
Parallel Recovery of Enigma Rotor Settings

Samuel Meshoyrer Evan Mesterhazy

December 2020

1 Introduction
The Enigma cipher employed by the German army during WWII has fascinated amateur
cryptographers for decades. In this paper we develop a Haskell implementation of the
Enigma machine and use it to parallelize a cipher-text only statistical attack that recovers
the rotor settings used to encrypt a message. Haskell’s lazy evaluation, immutable data
structures, and lightweight parallelism facilities make it an excellent medium to explore
parallel work allocation strategies in this context. We develop seven parallelization strate-
gies and identify two optimal approaches that achieve 82% of the ideal speedup expected
by Amdhal’s law on up to 6 Haskell execution contexts (HECs) with different trade-offs
between memory usage and scalability as additional HECs are added.

2 The Enigma Machine

2.1 Bare Metal
The keyspace of the Enigma machine derives from settings selected for its three main
components: the plugboard, the rotors, and the reflector. The machine also includes a
keyboard for input, a lightboard that illuminates the enciphered output character on each
keypress, and a static rotor that passes current between the plugboard and the first rotor.

When a key is pressed, current flows from the keyboard through the plugboard. Current
leaving the plugboard passes through the static rotor and then through the rotors from right
to left. After the last rotor, the reflector returns the current through the rotors from left to
right and back through the static rotor. After leaving the static rotor, the current passes
through the plugboard once more, illuminating the enciphered letter on the lightboard as
shown in Figure 1.

The rotor positions and settings comprise a significant portion of the Enigma’s keyspace
since the encryption performed depends on the wiring of each rotor and its orientation.
The rotor orientation is referred to as the rotor’s “key setting” and is denoted by the top
letter visible on the rotor before a key is pressed. Each rotor has 26 possible key settings
labeled A - Z. Before enciphering each letter, Enigma steps the rightmost rotor by one

1

Figure 1: The path of current through the Enigma Machine [7]

position. The middle and leftmost rotors may also be stepped depending on the positions
of the turnover notch on the rotor bodies.

Although our work does not attempt to recover the rotor ring settings or plugboard
configuration, our Enigma model implements both features so we will address them briefly.
In addition to the turnover notches, each rotor has a “ring setting” that rotates its internal
wiring relative to the key settings marked on the outside of the rotor. Since the rotor
stepping behavior is dictated by the turnovers, adjusting the ring setting changes the
position of the wiring relative to the turnover notches. The plugboard allows the operator
to swap inputs and outputs for a pair of letters. For example, with the plugboard setting
[‘K’, ‘T’], a key press of ‘K’ generates an input current at the “T” position of the static rotor
and vice versa. Outputs to the lightboard are similarly swapped.

2.2 Haskell Implementation
Our Enigma implementation closely resembles the structure of the physical machine. The
machine configuration is represented by an EnigmaConfig record, which encapsulates
the reflector, rotor, and plugboard settings.

data EnigmaConfig = EnigmaConfig
{ reflector :: Wiring,

rotors :: [OrientedRotor],
plugboard :: Plugboard

}
deriving (Show, Eq)

2

data OrientedRotor = OrientedRotor
{ rotor :: Rotor,

topLetter :: Char,
ringSetting :: Char

}
deriving (Show, Eq)

data Rotor = Rotor
{ rotId :: String,

wiring :: Wiring,
invWiring :: Wiring,
turnovers :: [Char]

}
deriving (Show, Eq)

type Wiring = Array Int Char
type Plugboard = [(Char, Char)]

Rotor wirings are represented as a Haskell array of characters mapping a right-left
rotor input to an output character with 𝒪(1) indexing. For example, the wiring of rotor
“I” is represented by the array "EKMFLGDQVZNTOWYHXUSPAIBRCJ". A right hand input at
contact ‘A’ on the rotor maps to the output letter ‘E’ as shown in Figure 2. An “inverted”

Rotor output character -> EKMFLGDQVZNTOWYHXUSPAIBRCJ
Rotor input position -> ABCDEFGHIJKLMNOPQRSTUVWXYZ

Figure 2: Right-left wiring for rotor I

wiring mapping from left to right, invWiring, is also stored for each rotor to allow 𝒪(1)
mapping of rotor inputs to outputs in both directions.

Since the Enigma cipher is reversible, both encryption and decryption use the same
cipher function. Amessage encrypted with a givenmachine configuration can be decrypted
by passing the ciphertext through the machine again with the same initial configuration.

cipher :: EnigmaConfig -> String -> String
cipher _ [] = []
cipher cfg [last] = [cipherChar (step cfg) last]
cipher cfg (hd : tl) =
let stepped = step cfg
in cipherChar stepped hd : cipher stepped tl

Matching the behavior of the mechanical Enigma, the rotors are stepped before each
character is enciphered. We omit the details of the stepping function for brevity, but the
algorithm is available in the code listing accompanying this paper. The cipherChar function
implements character encryption by passing the input character and the corresponding
outputs through each component of the Enigma machine.

3

cipherChar :: EnigmaConfig -> Char -> Char
cipherChar config c =
let plugOut = index $ mapPlug plugs c

reflectorIn = mapRotorsRightLeft rots plugOut
reflectorOut = mapReflector (reflector config) reflectorIn
plugIn = revIndex $ mapRotorsLeftRight rots reflectorOut

in mapPlug plugs plugIn
where

plugs = plugboard config
rots = rotors config

3 Decrypting Messages
To simplify the implementation we limit our attack to messages encrypted with an empty
plugboard and all ring settings set to “A”. This constrains the keyspace to the selection and
order of the rotors along with their key settings and is the first step in an extended method
described by James Gillogy [4] that recovers the ring settings and plugboard configuration
as well.

TheM3 Enigmamachine used by the German army duringWWII employed three rotors
chosen by operators from a set of five possible rotors for a total of 60 possible rotor permu-
tations. Each rotor has 26 possible key settings labeled A - Z, yielding 26 ⋅ 26 ⋅ 26 = 17, 576
possible starting positions for each rotor permutation. Thus, stepping through each possi-
ble initial rotor configuration requires 60 ⋅ 17, 576 = 1, 054, 560 decryptions.

3.1 Generating Rotor Permutations
We leverage Haskell’s lazy evaluation to generate a list of all possible initial rotor configu-
rations by constructing the 60 rotor permutations and initializing their key settings with a
list comprehension written in do notation.

m3RotorPermutations :: [[Rotor]]
m3RotorPermutations = concatMap permutations $ combinations 3 m3RotorSet

allPermutations :: [[OrientedRotor]]
allPermutations = do
rots <- m3RotorPermutations
lt <- ['A' .. 'Z']
mt <- ['A' .. 'Z']
rt <- ['A' .. 'Z']
return $ zipWith3 OrientedRotor rots [lt, mt, rt] (repeat 'A')

Even though there are over one million starting positions, this representation is efficient
since configurations are generated on demand. However, this approach results in high
maximum memory utilization for parallelization strategies that are strict in the spine of
the list, as we discuss in Section 4.6.

