Manav Goel mg3851
Tanvi Hisaria th2720

Parallelized Nonogram Solver

Nonograms:

A nonogram is a logic puzzle similar to sudoku. You have a grid of squares, which must be either filled
in or left blank. Beside each row of the grid are hints that list the lengths of the runs of black squares on
that row. Above each column are listed the lengths of the runs of black squares in that column. The
aim is to find all black squares, which usually reveals some sort of hidden picture at the end. The

puzzle can be of various different sizes, and either a square or a rectangle. Here is an example:

empty Nonogram solved Nonogram
2(2 2(2

0(9(9|2|2|4|4|0 0/9(9|2(2|4(4|0

0 0

4 4

6 6

22 22

22 22

6 6

4 4

2 2

2 2

2 2

0 0

Problem Description:

For this project, we decided to implement a simple search based algorithm with backtracking, and
parallelized it. Then, we decided to test our program on inputs of different sizes (5X5, 10X10, and

20X20) to see whether we get a significant increase in speed by parallelizing our code.

Algorithm:
We implemented a backtracking algorithm that builds a completed puzzle top to bottom, left to right,

by building the rows starting from the top and checking if they match the signatures of the columns.

On any iteration of the recursive backtracking, if we have hints remaining in a row, we can either
choose to try and insert the corresponding number of black cells into the row, or insert a white cell
instead. Whenever we try to insert a Color, we can check against the respective columns to see if it fits.

If it does, we recurse deeper, otherwise we return. This is part we were able to parallelize, choosing to

add the black cells or a white one. We execute both options in parallel by creating a new spark (using a

par call) for each branch, and keep the result that ends up yielding a finished puzzle.

If there are no hints left in the row, we begin trying to build the next row. If there are no row hints left
in the puzzle at all, we can check to see if the column hints are empty, meaning that the puzzle is

solved.

Results:

For each of the three puzzles, we observed the following times:

5 X 5 puzzle
Sequential 2 cores 4 cores
real 0.028s 0.027s 0.028s
user 0.000s 0.016s 0.000s
sys 0.031s 0.000s 0.031s
10 X 10 puzzle
Sequential 2 cores 4 cores
real 0.026s 0.032s 0.111s
user 0.000s 0.000s 0.031s
sys 0.016s 0.031s 0.031s
20 X 20 puzzle
Sequential 2 cores 4 cores
real 0.444s 0.298s 0.162s
user 0.375s 0.453s 0.500s
sys 0.047s 0.078s 0.063s

While the speedup is hard to gauge from these numbers, the following chart demonstrates it better:

Real time (in seconds)

B sSequential [2cores [4 cores
0.5

0.4
0.3
0.2

0.1

0.0
5X5 10X 10 20X 20

We see that for the two smaller puzzles, the real time either increases or stays the same. This is probably
because the overhead costs introduced by parallelisation outweigh the benefits of parallelisation for the

smaller puzzles. On looking at the spark statistics on threadscope, we observed the following:

0s 1ms 2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10ms 11ms 12ms

1 1 1 I | L 1 1 1 1 1 1
Activity
e 1]
HEC1 I l
HEC2
I N A=
HEC3 [[]] . |

Time Heap GC Sparkstats Sparksizes Processinfo Raw events

HEC Total Converted Overflowed Dud GC'd Fizzled

Total 15 0 0 00 15

HECO 0 O 0

HEC1 0 0 0

HEC2 15 0 0
0

0
0
0
HEC3 0 0 1

o o o o
o o o o

5

Thus, all the sparks ended up going to one core and got fizzled. We needed more sparks for the

parallelisation to have an effect on the time taken.

For the largest puzzle, we see a decrease in the time taken to solve the puzzle, both while going from
sequential to 2 cores, and while changing from 2 to 4 cores. On running these tests multiple times, we
observe the same pattern, making us confident that there is a significant speedup observed with the 20
X 20 puzzle.

However, we also notice that the speed up is only about 63% from sequential to 4 cores, that is, the
program runs in a little more than a third of the time, despite having 4 times the number of cores. This
can be attributed to two main reasons. First, the algorithm is not completely parallelised, and has a lot
of parts that must happen sequentially. This already limits the amount of speed up we can achieve
according to Amdahl's Law. Secondly, our parallelisation strategy is simple, and creates too many
sparks. On investigating this through threadscope, we find the following while running the 20 X 20

puzzle on 4 cores:

0s 50ms 0.1s

. . . ' 1 . .) : l : . . '
e 11 00000000 0 A R |
= LT e e e T T
2 B0 00000000 0 00 10 0 O ARRR
e LT LU S e e

Time Heap GC Sparkstats Sparksizes Processinfo Raw events
HEC Total Converted Overflowed DudGC'd Fizzled

Total 487196 300 0 0 445365 41531
HECO 125474 57 0 0 119035 4938
HEC1 120091 43 0 0 116269 3820
HEC2 119295 67 0 0 105449 14116
HEC3 122336 133 0 0 104612 18657

The program is creating way too many sparks, and most of them get garbage collected or fizzled. This

could also be an additional factor as to why we don’t see more of a speed up.

