[4,5,2,31,17,5,2,311;
m2 = [[4,3,2,1],(02,3],[5,5]1;
m3 = ml -. m2;

Expected output:
fail-subtractl.err

Fatal error: exception Failure("Matrix rows are not all the
same length")

fail-subtract2.mx

int main () {
Matrix m;
int x;
Matrix sum;

m = [[7/8813]1 [41516]];

x = 21;

sum = m —-. X; /* Fail: subtract a matrix and int */
}
Expected output:

fail-subtract2.err

Fatal error: exception Failure("illegal binary operator

matrix -. int in m -. x")

8.4.41. fail-transforml.mx

int main () {
Matrix m;

Matrix t;

m= [[1,2],([3,4]];

t = transformation(m, "1");
}
Expected output:

fail-transforml.err

Fatal error: exception Failure("illegal argument found
string expected int in 1")

8.4.42. Fail-transform2.mx

int main () {
Matrix m;

Matrix t;
m = [[112J1[3r4]];
t = transformation(m, 4.5);

Expected output:
fail-transform2.err

Fatal error: exception Failure("illegal argument found float
expected int in 4.5")

8.4.43. fail-transposel.mx

int main () {
Matrix m;
Matrix matrix transposed;
String str;

m = [[11213]1 [501 60,7011

str = "matrix";
matrix transposed = str';

Expected output:
fail-transposel.err

Fatal error: exception Failure("illegal unary operator
'string in 'str")

8.4.44. fail-transpose2.mx

int main() {
Matrix m;
Matrix matrix transposed;

int x;
m= [[1,2,3],[50,60,70]1];
x = 45;

matrix transposed = x';

Expected output:
fail-transpose2.err

Fatal error: exception Failure("illegal unary operator 'int

in 'X")

8.4.45. fail-undecvar.mx

int main() {
String s;
bool b;
int j;

"plt is a great class for all coders!";

o ©w
Il

true;

if (1 > 0) {
printb (b) ;

Expected output:
fail-undecvar.err

Fatal error: exception Failure ("undeclared identifier i")

8.4.46. fail-whilel.mx

int main() {
int x;

x = 1;
while (x) {
print (x);

Expected output:
fail-whilel.err

Fatal error: exception Failure ("expected Boolean expression
in x")

8.4.47. test-arithmetic2.mx

int sum(int x) {
return x + 1;

int main () {
int a;
int b;

a = 45 + 3;
a += 5;

print (a);
print(a * 2);

8.4.48.

8.4.49.

Expected output:
test-arithmetic 2.out

53
106

test-arithmetic3.mx

int main () {
int x;
x =1+ 30 - 2;

Expected output:
test-arithmetic3.out

No output.

test-arithmetic.mx

int main () {
int i;
float £f;

i=9+ -8;
print (i) ;

i=8%*(9/ 2);
print (i) ;

i=3/2+4+1;
print (i)

’

f =4.5+ 6; # casting
printf (f)

f =3 * 7.89;
printf (f);

f=11.0 / -2.75;
printf (f);

i=-17/ 3;

i=1 * =-3;
print (i)

f=-1.0/ -4.0;
printf (f);

£f=1.0/ -4.0;
printf (f);

f=-1.0+ -4.0;
printf (f);

Expected output:
test-arithmetic.out

8.4.50. test-assignment2.mx

int main () {
int x;
int j;
String s;

0;

= 9;
x + 3;
"notebook";

0w X U X
+

Expected output:
test-assignment2.out

No output.

8.4.51. test-assignment.mx

int main () {
int 1i;
int 3
int z;
String s;
bool b;
float £;
Matrix m;

i=3;
J =2z = 3;
s = "this is a string";
b = true;
f = 3.5794;
m= [[1,0],([0,1]];
}
Expected output:

test-assignment.out

No output.