4

3.2 Index of Coincidence
To recover the message, we decrypt the ciphertext with each possible rotor configuration.
Each candidate plaintext is scored by calculating its Incidence of Coincidence (IC) [3] and
comparing it to the IC of a reference corpus. The IC represents the likelihood of randomly
selecting two identical letters from the text and is given by:

IC =
∑𝑍

𝑖=𝐴 𝑓𝑖(𝑓𝑖 − 1)
𝑁 (𝑁 − 1)

Where 𝑓𝑖 is the number of occurrences of letter 𝑖 in the sample text, and 𝑁 is the total
number of letters in the text.

As a reference, we calculated the IC of a ~900,000 word corpus of articles from The
Economist, which produced an IC of 0.0651. During decryption, the candidate plaintext
whose IC is closest to the reference IC is selected as the most likely decryption and output
to the user. Since this technique is a statistical attack, the likelihood of success decreases
as the message length decreases.

4 Parallelization
Decrypting Enigma messages presented the opportunity to analyze a special case of dis-
tributing parallel work - one where each piece of work is the same size. That is, as opposed
to the sudoku solver discussed by Marlow [5], there are no “easy” or “hard” decryptions.
Each decryption runs the same string through the same cipher function, just with different
rotor configurations. We choose to implement a number of parallel decryption strategies
in hopes of building a strong comparison and gaining an understanding of the strengths
and weaknesses of the different strategies.

4.1 Methodology and Metrics
We tested all strategies with a 50 character sample message. This message was decrypted
5 times per method and the results for each method were averaged together. The primary
metrics examined are total wall time and peak memory allocation. The data-points were
gathered from the output of running the program with RTS options. There is a convenient
“machine-readable” flag which outputs the relevant fields as an easily parsed list of tuples.

Several Python scripts were written to assist in data collection and analysis. Except
when comparing parBuffer and parChunks with a varying number of cores, each run was
given 6 cores. The decryptions were run on a Debian 10, Linux 4.19.0-11-amd64, guest
virtual machine through Oracle VirtualBox on a Windows 10 host. The host machine has
an Intel Core i7-8700K CPU 4.20 GHz processor and the guest VM was given direct access
to 6 of the processor’s 12 logical cores1. Both the guest and the host were lightly loaded
when performing the tests.

112 cores were made available for tests utilizing more than 6 HECs

5

Sparks
Converted

Total
Sparks

%
Unconverted

Total
Wall Time (sec)

Peak Memory
Allocated (MB)

sequential - - - 116 8
rdeepseq 10,876 1,054,560 99.0% 124 423
rseq 1,017,917 1,054,560 3.5% 125 608
rpar 1,822,924 2,109,120 13.5% 124 596

Table 1: Sequential and parList results averaged over five runs

4.2 Sequential Baseline
On our test machine, the sequential implementation completed in approximately 116
seconds but allocated only 8MB of peakmemory. The sequential implementation decrypted
each rotor configuration one at a time, using a single HEC, equivalent to one CPU core.

4.3 Strategies
For distributing the decryption work, we looked at seven different parallel Strategies [1]:
parList using rdeepseq, rpar, and rseq; parBuffer with various sized buffers; a hand-crafted
six-way static partition; chunking, first with parListChunk, second with distributing
chunks of 1000 decodings to parBuffers of size 128. A summary of the results can be seen
in the figures below. It is worth noting that none of the strategies imposed significant
development costs. Haskell’s clean and easy-to-use parallelization library made comparing
a large number of strategies feasible within a short period of time.

4.4 First Steps: parList using rdeepseq, rpar, and rseq
All three of the naïve parList evaluation strategies, rdeepseq, rpar, and rseq, performed
worse than the sequential implementation. Not only did they take longer in terms of wall
time, but they also had significantly higher peak memory allocations. Table 1 demonstrates
that each of these strategies, especially rdeepseq, generated a large number of unconverted
sparks. The poor distribution of the sparks, shown in Figure 3 degraded the performance
even further.

6

Figure 3: Threadscope result for parList rpar

4.5 Controlling Spark Generation with parBuffer
Parallelization with parBuffer turned out to be the most efficient strategy overall, achieving
a near optimal spot in the bottom-left of the wall time vs. peak memory graph in Figure 4
when executing with 6 HECs. Using parBuffer with a buffer size of 1024 (“parBuffer 1024”)
hit a sweet spot between execution speed at 21 seconds and peak memory consumption at
only 8 MB.

We decided to examine how different buffer sizes affected the performance of the
parBuffer strategy and tested several different buffer sizes: 4, 16, 64, 256, 1024, 4096, and
16,348. We observed a moderate speedup as the buffer size increased to 1024. With smaller
sizes the buffer capacity is insufficient to fully leverage the parallel capabilities of the cores.
The strategy began to degrade with buffers larger than 1024, which we believe is due to the
garbage collection (GC) overhead necessary to manage larger spark buffers. Peak memory
usage remained stable regardless of the buffer size.

7

Figure 4: Wall Time vs. Peak Memory Allocated, 6 HECs

4.6 Six-Way Static Partitioning
Six-Way is our hand-crafted, static partition strategy, which works by breaking the rotor
settings into six roughly equal length chunks and handing off each chunk to its own HEC.
Breaking the code into chunks is accomplished via the chunksOf function from the split
package [2] and is roughly equivalent to the code shown below.

let [as, bs, cs, ds, es, fs] =
chunksOf ((length allPermutations `div` 6) + 1) allPermutations

Since each chunk is immediately evaluated in parallel using rpar, building the chunks
in Six-Way is strict in the spine of the list. This results in significantly higher peak memory
usage than observed with parBuffer as shown in Figure 5. Despite this, Six-Way achieved
a marginal speed-up over parBuffer 1024 as shown later in Figure 6.

Ultimately this strategy scales poorly: the code must be written with direct knowledge
of the hardware it runs on. On top of this, the static partitioning in Six-Way results in
poor load-balancing. In each test we ran, HECs finished their work early and sat idle while
others finished processing their queues. A more optimal strategy would load-balance
between HECs so that all remain fully utilized.

Despite these drawbacks, Six-Way achieved the fastest runtime speed, clocking in at
20 seconds, which is marginally faster than parBuffer 1024. However, we do not consiger
Six-Way more efficient because this slight increase in speed came at the cost of much
higher peak memory usage: 380 MB vs 8 MB for parBuffer 1024, a nearly 48x increase.

8

Figure 5: Peak megabytes allocated by strategy

4.7 Improved Chunking with parListChunk
Although static partitioning scales poorly, chunking the workload reduces the number
of sparks generated, increasing throughput by reducing the number of GC pauses. By
creating smaller chunks and scheduling them automatically on all available HECs via the
parListChunk strategy we can leverage the speedup of chunking while avoiding the load
balancing and scalability issues of static partitioning.

