
COMS 4995W: Modeling Trees (Parallel Space
Colonization Algorithm

Justin Kim - jyk2149

12/21/20

1 Background

For my project, I implemented the space colonization algorithm for modeling
trees as outlined in this paper:

http://algorithmicbotany.org/papers/colonization.egwnp2007.html

The algorithm starts off with a set of points which will act as the leaves of
the trees and a root. The goal is to grow the branches of the root towards
the leaves. The result is hopefully a structure that resembles a tree.

Figure 1: Tree rendered with 200 Leaves

1

http://algorithmicbotany.org/papers/colonization.egwnp2007.html

2 Algorithm

For this project, I implemented the algorithm for a 2D tree. In general the
algorithm is as follows:

(a) Root extends until within detection range (maxDist) of at least 1 Leaf

(b) Every leaf within detection range finds the closest branch

(c) Direction vectors are calculated from the detected leaves to their re-
spective âclosestâ branch

(d) From each branch determined to be âclosestâ to a leaf, find the average
direction vector of every direction from that branch to their leaves

(e) Create a new branch in direction from step d

(f) Check if the new branch enters the kill distance (minDist)

(g) Delete the visited leaves

(h) Loop back to b, until no new branches are found (either because there
are no leaves at all, or if there are no leaves within any branchâs de-
tection range

2

3 Implementation

3.1 Data Types

3.1.1 Leaf

A leaf is represented by a position in a 2D world. It also has a Bool attribute
to show that it has been killed.

type Point = (Float,Float)

data Leaf = Leaf Point Bool | None

3.1.2 Branch

A Branch also has a position, but also includes a parent branch and a direc-
tion vector. The length of each branch is the same for every branch.

data Branch = Empty | Branch {

position :: Point,

parent :: Branch,

direction :: Point

}

3.1.3 Leaf

A tree is the overarching data structure that holds the leaves and branches in
lists. max_dist is the maximum detection radius of each leaf and min_dist

is the kill radius of each leaf. Both are provided by the user.

type Leaves = [Leaf]

type Branches = [Branch]

data Tree = DONE Tree | Tree {

leaves :: Leaves,

root :: Branch,

branches :: Branches,

max_dist :: Float,

min_dist :: Float,

detected :: Bool

}

3

3.1.4 Algorithm

The main computation of the implementation of this algorithm can be sum-
marized with the following pseudo-code:

closestBranches = []

For each alive leaf:

closest = findClosestBranch(leaf,branches)

new_direction = normalize(calculateDirection(leaf, closest))

closestBranches.push((closest, new_direction))

groupedBranches = groupByBranch(closestBranches)

newBranches = []

For each group in groupedBranches:

branch = group.shared_branch()

sum_direction = sumDir(group) //Point

average_dir = sum_direction / group.length()

new_position = add(average_dir, branch.position())

newBranch = new Branch(position=new_position,

direction=average_dir, parent=branch)

newBranches.push(newBranch)

addBranchesToTree(tree, newBranches)

The first loop iterates over the leaves to find the closest branch and calculate
a direction vector. The second loops groups and averages the directions to
the paired leaves. The full Haskell code can be found in Tree.hs in the code
listing at the end of the report.

4

4 Parallelization

The work in the first loop from the pseudocode is very easy to separate into
independent parallel work. This is because each computation to find the
closest branch to each leaf do not depend on the other leaves. After testing
different variations/strategies to parallelize this first loop, I found that using
parMap rpar provided the best performance and speed up with increasing
cores.

parMap rpar (\x -> closestBranch x (branches tree)

(min_dist tree) (max_dist tree)) unreached

Using just this strategy, the algorithm observed just about 3x speedup with 8
cores:

The parallelization provided pretty consistent speed increases with increas-
ing cores. Using 3 cores as an example, the percentage of sparks converted

5

was ~90% as shown log output and threadscope analysis:

SPARKS: 127335 (112666 converted, 0 overflowed,

0 dud, 10604 GC’d, 4065 fizzled)

n=3

The work on 3 cores is distributed pretty evenly throughout with very little
time spend in garbage collection or breaks for sequential computation. How-
ever, as the number of cores increase the program has trouble at the start of
the program:

n=4

6

However, because the time spent in garbage collection and the short
amount of time it spends in this state, the time saved in the parallelization
vastly overshadows the time lost in those steps.