8.4.52. test-assignop.mx

int main () {
String s;
int i;

int 3

for (i = 0; 1 < 5; 1 +=1)
=1

}

print (3);

Expected output:
test-assignop.out

5

8.4.53. test-fibonacci.mx

int main () {
String s;
int i;

int j;

for (i = 0; 1 < 5; 1 +=1)
g o+=1;

Expected output:
test-fibonacci.out

8.4.54. test-for.mx

int main () {

8.4.55.

int i;

prints ("
prints("for(i = 0; 1 < 10; 1 =1 + 1)");
for(i = 0; i < 10; 1 =41 + 1) {
if(i == 5) {
prints("i = 5");
} else {
print (i) ;
}
}
prints ("
prints("for(i =5; 1 > 0; i =1 -1)");
for(i =5; 1 >0; 1 =1 -1) {

print (i) ;

}

prints ("

Expected output:
test-for.out

for(i = 0; 1 < 10; 1 =1 + 1)
0

1

2

3

4

i =25

6

7

8

9

for(1 =5; 1 > 0; 1 =1 -1)
5

4

3

2

1

test-func.mx

bool foo(bool bl, bool b2)
return bl && b2;

{

float multi(int a, int b, float f) {
float m;
m=a * b * f;

return m;

bool logic(int a, int b, float f) {
float x;

X = multi(a, b, f);

if (x < 0.0) ¢{
return true;
} else {
return false;

int main() {
bool b;
bool bb;
bool result;

b = true;
bb = false;
result = logic(1,2,-3.0);

printb (foo (b, bb));

if (result == true) {
printb (result) ;
} else {
prints("oh no!");
}
}
Expected output:

test-func.out

8.4.56. test-gcd.mx

8.4.57.

8.4.58.

int gcd(int a, int b) {
while (a != b) {
)

if (a > b) a =

else b = b - a;

}

return a;
}
int main ()

{

’

print (gcd(2,14)
print (gcd(3,15)
print (gcd (99,12
return 0;

)
) ;
1));

Expected output:
test-gcd.out

2
3
11

test-hello.mx

int main () {
String e;
e = "Hello!";
prints(e);

Expected output:
test-hello.out

Hello!

test-if.mx

int main () {
int a;
int b;
float c;
float d;
a =>5;

10;

c = 9.81;

d=14.9;

prints ("====== N
prints("a is an integer with the value of: ");
print (a);

prints ("

prints("b is an integer with the value of: ");
print (b);

prints ("

prints("c is a float with the value of: ");
printf (c);

prints ("

prints("d is an float with the value of: ");
printf (d) ;

if(a <= b) {

prints ("==
prints("a is less than or equal to b.");
prints ("==
}
if(b > a) {
prints ("b is greater than a.");
prints ("========== ===
}
if(c > d) {
prints("c is greater than d.");
prints ("

}

if(c >=d) {
prints("c is greater

than or equal to d.");

prints ("

}

if (3 == 3) {
prints ("3 does equal

to 3");

prints ("==

}

if (true && true) {
prints ("true");

prints ("== === ")
}
if (true || false) {
prints ("true || false is true ");
prints (" ")

}

if (true) {
prints ("true is true");

prints (" ",

}

if(6 !'= 6) {

prints ("This was a mistake, we should fix tihs!");
} else {

prints ("This is the right output!");

prints (" "y ;

}

if (false) {
prints ("Huh? What happened?");
} else {
prints ("if (false) took me to the else, which is
here!™);

prints ("== "y .

}

if((true && true) && (6>5)) {
prints (" (true && true) && (6>5) is true");

prints (" "y

}

if (false) {
prints (" (true && true) && (6>5) is true");

prints (" "y
} else {
if((true || false) || (false && false)) {

prints ("if (false) {} else {if((true

(false && false))l"):

false)

prints ("

}

Expected output:
test-if.out

a 1s an integer with the value of:

b is an integer with the value of:
10

c 1s a float with the value of:
9.81

d is an float with the value of:
4.9

a is less than or equal to b.

b is greater than a.

c 1s greater than d.

c is greater than or equal to d.

3 does equal to 3

true

true || false is true

true is true

This is the right output!

if (false) took me to the else, which is here!

(true && true) && (6>5) 1s true

8.4.59.

if (false)

{} else {if((true || false)

(false && false))}

test-logicalops.mx

int main ()

{
printb (true && true);
printb (false && false);
printb (true && false);
printb (false && true);

prints (">>>>>>>>>>") ;

(
printb (true || true);
printb (false || false);
printb (true || false);
printb(false || true);

prints (">>>>>>>>>>") ;
printb (!true);
printb (!false);

prints (">>>>>>>>>>")
printb (true) ;
printb (false);

Expected output:
test-logicalops.out

o O O

SES>55>>>>
1
0
1
1
SESS55>5>>>
0
1
SES>5>>5>>>
1
0

8.4.60.