To explore this approachwe tested two chunking strategies: parListChunk and parBuffer
with separate chunking. In our implementation, the parListChunk strategy (parchunks
below) begins by splitting the rotor permutations into approximately 1,000 chunks of size
1,000 before applying evalList rdeepseq to each chunk in parallel.

parChunks :: [[OrientedRotor]] -> [Char] -> [(Double, String)]
parChunks rots ctext =
map (solveIC ctext) rots `using` parListChunk 1000 rdeepseq

The parBuffer-with-chunks, or “bufferChunks”, strategy applies the same parBuffer
strategy discussed in Section 4.5, but increases the size of each unit of work from a single
decryption to 1,000 decryptions per spark.

bufferChunks :: [Char] -> [(Double, String)]
bufferChunks ctext = concat $
withStrategy (parBuffer 128 rdeepseq) (map (map (solveIC ctext)) chunks)
where chunks = chunksOf 1000 allPermutations

9

Both strategies are among the fastest tested at the cost of high peak memory usage (see
Figure 5) since they remain strict in the spine of the rotor configuration list. Despite the
theoretical benefit of controlling spark creation in the bufferChunks strategy, we did not
observe a material difference in running time compared to parChunks. This is likely due
to the relatively minor difference of creating sparks 128 at a time instead of creating all
1,000 up front. In the general case with workloads of several million discrete units we
expect the bufferChunks strategy to outperform parChunks.

5 Discussion
A comparison of total wall time for each strategy when executing with 6 HECs is shown
in Figure 6. The parBuffer strategy achieved the best performance considering its speed
and low memory overhead. Only the statically partitioned Six-Way strategy ran faster, but
at the cost of significantly higher peak memory consumption as discussed previously in
Section 4.6. Both chunking strategies, parChunks and parBuffer with chunking, ran nearly
as fast as Six-Way and exhibited similar peak memory consumption as previously shown
in Figure 5.

Figure 6: Total wall time by strategy, 6 HECs

We include the threadscope outputs for parBuffer and parChunks below in Figure 7
and Figure 8 to demonstrate that both strategies display excellent load balancing across
HECs. For parChunks, the threadscope graph also visualizes the high initial GC activity as
the spine of the rotor configuration list is evaluated and thunks are garbage collected.

10

Figure 7: Threadscope result for parBuffer

Figure 8: Threadscope result for parChunks

5.1 Multi-Core Scalability and Garbage Collection
Based on the results we observed, scalability as additional cores are added is highly
dependent on the amount of memory allocated by the individual strategy and its interaction
with Haskell’s garbage collector. As show in in Figure 9, both parBuffer and parChunks
exhibit close-to-ideal speedups as the number of HECs increases from 1 to 6. Since each
decryption in our workload is independent, the observed speedup should scale nearly
linearly with the number of HECs available. However, the actual speedup drops rapidly
for parBuffer with the addition of a 7th core/HEC and the speedup curve of parChunks
begins to flatten quickly after 8 HECs.

Although Haskell’s garbage collector is parallel, it is not concurrent. This means
that although the Haskell runtime can leverage multiple cores to speed-up collection,

11

Figure 9: Empirical vs ideal speedup

mutators cannot run at the same time as the collector [6]. As a result, decryption across all
threads is paused whenever garbage collection occurs. We believe the divergence shown
in Figure 9 at higher core counts is due to this stop-the-world garbage collection and the
poor parallelization of garbage collection as the number of cores increases as shown in
Table 2.

6 HECs 12 HECs
parBuffer 37.0% 13.7%
parChunks 80.0% 65.6%

Table 2: GC parallel work balance

6 Conclusion
Haskell’s straightforward parallel facilities make it simple for programmers to parallelize
existing algorithms and leverage the ubiquity of multi-core modern hardware. In decrypt-
ing Enigma messages we examined an algorithm where each unit of work is independent
and requires the same amount of computation. For this “equal-work” use case, strategies
like parBuffer and parChunks displayed the best performance by limiting the number of
sparks generated and load-balancing them across available HECs.

12

Although parallelizing algorithms is easy in Haskell, we observed diminishing returns
as the number of HECs increased. We largely attribute this to Haskell’s stop-the-world
garbage collector and believe that clever programmers can achieve additional performance
gains through the careful application of strictness, GC tuning, and memory efficient data
structures. Programmers requiring absolute speed are probably better served by languages
with manual memory management like Rust, C++, and C. For everyone else, Haskell
provides compelling parallelism alongside its expressive type system, lazy evaluation, and
vibrant library ecosystem.

7 Future Work
This project can be expanded down two main avenues: increased functionality of the
application, and a deeper analysis of the parallel evaluation strategies. Functional improve-
ments range from simple, e.g. being able to choose the encoding configuration from the
command line, to more complex. A fully fleshed out Enigma cracker would recover not
only the rotor configurations, but also the plugboard settings. We could also make the
command line interface more intuitive and add options for being able to choose parameters
for all the parameterized evaluation methods, not only parBuffer.

In terms of parallelization, the first thingwe could do is investigate how the performance
of our strategies scales to much larger number of cores, e.g. 32 or even 64 cores. We can
measure how each parallelization strategy scales when the size of the ciphertext increases.
We could also better understand how the performance of a strategy changes with the
external configuration, such as GC tuning. This work could lead to a more general theory
of optimal parallelization strategies in the “equal-work” special case.

13

References
[1] Control.Parallel.Strategies. url: https : / / hackage . haskell . org / package /

parallel-3.2.2.0/docs/Control-Parallel-Strategies.html (visited
on 12/21/2020).

[2] Data.List.Split. url: https://hackage.haskell.org/package/split-0.2.3.
4/docs/Data-List-Split.html#v:chunksOf (visited on 12/21/2020).

[3] W. F. Friedman. The Index of Coincidence and Its Applications in Cryptography. Publi-
cation No. 22. Geneva IL: Riverbank Publications, 1922.

[4] James J. Gillogly. “CIPHERTEXT-ONLY CRYPTANALYSIS OF ENIGMA”. In: Cryptolo-
gia 19.4 (1995), pp. 405–413. doi: 10.1080/0161-119591884060. eprint: https:
//doi.org/10.1080/0161-119591884060. url: https://doi.org/10.1080/
0161-119591884060.

[5] S. Marlow. Parallel and Concurrent Programming in Haskell. Parallel and Concurrent
Programming in Haskell: Techniques for Multicore and Multithreaded Programming.
O’Reilly, 2013. isbn: 9781449335946.

[6] Simon Marlow et al. “Parallel Generational-Copying Garbage Collection with a Block-
Structured Heap”. In: Proceedings of the 7th International Symposium on Memory
Management. ISMM ’08. Tucson, AZ, USA: Association for Computing Machinery,
2008, pp. 11–20. isbn: 9781605581347. doi: 10.1145/1375634.1375637. url: https:
//doi.org/10.1145/1375634.1375637.

[7] University of New England. Codes and Codebreaking - Modern Era. url: https://
www.une.edu.au/info-for/visitors/museums/museum-of-antiquities/
codebreaker-challenge/enigma (visited on 12/21/2020).

