
COMS 4995: Parallel Functional Programming
Parallel Bellman-Ford Algorithm

Zhe Hua – zh2261

December 23, 2020

1 Introduction

Bellman-Ford algorithm solves the single-source shortest-path problem. While Bellman-Ford algorithm
can solve graphs with negative edge weights, Dijkstra’s algorithm cannot. Thus, one important use case of
Bellman-Ford algorithm is negative cycle detection. Sequential Bellman-Ford runs in 𝑂(𝑛𝑚) time where
𝑛 is the number of vertices and 𝑚 is the number of edges in the graph. For sparse graph, the algorithm’s
time complexity is close to that of Dijkstra’s algorithm. However, when the graph is complete, its time
complexity becomes 𝑂(𝑛!). In this project, I parallelize Bellman-Ford algorithm for negative cycle
detection task. I conduct broadly two levels of parallelization, implement 6 different versions of parallel
Bellman-Ford algorithm, and test them on complete graphs with 50, 500, 1000, and 2000 vertices. The
experiments demonstrate that parallelization can attain 1.11x, 5.45x, and 6.19x speedups for complete
graphs with 50, 500, and 1000 vertices. In addition, the results show that while the version with one level
of parallelization (V1) has the best performance for graphs with less than 1000 vertices, for graphs with
more than 1000 vertices, the version with two levels of parallelization using vectors (V3-vector) can be
even faster, attaining 1.1x the performance of V1.

2 Bellman-Ford Algorithm

Bellman-Ford algorithm is a dynamic programming algorithm. It simplifies the single-source shortest-path
problem by breaking it down into subproblems in a recursive manner. Let 𝑠 to be the source vertex, 𝑣 to
be the target vertex, 𝐸 to be the set of all edges, 𝑉 to be the set of all vertices, and 𝑊(𝑢, 𝑣) to be the
weight of the (𝑢, 𝑣) edge. The subproblem is defined as equation (Eq. 1).

𝑂𝑃𝑇(𝑖, 𝑣) ∶= 𝑐𝑜𝑠𝑡	𝑜𝑓	𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡	𝑠 ↝ 𝑣	𝑝𝑎𝑡ℎ	𝑢𝑠𝑖𝑛𝑔	𝑎𝑡	𝑚𝑜𝑠𝑡	𝑖	𝑒𝑑𝑔𝑒𝑠 (Eq. 1)

The overall problem is then defined as equation (Eq. 2).

𝑂𝑃𝑇(𝑖, 𝑣) ∶= ?

0,				if	𝑖 = 0, 𝑣 = 𝑠
∞,				if	𝑖 = 0, 𝑣 ≠ 𝑠

min G𝑂𝑃𝑇(𝑖 − 1, 𝑣), min
":(",&)∈)

[𝑂𝑃𝑇(𝑖 − 1, 𝑢) +𝑊(𝑢, 𝑣)]M ,			if	𝑖 > 0

(Eq. 2)

To find the optimal solution to the overall problem, the algorithm finds the optimal solutions to 𝑛 − 1
subproblems incrementally from 𝑂𝑃𝑇(1, 𝑣) to 𝑂𝑃𝑇(𝑛 − 1, 𝑣) where 𝑛 ∶= |𝑉|. Each of these 𝑛 − 1 steps
to solve the subproblems is commonly called relaxation. To detect negative cycle, the algorithm performs
an additional relaxation, since the longest path without a cycle can have at most |𝑉| − 1 edges. If a
shorter distance is found between the source vertex and any of the target vertex in this additional
relaxation, then a negative cycle exists in the graph. A pseudocode to find a negative cycle using Bellman-
Ford algorithm is presented below.

3 Implementation

3.1 Graph Representation

I use a nested IntMap to represent the complete graph. On the first level, the key type is Int, denoting a
vertex 𝑢, while the value type is an IntMap. On the second level, the key type is Int, denoting a vertex 𝑣,
while the value type is Int, denoting the weight 𝑊(𝑢, 𝑣).

3.2 Random Graph Generation

I build the program generateGraph.hs to write to a text file a complete graph of size 𝑠 in which the largest
negative cycle has length 𝑙, where 𝑠 and 𝑙 are the inputs to the program. In the output text file for the
graph, each line 𝑖 in the text file is a sequence of comma-separated integers where the 𝑗-th integer in the
line is the weight of the edge (𝑖, 𝑗). The program first builds a complete graph with negative weights but
without negative cycle. Then, it randomly generates a list [𝑐*, 𝑐+, … , 𝑐,] of length 𝑙 denoting the cycle and
for all pairs (𝑐- , 𝑐-.*) randomly adds weight 𝑤′ to the original weight of edge (𝑐- , 𝑐-.*) and subtracts 𝑤′
from the original weight of edge (𝑐-.*, 𝑐-).

3.3 Parallel Implementation

I build 6 different versions of parallel Bellman-Ford algorithm to find a negative cycle in a complete
graph. The first version (V1) uses one level of parallelization, while the other 5 versions (V2, V2-list, V2-
vector, V3-list, V3-vector) use two levels of parallelization.

3.3.1 V1

V1 uses only one level of parallelization. It parallelizes the algorithm by splitting the iteration through all
edges in the graph into 𝑛 ≔ |𝑉| chunks. In each chunk, all edges have the same target vertex.

3.3.2 V2, V2-list, V2-vector

The second, third, and fourth versions (V2, V2-list, V2-vector) use two levels of parallelization. The first-
level parallelization is the same as the one in V1. The algorithm is parallelized at an additional level by
using parMap to iterate all the edges in a chunk. V2 does not parallelize the minimum-finding step on line
12; it finds the minimum sequentially. V2-list finds the minimum by diving the list by half at each level of
depth up to a depth of 𝑑 where 𝑑 is an input to the program. Similar to V2-list, V2-vector finds the
minimum by dividing the list at each level of depth; however, unlike V2-list, it uses the data structure
vector which is supposedly faster because splitAt and length operations in Haskell cost 𝑂(1) time for
vector but 𝑂(𝑛) time for list.