5 Code Listing

5.1 Main.h

1 module Main where
2 import Graphics.Gloss
3 import Tree
4 import Render
5 import System.Environment(getArgs)
6 import TestPoints
7 import System.Exit
8
9 maxDistance :: Float

10 maxDistance = 60.0
11
12 minDistance :: Float
13 minDistance = 5.0;
14
15 simulationLoop :: Tree −> IO ()
16 simulationLoop (DONE) = putStrLn ”Done”
17 simulationLoop tree = simulationLoop (nextBranch True True tree)
18
19
20 window :: Display
21 window = InWindow ”Tree” (500, 500) (0, 0)
22
23 backgroundColor :: Color
24 backgroundColor = makeColor 255 255 255 255
25
26 startTree :: Tree
27 startTree = initialTree testPoints 500 maxDistance minDistance
28
29
30 main :: IO ()
31 main = do args <− getArgs

7

32 case args of
33 [maxDist,minDist,speed] −> simulate window backgroundColor (

read speed :: Int) (initialTree testPoints 500 (read maxDist
:: Float) (read minDist :: Float)) treeAsPicture nextBranch

34 [maxDist,minDist] −> simulationLoop (initialTree testPoints 500
(read maxDist :: Float) (read minDist :: Float))

35 −> putStrLn ”Usage ./tree−exe maxDist minDist <
simulation display speed>” >> exitSuccess

5.2 Tree.hs

1 module Tree where
2 import Data.List
3 import Control.DeepSeq
4 import Data.List.Split
5 import Control.Parallel . Strategies
6 type Leaves = [Leaf]
7 type Branches = [Branch]
8 data Leaf = Leaf Point Bool | None
9
10
11 type Point = (Float,Float)
12 data Branch = Empty | Branch {
13 position :: Point,
14 parent :: Branch,
15 direction :: Point −− Vector Representation of

direction
16 }
17
18 data Tree = DONE Tree | Tree {
19 leaves :: Leaves,
20 root :: Branch,
21 branches :: Branches,
22 max dist :: Float,
23 min dist :: Float,
24 window size :: Float,
25 detected :: Bool
26 }
27 {−
28 Point Arithmetic Helpers

8

29 −}
30 add :: Point −> Point −> Point
31 add (x1, y1) (x2, y2) =
32 let
33 x = x1 + x2
34 y = y1 + y2
35 in (x, y)
36
37 sub :: Point −> Point −> Point
38 sub (x1, y1) (x2, y2) =
39 let
40 x = x1 − x2
41 y = y1 − y2
42 in (x, y)
43
44 vdiv :: Point −> Float −> Point
45 vdiv (x1, y1) a =
46 let
47 x = x1 / a
48 y = y1 / a
49 in (x, y)
50
51 vmult :: Point −> Float −> Point
52 vmult (x1, y1) a =
53 let
54 x = x1 / a
55 y = y1 / a
56 in (x, y)
57
58 distance :: Point −> Point −> Float
59 distance (x1,y1) (x2,y2) = let x’ = x1 − x2
60 y’ = y1 − y2
61 in
62 sqrt (x’∗x’ + y’∗y’)
63
64 normalize :: Floating b => (b, b) −> (b, b)
65 normalize (x,y) = let magnitude = sqrt ((x∗x) + (y∗y))
66 in
67 (x/magnitude, y/magnitude)
68

9

69 {−
70 Tree,Branch,Leaf helpers
71 −}
72
73
74 −− Convert Array of points to Leaves
75 pointsToLeaves :: [(Float, Float)] −> [Leaf]
76 pointsToLeaves arr = (parMap rseq (\(x,y) −> Leaf (x,y) False) arr)
77
78
79 −− Check if Branch is
80 notEmpty :: Branch −> Bool
81 notEmpty b = case b of
82 Empty −> False
83 otherwise −> True
84
85 −− Initialize a tree
86 initialTree :: [(Float, Float)] −> Float −> Float −> Float −> Tree
87 initialTree arr size max min = Tree {
88 leaves = pointsToLeaves arr,
89 root = root init ,
90 branches = [root init],
91 max dist = max,
92 min dist = min,
93 window size = size ,
94 detected = False
95 }
96 where root init = Branch {position=(0, −size

