
COMS 4995: Parallel Functional Programming

Parallel Hex AI with MinMax

Eric Feng: ef2648
Cesar Ramos Medina: cer2178

December 2020

1 Introduction

Hex is an intriguing board game invented by Piet Hein and John Hash in the
1940s independently. The game is played out by two players on a board in
the shape of a parallelogram. The parallelogram is made of hexagons of equal
length and width. The two players take turns placing pieces on their board.
Prior to the game, each player should claim two opposing sides of the board.
The winning condition is to have an uninterrupted path of tiles from one end
of the chosen side to the other. Observe the blue player’s winning path in the
figure below.

Figure 1: A game of Hex in its finished state. The light blue path indicates the
winning path by the blue player.

Hex has some unique properties unlike other board games. For example, it
cannot end in a draw due to the topology of the board. Hence, a clear winner
always emerges victorious from a match. A proof of this phenomenon may be
found here.

1

http://web.mit.edu/sp.268/www/hex-notes.pdf


We present a Hex Agent implemented in Haskell with the MinMax algorithm.
In the following pages, we will describe how we implemented our agent, key
decisions, and our findings in attempting to parallelize the agent.

Assumptions : player 1 take top and bottom, player 2 takes left and right.
no swap rule

2 Implementation

2.1 Internal Representation of Board

The first obstacle in creating our program is representing the hexagonal board
in Haskell. To help with this process, the board is internally represented in
Haskell as a GridMap, which is found in the grid package. A Grid is a data
structure which represents the arrangement of tiles on a board (e.g [(0,0), (0,
1), (0,2) ... (11, 11)]. GridMap is a wrapper for Grid and Map; its keys are tile
positions (coordinates for the board), and its values represent the data currently
occupying that cell.

We chose to use the grid package to help implement the games’ function-
ality because it alleviated the challenge of working in a coordinate system for
hexagonal grids, which we had a hard time with. The specifics on the indexing
scheme for the hexagonal board used in the package may be found in Red Blob
Games’ fantastic guide on making use of hexagonal grids.

2.2 Displaying Game State

To display the game state to the user, we make use of the function draw, which
is from ChristopherKing42’s Hex AI using Monte Carlo Tree Search. We then
adapted his implementation for GridMap and Grid. We found this to be the
most convenient representation of the board as opposed to drawing hexagonal
shapes. In essence, the function takes in the length/width of the board and the
board itself, then draws the players’ moves by printing the value of each index
in the GridMap in an organized fashion.

draw :: (M.GridMap gm Char, G.Index (M.BaseGrid gm Char) ~ (Int,

Int)) =>↪→

Int -> gm Char -> String

draw size board = unlines [line y | y <- [0..size]] where

line 0 = (' ':) $ take size ['A'..] >>= (:" ") --draw top

legend↪→

line y = replicate y ' ' ++ --white space for formatting

replicate (length $ show y) '\b' ++ -- delete extra

spaces↪→

show y ++ -- print current number

concat [[' ', cell x (y - 1)] | x <- [0..size-1]] --

line info↪→

2

https://hackage.haskell.org/package/grid
https://www.redblobgames.com/grids/hexagons/
https://www.redblobgames.com/grids/hexagons/
https://gitlab.com/ChristopherKing42/Hex


cell x y = case M.lookup (x, y) board of

Just a -> a

Nothing -> '-'

2.3 Heuristics Function

The heuristics function we use to evaluate a game state is called countConnected.
We found this heuristic for the Hex game in an AI lab from the the Computer
Science department at Swarthmore. Given the GridMap (current board state),
the representation of the board, and the “color” of the player, countConnected
returns the number of pieces for that player which are touching another piece
of the same color on the board. The idea behind it is basically that the more
“connected” a color is, the more likely it is that a connection leads to a path
from one side to the other (with the exception of clusters).

countConnected :: (M.GridMap gm v, Ord (G.Index g), Eq v, Num a,

G.Grid g, G.Index (M.BaseGrid gm v)~ G.Index g) => gm v -> g

-> v -> a

↪→

↪→

countConnected gm board color = sum $ map (\x -> countNeighbor x)

coordinates↪→

where getCommonColors _ v = v == color -- get kv pairs in

grid map that have the same value as color↪→

coordinates = M.keys $ M.filterWithKey

getCommonColors gm -- get list of coordinates

belonging to that color (get keys with value v

from gm)

↪→

↪→

↪→

noNeighborIsSameColor = null . flip intersect

coordinates . G.neighbours board -- returns

boolean on whether a neighbour of the current

point is a dot of the same color

↪→

↪→

↪→

countNeighbor me = if noNeighborIsSameColor me then

0 else 1↪→

2.4 Minimax Implementation

We are using a variation of minimax known as depth-limited minimax. Fur-
thermore, we will not look at the agents as one being a maximizing one and the
other as a minimizing one, but rather as both players attempting to maximize
their outcome.