8.4.61.

test-matrixAdd.mx

int main () {
Matrix n;
Matrix b;
Matrix a;
n=[[1,2,4],[3,4,5]1;
a=1[[1,2,4],13,4,511;
b=a+. n;
prints (" "y
prints("n = ");
print matrix(n);

prints (" ",

prints("a = ");
print matrix(a);

prints (" ==");
prints("a +. n = ");
print matrix(b);
prints (" "
}
Expected output:

test-matrixAdd.out

n =
(1, 2, 4]
[3, 4,]
a =

(1, 2, 4]
[3, 4,]
a .. n =

[2, 4, 8]
[6, 8, 10]

test-matrixIldentity.mx

int main () {
Matrix m;

8.4.62.

Matrix n;
Matrix f;
m = identity(2);
n identity (3);
f identity(6);

prints ("
prints (" 2x2 Identity Matrix ");
print matrix(m);

prints ("

prints (" 3x3 Identity Matrix ");

print matrix(n);

prints ("

prints (" 6x6 Identity Matrix ");

print matrix(f);

prints ("

Expected output:
test-matrixIdentity.out

2x2 Identity Matrix
[1, 0]
[0, 1]

3x3 Identity Matrix
1, 0, 01

[0, 1, O]
0, 0, 1]

6x6 Identity Matrix

(1, 0, 0, 0, 0, O]
([0, 1, 0, 0, 0, O]
(0, 0, 1, 0, 0, O]
(0, 0, 0, 1, 0, O]
([0, 0, O, O, 1, O]
([0, 0, O, 0, 0, 1]

~
~

14

test-matrixMul2.mx

int main () {
Matrix d;

Matrix n;
Matrix a;
Matrix qg;
Matrix r;
Matrix s;

= [[1,2,3),[4,5,6], [7,8,9]]

[9,8,7], L6,

5,41, [3,2,111;

5,41, [3,2,1]];

prints ("Matrix a
print matrix(a);

Il
=
~

prints ("
prints ("Matrix n
print matrix(n);

Il
=
<

prints ("
prints("a *. n =
print matrix(d);

prints ("
prints ("Matrix g
print matrix(q);

~
~

prints ("
prints ("Matrix r
print matrix(r);

I
=
~

prints ("
prints("g *. r =
print matrix(s);

prints ("======

Expected output:
test-matrixMul2.out

Matrix a =
[9, 8, 71
[6, 5, 4]
[3, 2, 1]

Matrix n =
[1, 2, 31
[4, 5, 6]
[7, 8, 91

8.4.63.

*

a *. n =

[90, 114, 138]
[54, 69, 84]

[18, 24, 30]

Matrix g =
(1, 2, 3]
[4, 5, 6]

Matrix r =
[9, 8, 7
[6, 5, 4]
[3, 2, 1

test-matrixMul.mx

int main () {
Matrix d;
Matrix n;
Matrix a;
n = [[1,2],13,411;
a = [[5¢6],[7,811];
d =a *. n;
prints (" ") ;
prints ("Matrix a
print matrix(a);

Il
=
<

prints (" "
prints ("Matrix n
print matrix(n);

I
=
~

prints (" "
prints("a *. n = ");
print matrix(d);

Expected output:
test-matrixMul.mx

8.4.64.

Matrix a =

[5 6]
L7, 8]

Matrix n =

(1, 2]
[3, 4]

test-matrix.mx

int main ()
Matrix
Matrix
Matrix
Matrix
Matrix
Matrix
Matrix
Matrix
Matrix
Matrix
Matrix
Matrix
Matrix
Matrix

{

1;

int colsa

int colsn

int rows;
float ab;
float ac;
float ad;
ab = 2.0;
ac = 3.0;

b a +. n;

#b = a +. e;
c=a-.n;

d=e *. n;

g = identity(3);

h = g**.4;

i = transformation (e,
colsa = numCols (a);
colsn = numCols (n);
rows = numRows (n);

print matrix(m);

prints ("
print matrix(n);

prints ("
print matrix(f);

prints ("

#print matrix(b);

prints ("
print matrix(c);

prints ("

print matrix(d);

prints ("
print matrix(g);

prints ("
print matrix(h);

prints ("
print matrix(i);

prints ("
print (colsa);

prints ("
print (colsn);

prints ("

print (rows) ;

prints ("
rows += 4;
print (rows) ;

prints ("======
rows -= 2;
print (rows) ;

prints ("
rows *= rows;
print (rows) ;

prints ("

printf (ad);

(
prints ("
prints ("Done!");

Expected output:
test-matrix.out

18
18

12,
12,

8,

8.4.65.