/2), parent = Empty, direction = (0,1)}
97
98 addBranch :: Tree −> Branch −> Tree
99 addBranch tree branch = tree {branches= branch : (branches tree)}
100
101 addBranches :: Tree −> [Branch] −> Tree
102 addBranches tree b = tree {branches = b ++ (branches tree)}
103
104
105 detectLeaves :: Branch −> [Leaf] −> Float −> Bool
106 detectLeaves branch lvs maxDist = any (==True) (parMap rseq f lvs)
107 where f None = False

10

108 f (Leaf (x,y)) = distance (x,y)
(position branch) < maxDist

109
110 closestBranch :: Leaf −> [Branch] −> Float −> Float −> (Leaf, Branch)
111 closestBranch None = (None, Empty)
112 closestBranch (Leaf (x,y)) br minDist maxDist = let closest = minimumBy

f br
113 dis = distance (position

closest) (x,y)
114 newDir = sub (x,y) (

position closest)
115 normalized = normalize

newDir
116 in
117 if (dis >= maxDist)

then
118 ((Leaf (x,y) False),

Empty)
119 else
120 if (dis <= minDist)

then
121 ((Leaf (x,y) True),

closest {parent=
closest ,
direction =
normalized})

122 else
123 ((Leaf (x,y) False),

closest {parent
=closest ,
direction =
normalized})

124 where f a b = compare (
distance (position a) (x,y)
) (distance (position b)
(x,y))

125 averageDir :: [Branch] −> Branch
126 averageDir brches = let ref = (head brches)
127 −− sum = foldr1 add $ (parMap rseq (direction)

branches)

11

128 sumDir = (foldl’ (\acc b −> add acc (direction b)) (
direction (parent ref)) brches)

129 new dir = normalize (vdiv sumDir (fromIntegral ((
length brches))))

130 new pos = add (position ref) new dir
131 in
132 Branch {position=new pos, parent = (parent ref) ,

direction = new dir}
133
134 calculateNewBranches :: [Branch] −> [Branch]
135 calculateNewBranches closests = let grouped = groupBy branchPos closests
136 in
137 map averageDir grouped
138 where branchPos a b = (position a == position

b)
139
140
141 step :: Tree −> Tree
142 step tree = let top = head (branches tree)
143 in
144 case (detectLeaves top (leaves tree) (max dist tree)) of
145 False −> addBranch tree (Branch {position=(add (position top)

(direction top)) , parent = top, direction = (direction top
)})

146 True −> tree {detected = True}
147
148 grow :: Tree −> Tree
149 grow tree = let unreached = filter (\(Leaf (,) reached) −> not reached) (

leaves tree)
150 (newLeaves, closests) = unzip ((parMap rpar (\x −>

closestBranch x (branches tree) (min dist tree) (max dist
tree)) unreached))

151 filteredClosests = filter notEmpty closests
152 newBranches = calculateNewBranches filteredClosests
153 in
154 case newBranches of
155 [] −> DONE tree
156 −> addBranches (tree {leaves = newLeaves}) newBranches
157
158 nextBranch :: p1 −> p2 −> Tree −> Tree

12

159 nextBranch (DONE tree) = DONE tree
160 nextBranch tree = case (detected tree) of
161 False −> step tree
162 True −> grow tree

5.3 Render.hs

1 module Render where
2 import Graphics.Gloss
3 import Tree
4
5 drawPoint :: Leaf −> Picture
6 drawPoint (Leaf (x,y) reached) = case reached of
7 False −> Color red (Translate x y (

ThickCircle 2 2))
8 True −> Blank
9 drawBranch :: Branch −> Picture

10 drawBranch b = case (parent b) of
11 Empty −> Blank
12 otherwise −> let point = position b
13 parent point = position (parent b)
14 in
15 line [point , parent point]
16
17 treeAsPicture :: Tree −> Picture
18 treeAsPicture (DONE tree) = let branchPictures = map drawBranch (branches

tree)
19 leafPictures = map drawPoint (leaves tree)
20 in
21 pictures (leafPictures ++ branchPictures)
22 treeAsPicture tree = let branchPictures = map drawBranch (branches tree)
23 leafPictures = map drawPoint (leaves tree)
24 in
25 pictures (branchPictures ++ leafPictures)

13

	Background
	Algorithm
	Implementation
	Data Types
	Leaf
	Branch
	Leaf
	Algorithm

	Parallelization
	Code Listing
	Main.h
	Tree.hs
	Render.hs