Our depth-limited minimax works in three stages: playGame, minimaxDe-
cision, and maxPx. playGame, as the function mentions, plays the game. This
basically means that it will alternate between who puts a tile down, either play-
erA or playerB, and will call the appropriate function (minimaxDecision on the
color ’A’ or color ’B’). playGame returns IO (), as it basically prints the boards,
and then mentions the winner.

3

https://www.cs.swarthmore.edu/~bryce/cs63/s16/labs/hex.html
https://www.cs.swarthmore.edu/~bryce/cs63/s16/labs/hex.html


The minimaxDecision function, as the name suggests, will decide where to
put a tile. To do this, minimaxDecision first considers all possible moves (or,
equivalently, boards with a tile played in a different position), and then selects
the board that yields the maximum heuristic value for the player. Subsequently,
it returns the heuristic value pair for the board (basically, we return the heuristic
values for both player as a tuple, which becomes useful for whoever receives the
value being returned).

The maxPx function is the core of the minimax algorithm. It iterates over
all possible boards, and calls the max function for the opposing player. This
function returns a tuple containing the value for the heuristic for the player ’A’
in the first position, and the value for the heuristic for player ’B’ in the second
position.

Please find detailed implementation in the code listing section as it is quite
large to put here.

3 Parallelizing

The primary part of our program that we were trying to parallelize were the
map operations over lists of “next moves” for a given player using MinMax.
Hence, our attempts mainly revolved around ‘using‘ parList and parMap. We
tried using rseq as the main strategy. The idea of using rseq was that since the
operation after the map operation necessarily requires the “complete picture”
for comparison purposes, rseq was sufficient in forcing normal form.

First, we tried to add ‘using‘ parList rseq to all map operations. This yielded
in the fastest version of the program, but there were nearly no differences be-
tween the sequential version of the program and the parallel version. Upon
further examination of threadscope, we found that only one core was really
active at a certain time.

4



5



To try and remedy this problem, we tried to instead distribute the map op-
erations with rpar, but evaluate more immediate operations with rseq. The idea
was to continue to the next level in WHNM until gathered for evaluation. Fur-
thermore, we were much more conservative with where to introduce parallelism.
This is the version of the program that we handed in, but it is in fact slower
than the former version. However, the threadscope analysis shows a different
picture.

Hence, we may assume that the former version is superior and that true par-
allelism for our agent hence requires further examination. Please note all tests
are done without printing the board at each step (print slows down everything
dramatically).

4 Notes

Further optimizations of our agent involve better heuristics and more impor-
tantly alpha beta pruning. The search space of our program grows exponen-
tially at every level, and hence it is difficult for us to run tests with non-trivial
depths on our machines when the board size is bigger.

Another thing to note is that we realized our state evaluation function was
wrong very late in our review process. The game winning condition required
only for a complete path to exist for either player from their chosen side, while
we thought all squares needed to be filled prior to comparison. We did not have
time to replace our existing state evaluation function, but I will show the extent

6



to which we have worked on the replacement. The idea is at each step, to check
if there are any tiles that are at a boundary “belonging” to the player. If there
are, then we will perform DFS and recursively attempt to find a path between
the starting tile to a tile of the opposing side. The code compiles but it requires
changing our MinMax function which we did not have time to do.

--boundary tiles for each of the sides

bot g = (chunksOf 4 (G.boundary g)) !! 0

top g = (chunksOf 4 (G.boundary g)) !! 2

left g = (chunksOf 4 (G.boundary g)) !! 1

right g = (chunksOf 4 (G.boundary g)) !! 3

-- get list of coordinates belonging to that color (get keys with

value v from gm)↪→

coordinates gm color = M.keys $ M.filterWithKey (const (color

==)) gm↪→

gameOver gm board color

| color == 'A' && hasBoundary topTiles = maximum $ map

(\candidateTile -> findPath (M.delete candidateTile gm)

board color botTiles candidateTile) (intersect myTiles

topTiles)

↪→

↪→

↪→

| color == 'A' && hasBoundary botTiles = maximum $ map

(\candidateTile -> findPath (M.delete candidateTile gm)

board color topTiles candidateTile) (intersect myTiles

botTiles)

↪→

↪→

↪→

| color == 'B' && hasBoundary leftTiles = maximum $ map

(\candidateTile -> findPath (M.delete candidateTile gm)

board color rightTiles candidateTile) (intersect myTiles

leftTiles)