8.4.66.

16

12

Done!

test-matrixprint.mx

int main ()
Matrix m;

m

= [[4,3],

{

(5,61, [3,2]];

print matrix(m);

m

= [[30,90,48], [20,30,18],
print matrix(m);
print_matrix([{0,1,0,31,10,6,3,2],04,5,5,311);

[39,20,48],

[67,38,92]1];

Expected output:

test-matrixprint.mx

30,
20,
39,
67,

— /o

90,
30,
20,
38,

48
18
48
92

test-matrixRotation.mx

int main () {

Matrix n;

n

= [[1,2],103,41);
prints ("

prints ("Matrix n:");

print matrix(n);

8.4.67.

prints ("

prints ("Matrix 90 Degrees Clockwise");

print matrix(transformation(n,5));

prints ("

prints("Matrix 180 Degrees");
print matrix(transformation(n,6));

prints ("
prints ("Matrix 90 Degrees Anticlockwise:");

print matrix(transformation(n,7));

prints ("

Expected output:
test-matrixRotation.out

Matrix n:

[1, 2
[3, 4

]
]

Matrix 90 Degrees Clockwise

[3, 4

[-1, -2

]

]

Matrix 180 Degrees

[_11 -2
[-3, -4

]
]

Matrix 90 Degrees Anticlockwise:

[-3, -4

(1, 2

]

]

test-matrixRowsColumns.mx

int main () {

Matrix m;

Matrix n;

int
int

m

n

colsm;

TrOows;
[[2,3,41,16,4,5]
[[1,2,4],13,4,5]

] .

(7,8,11,109,7,811;

r

8.4.68.

colsm = numCols (m) ;

rows = numRows (n);

prints ("

print matrix(m);

prints ("======

prints ("Number of columns for m are: ");

print (colsm) ;

prints ("
print matrix(n);

prints ("
prints ("Number of rows for n are: ");
print (rows) ;

prints ("======================c———=====oooo

Expected output:
test-matrixRowsColumns.out

~
~

~
~

O J o N
~

~] o P W
~

QO = U1

~

— — o/

~

Number of columns for m are:

Number of rows for n are:
2

test-matrixScalar.mx

int main () {
Matrix d;
Matrix n;
Matrix g;
Matrix s;
Matrix o;
Matrix p;
d=[[1,2,3],[4,5,61, [7,8,9]1];

n = d**.2;
q=1[1,2,3]1,14,5,6]1;
s =g **.0;

o = identity(4);

p =0 **.-9;

prints ("

prints ("Matrix d =
print matrix(d);

")

prints ("
prints ("Matrix d**.
print matrix(n);

prints ("
prints ("Matrix gq =
print matrix(q);

prints ("
prints ("Matrix g**.
print matrix(s);

prints ("
prints ("Matrix o =
print matrix(o);

prints ("
prints ("Matrix o**.
print matrix(p);

2. =");
")
0=");
")
-9 =");

prints ("

Expected output:
test-matrixScalar.out

Matrix d =
[1, 2, 3]
[4, 5, 6]
[7, 8, 91

Matrix d**.2 =

[2, 4, 6]

[8, 10, 12]

[14, 16, 18]
Matrix g =

[1, 2, 31

[4, 5, 6]

Matrix g**.0 =

8.4.69.

[0, 0, O]
[0, 0, O]
Matrix o =

[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 1, 0]
[0, 0, O, 1]

4

4

Matrix o**.-9

-9

, 0, 0, O
-9, 0, O
0, -9, 0

test-matrixSub.mx

int main () {

Matrix n;
Matrix b;
Matrix a;

n=[[1,2,4],[3,4,5]11;
a=1[1[1,2,41,13,4,511;
b=a-.n;

prints ("

prints("n = ");

print matrix(n);
prints ("

prints("a = ");

print matrix(a);
prints ("======
prints("a -. n = ");

print matrix(b);

prints ("

Expected output:
test-matrixSub.out

8.4.70.