Further Work:
There are a few things to be done to further improve on as well as validate the results we have
observed:

1. We should try running with even bigger puzzles to see if the pattern holds. We should see
increased speedup, but this needs to be verified.

2. We should try running our code on lots of different puzzles of each size and average the results
across them. This would help us account for puzzles that are “easier” or more “difficult”, and
turther verify that our parallelisation approach is correct.

3. We should also work on depth limiting the parallelisation so we don’t see as many sparks being
garbage collected. We are not sure whether this will help the overall speed up and by how

much, but it is definitely worth exploring more complicated parallelisation strategies.

System.Environment(getArgs, getProgName)
Control.Monad (when, mplus, foldM)

Control.Parallel (par, pseq)

Data.IntMap (, insert, tolist, fromList, (!))

= White | Black
(Eq)

show Black =
show White =

11

PlacedColor
| BlackRun

isColumnEmpty :: [] ->
isColumnEmpty = True

isColumnEmpty (PlacedColor Black : _) = False
isColumnEmpty (BlackRun _ :) = False
isColumnEmpty (_ : xs) = isColumnEmpty xs

tryPlacingColor :: -> [
tryPlacingColor White = Just
tryPlacingColor Black = Nothing

tryPlacingColor y (PlacedColor x : hs) = if x ==y then Just hs else Nothing

tryPlacingColor White hs = Just hs

tryPlacingColor Black (BlackRun n : hs) = Just $ replicate (n - 1) (PlacedColor
Black) ++ (PlacedColor White : hs)

placeColorHelper :: -> ->
placeColorHelper colorToTry columnMap index = do
hs <- tryPlacingColor colorToTry $ columnMap ! index

return $ insert index hs columnMap

solve :: -> -> [] ->
solve width columnIndex rowHints columnMap
| null rowHints =
if all isColumnEmpty (map snd $ tolList columnMap)
then return [[]]

else Nothing
| null hint = do

updatedInfoMap <- foldM (placeColorHelper White) columnMap
[columnIndex .. width - 1]

rows <- solve width © remainingHints updatedInfoMap

return $ replicate (width - columnIndex) White : rows
| otherwise

= tryPlaceBlack “par’® tryPlaceWhite “pseq’ mplus tryPlaceBlack
tryPlacelhite

(hint : remainingHints) = rowHints

(h : hs) = hint

tryPlaceBlack = do

when (columnIndex + h > width) Nothing

[columnIndex ..

remainingHints)

updatedInfoMap <- foldM (placeColorHelper Black) columnMap

columnIndex + h - 1]

im' <- if columnIndex + h == width
then return updatedInfoMap
else placeColorHelper White updatedInfoMap (columnIndex

(row : rows) <- solve width (columnIndex + h + 1) (hs :
im'
row' = if columnIndex + h == width
then row

else White : row

return $ (replicate h Black ++ row') : rows

tryPlaceWhite = do

updatedInfoMap

nonogram ::

when (columnIndex >= width) Nothing
updatedInfoMap <- placeColorHelper White columnMap columnIndex

(row : rows) <- solve width (columnIndex + 1) rowHints

return $ ((White : row)) : rows

11 ->

nonogram = Nothing

nonogram [_] =

nonogram (_: :

nonogram [rows,

Nothing
_) = Nothing

columns] = solve (length columns) @ rows myColumnMap

myColumnMap = fromList (zip [@ ..] $ map (map BlackRun) columns)

printNonogram ::

printNonogram Nothing putStrLn "No solution!"

printNonogram (Just s) = mapM_ (putStrLn . concatMap show) s

strToInt :: -> [[[Int]]]
strToInt a = read a::[[[111

main :: @)
main = do
args <- getArgs
case args of
[filename] -> do
contents <- readFile filename
rawPuzzle = strToInt (lines contents !! 0)
printNonogram $ nonogram rawPuzzle
_ ->do
name <- getProgName

putStrLn $ "Usage: ++ name ++ "<filename>"