↪→

↪→

↪→

| color == 'B' && hasBoundary rightTiles = maximum $ map

(\candidateTile -> findPath (M.delete candidateTile gm)

board color leftTiles candidateTile) (intersect myTiles

rightTiles)

↪→

↪→

↪→

| otherwise = 0

where hasBoundary dir = not $ null $ intersect myTiles dir

myTiles = coordinates gm color

topTiles = top board

botTiles = bot board

leftTiles = left board

rightTiles = right board

findPath gm board color desiredDirection candidateTile

| desiredDirection `G.contains` candidateTile = 1

| null (intersect (G.neighbours board candidateTile)

gm) = 0↪→

7



| otherwise = maximum $ map (\candidateTile ->

findPath (M.delete candidateTile gm) board color

desiredDirection candidateTile) (intersect

(coordinates gm color) (G.neighbours board

candidateTile))

↪→

↪→

↪→

↪→

To run our program, please follow standard stack syntax. In particular,
stack install will generate an executable for threadscope analysis, stack run will
run a convenient instance of the project.

5 Code Listing

{-# LANGUAGE GADTs, FlexibleContexts #-}

module Main where

import Math.Geometry.Grid.Hexagonal ( paraHexGrid )

import qualified Math.Geometry.Grid as G

import qualified Math.Geometry.GridMap as M

import Math.Geometry.GridMap.Lazy ( lazyGridMap )

import Text.Read

import Data.List (intersect, maximumBy )

import Control.Parallel.Strategies

computeValidMoves :: M.GridMap gm Char => gm Char -> gm Char

computeValidMoves gm = M.filter (\v -> v /= 'A' && v /= 'B' ) gm

maxPA :: (M.GridMap gm Char, Ord (G.Index (M.BaseGrid gm Char)),

Ord b) =>

gm Char -> t -> Int -> Int -> (gm Char -> t ->

Char -> b) -> (b, b)↪→

maxPA gm board max_depth curr_depth heur_func = do

let valid_moves = computeValidMoves gm

if curr_depth >= max_depth || length (M.keys valid_moves)

< max_depth then↪→

( heur_func gm board 'A', heur_func gm board 'B')

else

do

-- valid_boards is of type [GridMap]

let valid_boards = map (\k -> M.insert k 'A' gm)

(M.keys valid_moves)↪→

-- board_values is of "type" [(GridMap,

(Heuristic for A, Heuristic for B) )]↪→

8



let board_values = map ( \grid-> ( grid, ( maxPB

(grid) (board) ( max_depth ) ( curr_depth + 1

) ( heur_func ) ) ) ) valid_boards

↪→

↪→

-- computes max, since comparisons are required

here rseq is enough since it will need to

evaluate to normal form here

↪→

↪→

let board_max_value_A = maximumBy (

\(_,(heur_a_1,_)) (_,(heur_a_2,_)) -> compare

heur_a_1 heur_a_2) board_values

↪→

↪→

(snd board_max_value_A)

maxPB :: (M.GridMap gm Char, Ord (G.Index (M.BaseGrid gm Char)),

Ord b) =>

gm Char -> t -> Int -> Int -> (gm Char -> t ->

Char -> b) -> (b, b)↪→

maxPB gm board max_depth curr_depth heur_func = do

let valid_moves = computeValidMoves gm

if curr_depth >= max_depth || length (M.keys valid_moves)

< max_depth then↪→

(heur_func gm board 'A', heur_func gm board 'B')

else

do

-- valid_boards is of type [GridMap]

let valid_boards = map (\k -> M.insert k 'B' gm)

(M.keys valid_moves)↪→

-- board_values is of "type" [(GridMap,

(Heuristic for A, Heuristic for B) )]↪→

let board_values = map ( \grid-> ( grid, ( maxPA

(grid) (board) ( max_depth ) ( curr_depth + 1

) ( heur_func ) ) ) ) valid_boards

↪→

↪→

let board_max_value_B = maximumBy ( \(_,

(_,heur_b_1) ) (_, (_,heur_b_2 ) ) -> compare

heur_b_1 heur_b_2 ) board_values

↪→

↪→

(snd board_max_value_B)

minimax_decision :: (M.GridMap gm Char,

Ord (G.Index (M.BaseGrid gm Char)),

Ord a) =>↪→

gm Char

9



-> t

-> Char

-> (gm Char -> t -> Char -> a)

-> Int

-> (gm Char, (a, a))

minimax_decision gm board color heuristic max_depth = do

let valid_moves = computeValidMoves gm

if color == 'A' then

do

let valid_boards = map (\k -> M.insert k 'A' gm)