14

Source Code

Main.hs

module Main where

import Data.List (permutations)
import Data.List.Split (chunksOf)
import Enigma

(EnigmaConfig(..),
OrientedRotor(OrientedRotor),
Rotor,
getWiring,
calculateIC,
cipher,
combinations,
normalize)

import Enigma.Static (m3RotorSet, makeOriented, refIC)
import Options.Applicative
(Parser,

ParserInfo,
argument,
command,
helper,
info,
metavar,
progDesc,
str,
subparser,
prefs,
showHelpOnEmpty,
customExecParser,

)
import Control.Parallel.Strategies

(parBuffer,
parList,
parListChunk,
rdeepseq,
rpar,
rseq,
runEval,
using,
withStrategy,
Eval,
Strategy)

import Control.DeepSeq (force)

type FileName = String

data DecryptStrategy = Sequential | ParBuffer Int | RDeepSeq | RSeq | RPar | SixWay |
Chunks | BufferChunks↪

data Command
= Encrypt FileName

15

| Decrypt DecryptStrategy FileName

makeParBuffer :: String -> Command
makeParBuffer s = Decrypt (ParBuffer n) fn
where
[sizeStr, fn] =
case words s of
a@[_, _] -> a
_ -> error "Missing size or file argument"

n = read sizeStr ::Int

withInfo :: Parser a -> String -> ParserInfo a
withInfo opts desc = info (helper <*> opts) $ progDesc desc

parseEncrypt :: Parser Command
parseEncrypt = Encrypt <$> argument str (metavar "filename")

parseDecryptSequential :: Parser Command
parseDecryptSequential = Decrypt Sequential <$> argument str (metavar "filename")

parseDecryptParBuffer :: Parser Command
parseDecryptParBuffer = makeParBuffer <$> argument str (metavar "bufferSize filename")

parseDecryptRDeepSeq :: Parser Command
parseDecryptRDeepSeq = Decrypt RDeepSeq <$> argument str (metavar "filename")

parseDecryptRSeq :: Parser Command
parseDecryptRSeq = Decrypt RSeq <$> argument str (metavar "filename")

parseDecryptRPar :: Parser Command
parseDecryptRPar = Decrypt RPar <$> argument str (metavar "filename")

parseDecryptSixWay :: Parser Command
parseDecryptSixWay = Decrypt SixWay <$> argument str (metavar "filename")

parseDecryptChunks :: Parser Command
parseDecryptChunks = Decrypt Chunks <$> argument str (metavar "filename")

parseDecryptBufferChunks :: Parser Command
parseDecryptBufferChunks = Decrypt BufferChunks <$> argument str (metavar "filename")

parseCommand :: Parser Command
parseCommand =
subparser $

command "encrypt" (parseEncrypt `withInfo` "Encrypt the file")
<> command "decryptSequential" (parseDecryptSequential `withInfo` "Decrypt the file

sequentially")↪

<> command "decryptParBuffer" (parseDecryptParBuffer `withInfo` "Decrypt the file
with a parBuffer limited to the given size; use quotes: e.g. \"1000
/path/to/file\"")

↪

↪

<> command "decryptRDeepSeq" (parseDecryptRDeepSeq `withInfo` "Decrypt the file
with parList rDeepSeq")↪

<> command "decryptRSeq" (parseDecryptRSeq `withInfo` "Decrypt the file with
parList rSeq")↪

16

<> command "decryptRPar" (parseDecryptRPar `withInfo` "Decrypt the file with
parList rPar")↪

<> command "decryptSixWay" (parseDecryptSixWay `withInfo` "Decrypt the file with a
static six-way partition")↪

<> command "decryptChunks" (parseDecryptChunks `withInfo` "Decrypt the file with
parListChunk 1000 rdeepseq")↪

<> command "decryptBufferChunks" (parseDecryptChunks `withInfo` "Decrypt the file
in chunks of 1000 with parBuffer 128")↪

parseOptions :: Parser Command
parseOptions = parseCommand

main :: IO ()
main = run =<< customExecParser (prefs showHelpOnEmpty) (parseCommand `withInfo` "")

defaultConfig :: EnigmaConfig
defaultConfig =
EnigmaConfig

{ reflector = Enigma.getWiring "refB",
rotors =

[makeOriented "III" 'K' 'A',
makeOriented "II" 'D' 'A',
makeOriented "I" 'O' 'A'

],
plugboard = []

}

run :: Command -> IO ()
run cmd = case cmd of
Encrypt fn -> do

contents <- readFile fn
let normalized = Enigma.normalize contents
putStrLn $ Enigma.cipher defaultConfig normalized

Decrypt strat fn -> do
contents <- readFile fn
let ctext = normalize contents
case strat of
Sequential -> print $ sequentialDecrypt ctext
ParBuffer n -> print $ parListDecrypt (parBuffer n rdeepseq) ctext
RDeepSeq -> print $ parListDecrypt (parList rdeepseq) ctext
RSeq -> print $ parListDecrypt (parList rseq) ctext
RPar -> print $ parListDecrypt (parList rpar) ctext
SixWay -> print $ sixWayDecrypt ctext
Chunks -> print $ snd . minimum $ parChunks allPermutations ctext
BufferChunks -> print $ snd . minimum $ bufferChunks ctext

icDistance :: (Foldable t, Ord k) => Double -> t k -> Double
icDistance target plaintext = abs (target - Enigma.calculateIC plaintext)

m3RotorPermutations :: [[Rotor]]
m3RotorPermutations = concatMap permutations $ combinations 3 m3RotorSet

-- Generate all permutations of oriented rotors to test during decryption
allPermutations :: [[OrientedRotor]]

17

allPermutations = do
rots <- m3RotorPermutations
lt <- ['A' .. 'Z']
mt <- ['A' .. 'Z']
rt <- ['A' .. 'Z']
return $ zipWith3 OrientedRotor rots [lt, mt, rt] (repeat 'A')

-- Like solve, but also calculates the IC
solveIC :: [Char] -> [OrientedRotor] -> (Double, String)
solveIC msg rot = (icDistance refIC ptext, ptext)
where

cfg = EnigmaConfig {reflector = getWiring "refB", rotors = rot, plugboard = []}
ptext = cipher cfg msg

parChunks :: [[OrientedRotor]] -> [Char] -> [(Double, String)]
parChunks rots ctext = map (solveIC ctext) rots `using` parListChunk 1000 rdeepseq

bufferChunks :: [Char] -> [(Double, String)]
bufferChunks ctext = concat $ withStrategy (parBuffer 128 rdeepseq) (map (map (solveIC

ctext)) chunks)↪

where chunks = chunksOf 1000 allPermutations

sequentialDecrypt :: String -> String
sequentialDecrypt msg = snd $
minimum $ map (\c -> (icDistance refIC c, c)) $ do

rotorCfg <- allPermutations
let cfg = EnigmaConfig {reflector = getWiring "refB", rotors = rotorCfg, plugboard =

[]}↪

[cipher cfg msg]

solve :: [[OrientedRotor]] -> String -> [String]
solve rotorCfgs msg = do
rotor <- rotorCfgs
let cfg = EnigmaConfig {reflector = getWiring "refB", rotors = rotor, plugboard = []}
[cipher cfg msg]

sixWayDecrypt :: String -> String
sixWayDecrypt msg = do
let [as, bs, cs, ds, es, fs] = chunksOf ((length allPermutations `div` 6) + 1)

allPermutations↪

solutions = runEval $ do
as' <- rpar (force $ minimum $ map (\c -> (icDistance refIC c, c)) $ solve as

msg)↪

bs' <- rpar (force $ minimum $ map (\c -> (icDistance refIC c, c)) $ solve bs
msg)↪

cs' <- rpar (force $ minimum $ map (\c -> (icDistance refIC c, c)) $ solve cs
msg)↪

ds' <- rpar (force $ minimum $ map (\c -> (icDistance refIC c, c)) $ solve ds
msg)↪

es' <- rpar (force $ minimum $ map (\c -> (icDistance refIC c, c)) $ solve es
msg)↪

fs' <- rpar (force $ minimum $ map (\c -> (icDistance refIC c, c)) $ solve fs
msg)↪