rﬁ
o
~ .
o o B
~ ~
o o
T

test-matrixTransformation.mx

int main () {
Matrix n;

n= [[1,2],[3,4]11];
prints ("====== === ==");
prints ("Matrix n:");

print matrix(n);

prints (" ")
prints ("Matrix Transformation About y = x");

print matrix(transformation(n,1));

prints (" "y,
prints ("Matrix Transformation About y = -x");

print matrix(transformation(n,2));

prints (" ")

prints ("Matrix Transformation About x-axis");
print matrix(transformation(n,3));

prints (" ",

prints ("Matrix Transformation About y-axis");
print matrix(transformation(n,4));
prints ("=================================== ==");

Expected output:
test-matrixTransformation.out

Matrix n:
[1, 2]
[3, 4]

8.4.71.

Matrix Transformation
[3, 4]
[1, 2]

About vy

Il
b

Matrix Transformation
[-3, -4]
[-1, -2 1]

Il
|
b

About y

Matrix Transformation
[1, 2]
[-3, -4]

About x-axis

Matrix Transformation
[-1, -2 1]
[3, 4]

About y-axis

test-matrixTranspose.mx

int main () {
Matrix n;
Matrix a;

’

5,411;

Matrix qg;

Matrix r;

n = [[1,2],14,5]1];
a = 1[[9,8,7]1, [6,
g=n';

r =a';

prints ("

prints ("Matrix a
print matrix(a);

prints ("

prints ("Matrix a'
print matrix(r);

prints ("

prints ("Matrix n
print matrix(n);

prints ("
prints ("Matrix n'
print matrix(q);

=");

prints ("======

Expected output:
test-matrixTranspose.out

Matrix a =
[9, 8,
[6, 5,

]

7
4]

Matrix a
[9, 6]
[8, 5]
[7, 4]

Matrix n
[1, 2]
[4, 5]

Matrix n' =
[1, 4]
[2, 5]

8.4.72. test-relationalops.mx

int main ()

{
printb (10 > 0);
printb (10 > -10);
printb (10 > (3 + -4));
printb (=10 > -20);
printb (=10 > -10);

prints (">>>>>>");
10) ;
< 10);

+ 4) < 10);
< -10);

< =-10);

prints (">>>>>>");

printb (5 <= 10);

printb (5 <= 5);
-1 >= -1);
printb (0 >= 0);
printb (12 >= -3);

(
printb(
(
(

prints (">>>>>>");

printb ("h" == "h");
printb (23 == 24);
printb (true == false);
printb (false != false);
printb ("he" != "He");

}

Expected output:

test-relationalops.out

o B P

>>>>>>

o R B

>>>>>>

e e

>>>>>>

= O O O

8.4.73. test-sampleprograml.mx

int main () {
Matrix m;
Matrix n;

m= [[2,4],16,8],[10,12]];
n=m';

print matrix(m);

print matrix(n);

return 0;

Expected output:
test-sampleprogram1.out

[2, 4]

[6, 8]
[10, 12]

8.4.74. test-sampleprogram2.mx

int main () {
Matrix ml;
Matrix m2;

ml
m2

o
—
—

N
~ 0~
SN
e
~ 0~
— —
<~ S
[SoRt
AVEN
e
~e oS

print matrix(ml +. m2)
print matrix(ml -. m2)
print matrix(ml *. m2);
print matrix(m2 **. 3)

Expected output:
test-sampleprogram2.out

[3, 6]
[9, 12]

[6, 12]
[18, 24]

8.4.75. test-transposel.mx

int main() {
Matrix n;

n=[[1,2,3],[4,5,6]]1";

print matrix(n);

Expected output:
test-transposel.out

[
[
[

]
]
]

4

14

w N -
o U1 W

4

8.4.76. test-while.mx

int main() {
int a;
int b;
int c;
a = 0;
b = 3;
c = 5;

prints ("
prints ("while(a < 10)");
while(a < 10) {
if(a == 5) {
prints("a is equal to 5");
} else {
print (a);

prints ("
prints("c = 5 and b = 3");
prints ("while(¢ > b)");
while(¢ > b) {

print (c);
c=c-1;

Expected output:
test-while.out

while(a < 10)

is equal to 5

O 0 J o O P> W NP O

c =5and b = 3
while(¢ > b)

5

4