(M.keys valid_moves)↪→

let board_values = map ( \grid-> ( grid, ( maxPB

(grid) (board) ( max_depth ) ( 1 ) ( heuristic )

) ) ) valid_boards

↪→

↪→

let board_max_value_A = maximumBy ( \(_,(heur_a_1,_))

(_,(heur_a_2,_)) -> compare heur_a_1 heur_a_2)

board_values

↪→

↪→

board_max_value_A

else

do

let valid_boards = map (\k -> M.insert k 'B' gm)

(M.keys valid_moves)↪→

let board_values = map ( \grid-> ( grid, ( maxPA

(grid) (board) ( max_depth ) ( 1 ) ( heuristic )

) ) ) valid_boards

↪→

↪→

let board_max_value_B = maximumBy ( \(_, (_,heur_b_1)

) (_, (_,heur_b_2 ) ) -> compare heur_b_1

heur_b_2 ) board_values

↪→

↪→

board_max_value_B

par_minimax_decision :: (M.GridMap gm Char,

Ord (G.Index (M.BaseGrid gm

Char)), Ord a) =>↪→

gm Char

-> t

-> Char

10



-> (gm Char -> t -> Char -> a)

-> Int

-> (gm Char, (a, a))

par_minimax_decision gm board color heuristic max_depth = do

let valid_moves = computeValidMoves gm

if color == 'A' then

do

let valid_boards = map (\k -> M.insert k 'A' gm)

(M.keys valid_moves) `using` parList rseq↪→

let board_values = parMap rpar ( \grid-> ( grid, (

maxPB (grid) (board) ( max_depth ) ( 1 ) (

heuristic ) ) ) ) valid_boards --`using` parList

rpar

↪→

↪→

↪→

let board_max_value_A = maximumBy ( \(_,(heur_a_1,_))

(_,(heur_a_2,_)) -> compare heur_a_1 heur_a_2)

board_values

↪→

↪→

board_max_value_A

else

do

let valid_boards = map (\k -> M.insert k 'B' gm)

(M.keys valid_moves) `using` parList rseq↪→

let board_values = parMap rpar ( \grid-> ( grid, (

maxPA (grid) (board) ( max_depth ) ( 1 ) (

heuristic ) ) ) ) valid_boards --`using` parList

rpar

↪→

↪→

↪→

let board_max_value_B = maximumBy ( \(_, (_,heur_b_1)

) (_, (_,heur_b_2 ) ) -> compare heur_b_1

heur_b_2 ) board_values

↪→

↪→

board_max_value_B

par_playGame :: (Num a1, M.GridMap gm Char,

Ord (G.Index (M.BaseGrid gm Char)), Ord

a2, Eq a1,↪→

G.Index (M.BaseGrid gm Char) ~ (Int, Int))

=>↪→

11



Int

-> gm Char

-> t

-> Char

-> (gm Char -> t -> Char -> a2)

-> (gm Char -> t -> (gm Char -> t -> Char

-> a2) -> a1)↪→

-> Int

-> IO ()

par_playGame b_size gm board color heur_fn go_fn max_depth = do

let game_over = go_fn gm board heur_fn

case game_over of

0 -> if color == 'A' then

do

let decision_gm_val = par_minimax_decision gm

board color heur_fn max_depth↪→

let decision_gm = fst decision_gm_val

putStrLn $ draw b_size decision_gm

playGame b_size decision_gm board 'B' heur_fn

go_fn max_depth↪→

else

do

let decision_gm_val = par_minimax_decision gm

board color heur_fn max_depth↪→

let decision_gm = fst decision_gm_val

putStrLn $ draw b_size decision_gm

playGame b_size decision_gm board 'A' heur_fn

go_fn max_depth↪→

1 -> putStrLn "A wins"

2 -> putStrLn "B wins"

_ -> error "Error in game processing"

playGame :: (Num a1, M.GridMap gm Char,

Ord (G.Index (M.BaseGrid gm Char)), Ord a2, Eq

a1,↪→

G.Index (M.BaseGrid gm Char) ~ (Int, Int)) =>

Int

-> gm Char

-> t

-> Char

12



-> (gm Char -> t -> Char -> a2)