_ <- rseq as'
_ <- rseq bs'

18

_ <- rseq cs'
_ <- rseq ds'
_ <- rseq es'
_ <- rseq fs'
return [as', bs', cs', ds', es', fs']

snd $ minimum solutions

parMapStrategy :: Strategy [b] -> (a -> b) -> [a] -> [b]
parMapStrategy strat f xs = map f xs `using` strat

parListDecrypt :: ([String] -> Eval [String]) -> [Char] -> [Char]
parListDecrypt strategy msg =
snd $ minimum $ map (\c -> (icDistance refIC c, c)) solutions
where solutions = parMapStrategy strategy (\cfg -> cipher (EnigmaConfig {reflector =

getWiring "refB", rotors = cfg, plugboard = []}) msg) allPermutations↪

Enigma.hs

module Enigma
(Wiring,

Plugboard,
Rotor (..),
OrientedRotor (..),
EnigmaConfig (..),
cipher,
normalize,
getWiring,
calculateIC,
combinations,
topLetters,
ringSettings,
rotorIDs,

)
where

import Data.Char (isAlpha, toUpper)
import Data.List (foldl', subsequences)
import Enigma.Internal

(cipherChar,
freqs,
ic,
step,
EnigmaConfig(..),
OrientedRotor(..),
Plugboard,
Rotor(..),
Wiring)

import Enigma.Static (getWiring)
import GHC.Unicode (isAscii)

-- | Extract top letters from given EnigmaConfig
topLetters :: EnigmaConfig -> String
topLetters cfg = [topLetter rtr | rtr <- rotors cfg]

19

ringSettings :: EnigmaConfig -> String
ringSettings cfg = [ringSetting rts | rts <- rotors cfg]

rotorIDs :: EnigmaConfig -> [String]
rotorIDs cfg = [rotId $ rotor rts | rts <- rotors cfg]

-- |
-- Encipher a message using cfg, the starting configuration of
-- the Enigma machine
cipher :: EnigmaConfig -> String -> String
cipher _ [] = []
cipher cfg [last] = [cipherChar (step cfg) last]
cipher cfg (hd : tl) =
let stepped = step cfg
in cipherChar stepped hd : cipher stepped tl

-- | Uppercase and drop alpha characters from a string
-- Must be run on the input string before calling Enigma.Cipher
normalize :: String -> String
normalize = map toUpper . filter (\c -> isAscii c && isAlpha c)

-- |
-- Calculate the Index of Coincidence (IC) of a sequence of text
-- The IC of a natural language is typically much higher than
-- the IC of a uniformly random string.
calculateIC :: (Foldable t, Ord k) => t k -> Double
calculateIC = ic . freqs

combinations :: Int -> [a] -> [[a]]
combinations k ns = filter ((k ==) . length) $ subsequences ns

Enigma/Internal.hs

module Enigma.Internal where

import Data.Array (Array)
import qualified Data.Array as A
import Data.Char (chr, ord)
import Data.List (elemIndex, foldl')
import Data.Map.Strict (Map)
import qualified Data.Map.Strict as M

nRotorPos :: Int
nRotorPos = 26

type Wiring = Array Int Char

type Plugboard = [(Char, Char)]

data Rotor = Rotor
{ rotId :: String,

wiring :: Wiring,
invWiring :: Wiring,
turnovers :: [Char]

20

}
deriving (Show, Eq)

data OrientedRotor = OrientedRotor
{ rotor :: Rotor,

topLetter :: Char,
ringSetting :: Char

}
deriving (Show, Eq)

data EnigmaConfig = EnigmaConfig
{ reflector :: Wiring,

rotors :: [OrientedRotor],
plugboard :: Plugboard

}
deriving (Show, Eq)

index :: Char -> Int
index c = if i < 0 || i > 25 then error "invalid index" else i
where

i = ord c - ord 'A'

revIndex :: Int -> Char
revIndex i =
if i < 0 || i > 25 -- 0 is min rotor ix; 25 is max rotor ix

then error "invalid index"
else chr $ i + ord 'A'

mapRotor :: Wiring -> Char -> Int -> Int
mapRotor wiring topLetter inputPos =
(outputContact - offset) `mod` nRotorPos -- lh output position
where

offset = index topLetter
inputContact = (inputPos + offset) `mod` nRotorPos
outputContact = index $ wiring A.! inputContact

mapReflector :: Wiring -> Int -> Int
mapReflector wiring = mapRotor wiring 'A'

mapPlug :: Plugboard -> Char -> Char
mapPlug [] c = c
mapPlug ((a, b) : tl) c
| c == a = b
| c == b = a
| otherwise = mapPlug tl c

mapRotors :: [OrientedRotor] -> (Rotor -> Wiring) -> (Wiring -> Char -> Int -> Int) ->
Int -> Int↪

mapRotors [] _ _ pos = pos
mapRotors (curr : tl) wGetter mapper pos =
mapRotors tl wGetter mapper outputPos
where

currWiring = wGetter $ rotor curr
currTopletter = topLetter curr
currRingSet = ord (ringSetting curr) - ord 'A'

21

ringAdjPos = (pos - currRingSet) `mod` nRotorPos
outputPos = (currRingSet + mapper currWiring currTopletter ringAdjPos) `mod`

nRotorPos↪

mapRotorsRightLeft :: [OrientedRotor] -> Int -> Int
mapRotorsRightLeft rotors =
mapRotors (reverse rotors) wiring mapRotor

mapRotorsLeftRight :: [OrientedRotor] -> Int -> Int
mapRotorsLeftRight rotors =
mapRotors rotors invWiring mapRotor

-- Encipher a single character
cipherChar :: EnigmaConfig -> Char -> Char
cipherChar config c =
let plugOut = index $ mapPlug plugs c

reflectorIn = mapRotorsRightLeft rots plugOut
reflectorOut = mapReflector (reflector config) reflectorIn
plugIn = revIndex $ mapRotorsLeftRight rots reflectorOut

in mapPlug plugs plugIn
where

plugs = plugboard config
rots = rotors config

-- Step a single rotor
stepRotor :: OrientedRotor -> OrientedRotor
stepRotor rot =
rot {topLetter = nextTL}
where

tl = topLetter rot
nextTL = revIndex $ (index tl + 1) `mod` nRotorPos

-- Step all of the rotors in the machine
stepRotors :: [OrientedRotor] -> OrientedRotor -> [OrientedRotor]
stepRotors [] _ = []
stepRotors [curr] prev =
if topLetter prev `elem` turnovers (rotor prev)

then [stepRotor curr]
else [curr]

stepRotors (curr : rest) prev =
let curr' = if shouldStep then stepRotor curr else curr
in curr' : stepRotors rest curr

where
shouldStep =
topLetter prev `elem` turnovers (rotor prev)

|| topLetter curr `elem` turnovers (rotor curr)

-- Step the entire Enigma config based on the number of
-- rotors in the machine (3 or 4)
step :: EnigmaConfig -> EnigmaConfig
step cfg =
case rotors cfg of

[] -> cfg
[left, ml, mr, right] ->
let newRM = stepRotor right

22

newRots = newRM : stepRotors [mr, ml] right
in cfg {rotors = left : reverse newRots}

[left, mid, right] ->
let newRM = stepRotor right

newRots = newRM : stepRotors [mid, left] right
in cfg {rotors = reverse newRots}

_ -> error "stepping behavior undefined for configs with < 3 or > 4 rotors"

freqs :: (Foldable t, Ord k) => t k -> [Int]
freqs = freqList . countItems
where

countItems :: (Foldable t, Ord k) => t k -> Map k Int
countItems = foldl' (\counts item -> M.insertWith (+) item (1 :: Int) counts) M.empty
freqList :: Map k Int -> [Int]
freqList = M.foldl' (flip (:)) []

ic :: [Int] -> Double
ic freqs = numerator / (s * (s -1))
where

s = fromIntegral $ sum freqs
numerator = fromIntegral $ sum [f * (f -1) | f <- freqs]

Enigma/Static.hs

{-# LANGUAGE NamedFieldPuns #-}

module Enigma.Static where

import Data.Array (Array, accumArray, elems, listArray)
import Data.Char (chr, ord)
import Data.Maybe (fromJust)
import Enigma.Internal (OrientedRotor(..), Rotor(..), Wiring)

-- NOTE: The order of this list is important. Do not modify
canonicalRotors :: [(String, (String, [Char]))]
canonicalRotors =
[("I", ("EKMFLGDQVZNTOWYHXUSPAIBRCJ", "Q")),

("II", ("AJDKSIRUXBLHWTMCQGZNPYFVOE", "E")),
("III", ("BDFHJLCPRTXVZNYEIWGAKMUSQO", "V")),
("IV", ("ESOVPZJAYQUIRHXLNFTGKDCMWB", "J")),
("V", ("VZBRGITYUPSDNHLXAWMJQOFECK", "Z")),
("VI", ("JPGVOUMFYQBENHZRDKASXLICTW", "ZM")),
("VII", ("NZJHGRCXMYSWBOUFAIVLPEKQDT", "ZM")),
("VIII", ("FKQHTLXOCBJSPDZRAMEWNIUYGV", "ZM")),
("id", ("ABCDEFGHIJKLMNOPQRSTUVWXYZ", "")),
("refB", ("YRUHQSLDPXNGOKMIEBFZCWVJAT", "")),
("refC", ("FVPJIAOYEDRZXWGCTKUQSBNMHL", "")),
("beta", ("LEYJVCNIXWPBQMDRTAKZGFUHOS", "")),
("gamma", ("FSOKANUERHMBTIYCWLQPZXVGJD", ""))

]

invertWiring :: Wiring -> Wiring
invertWiring stringWiring =
accumArray (_ a -> a) '-' (0, 25) $ iv [] 0 (elems stringWiring)

23

where
iv :: [(Int, Char)] -> Int -> String -> [(Int, Char)]
iv accum _ [] = accum
iv accum ix (hd : tl) =
iv ((ord hd - ord 'A', chr $ ix + ord 'A') : accum) (ix + 1) tl

-- | Returns of list of the five rotors used in the original
-- M3 Enigma Machine
m3RotorSet :: [Rotor]
m3RotorSet = buildRotorSet "VI"

buildRotorSet :: String -> [Rotor]
buildRotorSet stopAt = map (getRotor . fst) $ takeWhile (\(n, _) -> n /= stopAt)

canonicalRotors↪

-- The pre-calculated reference IC of the Economist corpus
refIC :: Double
refIC = 0.0651437

-- | Get a rotor wiring by name i.e. wiring "I"
getWiring :: String -> Wiring
getWiring name = listArray (0, length w - 1) w
where

w = fst $ fromJust $ lookup name canonicalRotors

getTurnovers :: String -> [Char]
getTurnovers name = snd $ fromJust $ lookup name canonicalRotors

getRotor :: String -> Rotor
getRotor name = Rotor {rotId = name, wiring = w, invWiring = iw, turnovers = getTurnovers

name}↪

where
w = getWiring name
iw = invertWiring w

makeOriented :: String -> Char -> Char -> OrientedRotor
makeOriented name topLetter ringSetting =
OrientedRotor {rotor = getRotor name, topLetter, ringSetting}

Spec.hs

import qualified Data.Set as S
import Enigma
import Enigma.Internal
import EnigmaTestStatic
import Test.Hspec

-- Test helper
stepNTimes :: EnigmaConfig -> Int -> EnigmaConfig
stepNTimes cfg n =
if n == 0 then cfg else stepNTimes (Enigma.Internal.step cfg) (n - 1)

main :: IO ()
main = hspec $ do

24

describe "Enigma.Internal.index" $ do
it "Gets the 0-25 index of a rotor top letter" $ do
Enigma.Internal.index 'A' `shouldBe` (0 :: Int)
Enigma.Internal.index 'Z' `shouldBe` (25 :: Int)

describe "Enigma.Internal.revIndex" $ do
it "Gets the top letter from an index num in 0-25" $ do
Enigma.Internal.revIndex 0 `shouldBe` 'A'
Enigma.Internal.revIndex 25 `shouldBe` 'Z'
Enigma.Internal.revIndex (Enigma.Internal.index 'A') `shouldBe` 'A'

describe "Enigma.Internal.mapRotor" $ do
it "Maps a rotor input to an output for a given wiring" $ do
-- Right to left mappings
Enigma.Internal.mapRotor rotorIDWiring 'A' 0 `shouldBe` 0
-- Identity map should work regardless of rotor position
Enigma.Internal.mapRotor rotorIDWiring 'B' 0 `shouldBe` 0
-- Test input at the last contact
Enigma.Internal.mapRotor rotorIWiring 'A' 25 `shouldBe` 9
-- Output contact - offet is negative and the output pos needs
-- to "roll" over to a high index
-- We have offset = 20, rhContact = 22, lhContact = 1, lh_pos = 7
Enigma.Internal.mapRotor rotorIWiring 'U' 2 `shouldBe` 7
Enigma.Internal.mapRotor rotorIIIWiring 'Z' 1 `shouldBe` 2
Enigma.Internal.mapRotor rotorIWiring 'A' 0 `shouldBe` 4
Enigma.Internal.mapRotor rotorIWiring 'B' 0 `shouldBe` 9

-- Left to right mappings
-- Input at last contact
Enigma.Internal.mapRotor invRotorIWiring 'A' 25 `shouldBe` 9
-- Offset is negative and rolls over to an index at the start of the rotor
Enigma.Internal.mapRotor invRotorIWiring 'U' 12 `shouldBe` 11
-- Rotor top is Z and input is 25 - causing overflow and underflow in
-- the lhContact and rh output calculation
Enigma.Internal.mapRotor invRotorIIWiring 'Z' 25 `shouldBe` 22
Enigma.Internal.mapRotor invRotorIWiring 'A' 0 `shouldBe` 20
Enigma.Internal.mapRotor invRotorIWiring 'F' 10 `shouldBe` 14

describe "Enigma.Internal.mapReflector" $ do
it "Maps reflector inputs to outputs" $ do
Enigma.Internal.mapReflector rotorIDWiring 0 `shouldBe` 0
-- Check that reflector is an involution
Enigma.Internal.mapReflector refBWiring 4 `shouldBe` 16
Enigma.Internal.mapReflector refBWiring 16 `shouldBe` 4