-> (gm Char -> t -> (gm Char -> t -> Char ->

a2) -> a1)↪→

-> Int

-> IO ()

playGame b_size gm board color heur_fn go_fn max_depth = do

let game_over = go_fn gm board heur_fn

case game_over of

0 -> if color == 'A' then

do

let decision_gm_val = minimax_decision gm

board color heur_fn max_depth↪→

let decision_gm = fst decision_gm_val

putStrLn $ draw b_size decision_gm

playGame b_size decision_gm board 'B' heur_fn

go_fn max_depth↪→

else

do

let decision_gm_val = minimax_decision gm

board color heur_fn max_depth↪→

let decision_gm = fst decision_gm_val

putStrLn $ draw b_size decision_gm

playGame b_size decision_gm board 'A' heur_fn

go_fn max_depth↪→

1 -> putStrLn "A wins"

2 -> putStrLn "B wins"

_ -> error "Error in game processing"

basicGameOver :: (M.GridMap gm Char, Ord a, Num p) => gm Char ->

t -> (gm Char -> t -> Char -> a) -> p↪→

basicGameOver gm board heur_fn = case (M.toList

(computeValidMoves gm)) of↪→

[] -> if heur_fn gm board 'A' >=

heur_fn gm board 'B' then 1 else

2

↪→

↪→

_ -> 0

-- get keys with value v from gm

13



-- getKeys gm v = filter (==v) gm

-- countConnected: find the number of pieces that are touching

another piece of the same color on the board

https://www.cs.swarthmore.edu/~bryce/cs63/s16/labs/hex.html

↪→

↪→

-- for all pieces, +1 if they are touching another piece

-- a piece is touching another piece if a coordinate belonging to

a color is a neighbour of that piece↪→

countConnected :: (M.GridMap gm v, Ord (G.Index g), Eq v, Num a,

G.Grid g, G.Index (M.BaseGrid gm v) ~ G.Index g) => gm v -> g

-> v -> a

↪→

↪→

countConnected gm board color = sum $ map (\x -> countNeighbor x)

coordinates↪→

where getCommonColors _ v = v == color -- get kv pairs in

grid map that have the same value as color↪→

coordinates = M.keys $ M.filterWithKey

getCommonColors gm -- get list of coordinates

belonging to that color (get keys with value v

from gm)

↪→

↪→

↪→

noNeighborIsSameColor = null . flip intersect

coordinates . G.neighbours board -- returns

boolean on whether a neighbour of the current

point is a dot of the same color

↪→

↪→

↪→

countNeighbor me = if noNeighborIsSameColor me then

0 else 1↪→

-- ask user for how much time AI should spend

askTime :: IO Integer

askTime = do

putStrLn "How deep should the AI have to compute each move?

(Default is 2)"↪→

response <- getLine

case response of

"" -> return 2

s -> case readMaybe s of --parse input

Just n -> return n --if number, return that number

Nothing -> askTime --if it aint, ask again

-- ask user for how big the board should be

askSize :: IO Integer

askSize = do

putStrLn "How big should the Hex board be? (Default is 11)"

response <- getLine

case response of

"" -> return 11

14



s -> case readMaybe s of --parse input and make sure that

it's int↪→

Just n -> return n

Nothing -> askSize

askParallel :: IO Integer

askParallel = do

putStrLn "Should we run it parallel? (0=no, 1=yes)"

response <- getLine

case response of

"" -> return 0

s -> case readMaybe s of

Just n -> return n

Nothing -> askParallel

main :: IO ()

main = do

pre_depth <- askTime

let max_depth = fromIntegral pre_depth

pre_size <- askSize

is_parallel <- askParallel

let size = fromIntegral pre_size

let hex_b = paraHexGrid size size

let hex_grid = lazyGridMap hex_b (take (size*size) (repeat

'-'))↪→

if is_parallel == 1 then

do

par_playGame size hex_grid hex_b 'A' (countConnected)

(basicGameOver) max_depth↪→

return ()

else

do

playGame size hex_grid hex_b 'A' (countConnected)

(basicGameOver) max_depth↪→

return ()

draw :: (M.GridMap gm Char, G.Index (M.BaseGrid gm Char) ~ (Int,

Int)) => Int -> gm Char -> String↪→

draw size board = unlines [line y | y <- [0..size]] where

line 0 = (' ':) $ take size ['A'..] >>= (:" ") --draw top

legend↪→

15



line y = replicate y ' ' ++ --white space for formatting

replicate (length $ show y) '\b' ++ -- delete extra

spaces↪→

show y ++ -- print current number

concat [[' ', cell x (y - 1)] | x <- [0..size-1]] --

actual line info↪→

cell x y = case M.lookup (x, y) board of

Just a -> a -- change this w actual data type

used by value (this one needs

FlexibleContexts)

↪→

↪→

Nothing -> '-'

16


	Introduction
	Implementation
	Internal Representation of Board
	Displaying Game State
	Heuristics Function
	Minimax Implementation

	Parallelizing
	Notes
	Code Listing