-- Test the last position in the reflector
Enigma.Internal.mapReflector refCWiring 11 `shouldBe` 25

Enigma.Internal.mapReflector refCWiring 25 `shouldBe` 11
Enigma.Internal.mapReflector refBWiring 0 `shouldBe` 24

describe "Enigma.Internal.mapPlug" $ do
it "Maps plugboard IO" $ do
Enigma.Internal.mapPlug plugboardA 'Z' `shouldBe` 'A'
Enigma.Internal.mapPlug plugboardB 'Z' `shouldBe` 'A'

25

-- Plugboard mapping is an involution
Enigma.Internal.mapPlug plugboardA (Enigma.Internal.mapPlug plugboardA 'X')

`shouldBe` 'X'↪

-- Character is missing from plugboard
Enigma.Internal.mapPlug plugboardA 'Q' `shouldBe` 'Q'
-- NB: Will need to change this test if representation of plugboard changes
Enigma.Internal.mapPlug [] 'A' `shouldBe` 'A'

describe "Enigma.Internal.cipherChar" $ do
it "Enciphers a single character" $ do
Enigma.Internal.cipherChar configA 'O' `shouldBe` 'D'
Enigma.Internal.cipherChar configA 'Z' `shouldBe` 'H'
Enigma.Internal.cipherChar configA 'Q' `shouldBe` 'V'
Enigma.Internal.cipherChar configA 'V' `shouldBe` 'Q'
Enigma.Internal.cipherChar configB 'R' `shouldBe` 'V'
Enigma.Internal.cipherChar configB 'J' `shouldBe` 'Q'
-- Check the case where signal passes through the plugboard twice
Enigma.Internal.cipherChar configB 'X' `shouldBe` 'E'

Enigma.Internal.cipherChar idConfig 'A' `shouldBe` 'A'
Enigma.Internal.cipherChar configA 'G' `shouldBe` 'P'

describe "Enigma.topLetters" $ do
it "Extracts top letters from an EnigmaConfig" $ do
Enigma.topLetters configA `shouldBe` "AAA"
Enigma.topLetters configB `shouldBe` "ZQB"
Enigma.topLetters stepCfgA `shouldBe` "KDO"
Enigma.topLetters (stepNTimes stepCfgA 3) `shouldBe` Enigma.topLetters stepCfgA3

describe "Enigma.Internal.stepRotors" $ do
it "Steps a set of rotors" $ do
Enigma.Internal.step stepCfgA `shouldBe` stepCfgA'
stepNTimes stepCfgA 3 `shouldBe` stepCfgA3
head (Enigma.topLetters (stepNTimes stepCfgB 30000)) `shouldBe` head

(Enigma.topLetters stepCfgB)↪

describe "Enigma.Internal.cipher" $ do
it "Enciphers a string" $ do
Enigma.cipher stepCfgA "OCAML" `shouldBe` "VOMUZ"
Enigma.cipher stepCfgA "VOMUZ" `shouldBe` "OCAML"
Enigma.cipher stepCfgA "HASKELL" `shouldBe` "ZLFIHSS"
Enigma.cipher stepCfgA "ZLFIHSS" `shouldBe` "HASKELL"
-- Long test cases verified against the Universal Enigma simulator
-- http://people.physik.hu-berlin.de/~palloks/js/enigma/enigma-u_v25_en.html
let plain =

"OHMAMACANTHISREALLYBETHEENDTOBESTUCKINSIDEOFMOBILEWITHTHEMEMPHISBLUESAGAIN"↪

ctext =
"VGAHGCRJEZXTNQIXVACNAZMPYBZVJNYLIVAEWVNOMGQCZMQVWDCSYWRONWYEYSCCRFNPLEKILF"↪

Enigma.cipher stepCfgA plain `shouldBe` ctext
Enigma.cipher stepCfgA ctext `shouldBe` plain

-- Tests incorporating the plugboard
let plain2 = "COMEYOUMASTERSOFWARYOUTHATBUILDALLTHEGUNSYOUTHATBUILDTHEDEATHPLANES"

ctext2 = "IHDVEWBUWODYNENLOUEZHHKKOLUBYOOKDFOPPKCWFZRANGWMNQAVLNUGISVXVDIMSPC"
Enigma.cipher plugCfgA plain2 `shouldBe` ctext2

26

describe "EnigmaInternal.freqs" $ do
it "Returns a list of the number of times an item appears in a foldable" $ do

S.fromList (Enigma.Internal.freqs "AABC") `shouldBe` S.fromList [2, 1, 1]
Enigma.Internal.freqs "" `shouldBe` []
Enigma.Internal.freqs "AAAAA" `shouldBe` [5]

describe "Enigma.Internal.ic" $ do
it "Calculates the index of coincidence from a list of frequencies" $ do

Enigma.Internal.ic [1, 1] `shouldBe` 0
Enigma.Internal.ic [2, 2] `shouldBe` 1 / 3
Enigma.Internal.ic [2, 2, 2] `shouldBe` 1 / 5
Enigma.Internal.ic (Enigma.Internal.freqs "AABBCC") `shouldBe` 1 / 5

describe "Enigma.Internal.normalize" $ do
it "Normalizes input text to [A..Z]" $ do

Enigma.normalize "" `shouldBe` ""
Enigma.normalize "ABCDE" `shouldBe` "ABCDE"
Enigma.normalize ['a' .. 'z'] `shouldBe` ['A' .. 'Z']
Enigma.normalize "é.~!@#$%^&*()" `shouldBe` ""
Enigma.normalize ['0' .. '9'] `shouldBe` ""
Enigma.normalize "This is a test string." `shouldBe` "THISISATESTSTRING"

EnigmaTestStatic.hs

module EnigmaTestStatic where

import Enigma
import Enigma.Static

rotorIDWiring :: Wiring
rotorIDWiring = getWiring "id"

rotorIWiring :: Wiring
rotorIWiring = getWiring "I"

invRotorIWiring :: Wiring
invRotorIWiring = invertWiring rotorIWiring

rotorIIWiring :: Wiring
rotorIIWiring = getWiring "II"

invRotorIIWiring :: Wiring
invRotorIIWiring = invertWiring rotorIIWiring

rotorIIIWiring :: Wiring
rotorIIIWiring = getWiring "III"

rotorIVWiring :: Wiring
rotorIVWiring = getWiring "IV"

refBWiring :: Wiring
refBWiring = getWiring "refB"

27

refCWiring :: Wiring
refCWiring = getWiring "refC"

plugboardA :: Plugboard
plugboardA = [('A', 'Z'), ('X', 'Y'), ('O', 'E')]

plugboardB :: Plugboard
plugboardB = [('Z', 'A'), ('Y', 'X')]

rotorI :: Rotor
rotorI = getRotor "I"

rotorII :: Rotor
rotorII = getRotor "II"

rotorIII :: Rotor
rotorIII = getRotor "III"

rotorIV :: Rotor
rotorIV = getRotor "IV"

rotorBeta :: Rotor
rotorBeta = getRotor "beta"

idConfig :: EnigmaConfig
idConfig =
EnigmaConfig

{ reflector = rotorIDWiring,
rotors = [],
plugboard = []

}

configA :: EnigmaConfig
configA =
EnigmaConfig

{ reflector = refBWiring,
rotors =

[OrientedRotor {rotor = rotorI, topLetter = 'A', ringSetting = 'A'},
OrientedRotor {rotor = rotorII, topLetter = 'A', ringSetting = 'A'},
OrientedRotor {rotor = rotorIII, topLetter = 'A', ringSetting = 'A'}

],
plugboard = []

}

configB :: EnigmaConfig
configB =
EnigmaConfig

{ reflector = refBWiring,
rotors =

[OrientedRotor {rotor = rotorIII, topLetter = 'Z', ringSetting = 'A'},
OrientedRotor {rotor = rotorII, topLetter = 'Q', ringSetting = 'A'},
OrientedRotor {rotor = rotorI, topLetter = 'B', ringSetting = 'A'}

],
plugboard = plugboardA

}

28

stepCfgA :: EnigmaConfig
stepCfgA =
EnigmaConfig

{ reflector = refBWiring,
rotors =

[OrientedRotor {rotor = rotorIII, topLetter = 'K', ringSetting = 'A'},
OrientedRotor {rotor = rotorII, topLetter = 'D', ringSetting = 'A'},
OrientedRotor {rotor = rotorI, topLetter = 'O', ringSetting = 'A'}

],
plugboard = []

}

stepCfgA' :: EnigmaConfig
stepCfgA' =
EnigmaConfig

{ reflector = refBWiring,
rotors =

[OrientedRotor {rotor = rotorIII, topLetter = 'K', ringSetting = 'A'},
OrientedRotor {rotor = rotorII, topLetter = 'D', ringSetting = 'A'},
OrientedRotor {rotor = rotorI, topLetter = 'P', ringSetting = 'A'}

],
plugboard = []

}

-- CfgA stepped 3 times
stepCfgA3 :: EnigmaConfig
stepCfgA3 =
EnigmaConfig

{ reflector = refBWiring,
rotors =

[OrientedRotor {rotor = rotorIII, topLetter = 'K', ringSetting = 'A'},
OrientedRotor {rotor = rotorII, topLetter = 'E', ringSetting = 'A'},
OrientedRotor {rotor = rotorI, topLetter = 'R', ringSetting = 'A'}

],
plugboard = []

}

stepCfgB :: EnigmaConfig
stepCfgB =
EnigmaConfig

{ reflector = refBWiring,
rotors =

[OrientedRotor {rotor = rotorIV, topLetter = 'I', ringSetting = 'A'},
OrientedRotor {rotor = rotorIII, topLetter = 'K', ringSetting = 'A'},
OrientedRotor {rotor = rotorII, topLetter = 'D', ringSetting = 'A'},
OrientedRotor {rotor = rotorI, topLetter = 'O', ringSetting = 'A'}

],
plugboard = []

}

plugCfgA :: EnigmaConfig
plugCfgA =
EnigmaConfig

{ reflector = refBWiring,

29

rotors =
[OrientedRotor {rotor = rotorIII, topLetter = 'R', ringSetting = 'A'},
OrientedRotor {rotor = rotorII, topLetter = 'F', ringSetting = 'A'},
OrientedRotor {rotor = rotorI, topLetter = 'Z', ringSetting = 'A'}

],
plugboard = plugboardA

}

ringCfgA :: EnigmaConfig
ringCfgA =
EnigmaConfig

{ reflector = refBWiring,
rotors =

[makeOriented "II" 'F' 'D',
makeOriented "I" 'K' 'F',
makeOriented "III" 'L' 'B'

],
plugboard = []

}

collect_stats.py

#!/usr/bin/env python3

import subprocess
import csv

strategies = ["ParBuffer", "Sequential", "RDeepSeq", "RSeq", "RPar", "SixWay",
"Chunks","BufferChunks"]↪

c_filepath = "../corpus/very-small.txt"

def parse_rts_output(rts_out):
exec("global out; out = {}".format(rts_out))
d = dict()
for k, v in out:

d[k] = float(v) if '.' in v else int(v)
return d

def all_decrypts():
all_decrypts = []
for strat in strategies:

for _ in range(5):
if strat == "ParBuffer":

for buff_size_exp in range(2, 15, 2):
buff_size = 2**buff_size_exp
decrypt_param = 'decrypt{} "{} {}"'.format(strat, buff_size,

c_filepath)↪

all_decrypts.append(decrypt_param)
else:

decrypt_param = "decrypt{} {}".format(strat, c_filepath)
all_decrypts.append(decrypt_param)

return all_decrypts

30

def all_out():
all_out = []
for i, decrypt in enumerate(all_decrypts()):

print("Running {}".format(decrypt), i)
cmd = "stack exec -- denigma-exe {} +RTS -N6 -t --machine-readable -l

-ol{}.eventlog".format(decrypt, i)↪

out = subprocess.run(cmd, capture_output=True, text=True, shell=True)
d = parse_rts_output(out.stderr)
d["decrypt"] = decrypt
d["id"] = i
all_out.append(d)

return all_out

if __name__ == "__main__":
all_out = all_out()
with open("decrypt_data.csv", 'w', newline='') as csvfile:

fieldnames = [k for k in all_out[0]]
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for data in all_out:

writer.writerow(data)

avg_stats.py

#!/usr/bin/env python3

import csv
from collections import defaultdict

if __name__ == "__main__":
get all rows
rows = []
with open("../data/decrypt_data.csv", newline='') as csvfile:

reader = csv.DictReader(csvfile)
for row in reader:

rows.append(row)

group by decrypt params
cols = [k for k in rows[0]][:-2]
grouped_rows = defaultdict(list)
for row in rows:

grouped_rows[row["decrypt"]].append(row)

take averages per group
avgs = []
for decrypt, group in grouped_rows.items():

avg = dict()
for c in cols:

s = sum(float(run[c]) for run in group)
avg[c] = s/len(group)

avg["decrypt"] = decrypt
avgs.append(avg)

persist

31

with open('../data/avgs.csv', 'w', newline='') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=[k for k in avgs[0]])
writer.writeheader()
for a in avgs:

writer.writerow(a)

stack.yaml

resolver: lts-16.24

packages:
- .

package.yaml

name: denigma
version: 0.1.0.0
github: "smeshoyrer/pfp-project"
license: BSD3
author: "Evan Mesterhazy & Samuel Meshoyrer"
maintainer: "etm2131@columbia.edu"
copyright: "2020 Evan Mesterhazy & Samuel Meshoyrer"

extra-source-files:
- README.md
- ChangeLog.md

description: Please see the README

dependencies:
- base >= 4.7 && < 5
- hspec
- containers
- array
- optparse-applicative
- parallel
- deepseq
- split

library:
source-dirs: src

executables:
denigma-exe:

main: Main.hs
source-dirs: app
ghc-options:
- -threaded
- -rtsopts
- -with-rtsopts=-N1
- -eventlog

32

- -O2
- -Wall
dependencies:
- denigma

tests:
denigma-test:

main: Spec.hs
source-dirs: test
ghc-options:
- -threaded
- -rtsopts
- -with-rtsopts=-N
dependencies:
- denigma
- hspec

33