3.3.3 V3-list, V3-vector

The fifth and sixth versions (V3-list, V3-vector) use two levels of parallelization. The first-level
parallelization is the same as the one in V1. The algorithm is parallelized at the second level by
parallelizing the minimum-finding step in the algorithm. While V2-list an V2-vector first iterate through
the list to calculate all the new values and then find the minimum of the new values, V3-list and V3-vector
directly start the minimum-finding step and calculate the new values while finding the minimum. This is
likely to be an improvement over V2-list and V2-vector, because it omits an 𝑂(𝑛) iteration (although
parallelizable) over all the vertices to calculate the new values. V3-vector uses vector, while V3-list uses
list.

4 Results

I perform the experiments on a MacBook Pro with 2.3 GHz 8-Core Intel Core i9 processor and 16 GB
2667 MHz DDR4 memory. The sequential version is the V1 algorithm using 1 core.

4.1 50 vertices

 V1 V2 V2-List V2-Vector V3-List V3-Vector

2 cores 0.0248s 0.0258s 0.0327s 0.0293s 0.0272s 0.0255s

4 cores 0.0250s 0.0257s 0.0277s 0.0253s 0.0253s 0.0261s

8 cores 0.0264s 0.0280s 0.0276s 0.0276s 0.0270s 0.0257s

I test the six different versions of parallel Bellman-Ford on 50 complete graphs with 50 vertices and a
negative cycle of length 5 randomly generated by generateGraph.hs. The time shown above is the average
across 50 graphs. The sequential version takes 0.0275s. The best version V1 (2 cores) achieves a 1.11x
speedup. The other versions are slow due to the overhead of creating a second layer of parallelization.

4.2 500 vertices

 V1 V2 V2-List V2-Vector V3-List V3-Vector

2 cores 20.026s 23.080s 25.460s 26.149s 23.687s 21.967s

4 cores 11.096s 12.554s 13.742s 14.097s 12.830s 11.935s

8 cores 6.326s 7.746s 8.650s 9.026s 7.493s 7.063s

I test the six different versions of parallel Bellman-Ford on 20 complete graphs with 500 vertices and a
negative cycle of length 50 randomly generated by generateGraph.hs. The time shown above is the
average across 20 graphs. The sequential version takes 34.487s. The best version V1 (8 cores) achieves a
5.45x speedup. For graph of this size, the overhead of creating a second layer still outweighs the benefit.

4.3 1000 vertices

 V1 V2 V2-List V2-Vector V3-List V3-Vector

2 cores 182.087s 201.616s 222.537s 230.242s 199.271s 183.265s

4 cores 95.238s 108.844s 117.880s 122.676s 107.271s 98.333s

8 cores 54.976s 64.715s 70.613s 81.488s 62.018s 56.704s

I test the six different versions of parallel Bellman-Ford on 10 complete graphs with 1000 vertices and a
negative cycle of length 100 randomly generated by generateGraph.hs. The time shown above is the
average across 10 graphs. The sequential version takes 340.125s. The best version V1 (8 cores) achieves a
6.19x speedup. Versions with second layer of parallelization are catching up with V1 which has only one
layer of parallelization. The performance of V3-vector is on a par with that of V1.

4.4 2000 vertices

 V1 V2 V2-List V2-Vector V3-List V3-Vector

8 cores 580.242s 638.057s 773.990s 711.130s 590.045s 531.204s

I test the six different versions of parallel Bellman-Ford on 5 complete graphs with 2000 vertices and a
negative cycle of length 200 randomly generated by generateGraph.hs. The time shown above is the
average across 5 graphs. The sequential version takes too much time and does not finish. The best version
V3-vector (8 cores) is 1.1x faster than the second-best version V1. When the graph has 2000 vertices, V3-
vector starts to outperform V1.

4.5 Effects of depth

 Depth = 2 Depth = 4 Depth = 6 Depth = 8 Depth = 10

1000 vertices 62.849s 58.786s 54.881s 59.448s 60.205s

2000 vertices 589.686s 558.092s 569.507s 543.906s 618.661s

Depth is an input used for V2-vector, V2-list, V3-list, and V3-vector. I test V3-vector with different values
for depth on 2 complete graphs with 2000 vertices and a negative cycle of length 200 and 2 complete
graphs with 1000 vertices and a negative cycle of length 100 randomly generated by generateGraph.hs.
The time shown above is the average across 2 graphs. For 1000-vertice complete graphs, the optimal
depth is likely to be around 6, while it increases to 8 for 2000-vertice complete graphs. However, the
effects of depth are not considerable, possibly due to the fact that the minimum-finding step occupies only
a small part of the overall algorithm.

5 Code Listing

5.1 bellmanPar.hs

import Data.IntMap.Strict as Map
import Data.Vector as Vector

import Data.List.Split(splitOn)
import Data.List as List
import Control.Parallel
import Control.Parallel.Strategies
import Control.Monad.Par(runPar, spawnP, get)
import System.Exit(die)
import System.Environment(getArgs, getProgName)

getVertices :: IntMap b -> [Key]
getVertices m = Prelude.map (\(i, _) -> i) (Map.toList m)

getVerticesVec :: IntMap b -> Vector Key
getVerticesVec m = Vector.fromList $ getVertices m

getVerticesMap :: IntMap b -> IntMap Key
getVerticesMap m = Map.fromList $ Prelude.map (\(i, _) -> (i,i)) (Map.toList m)

weight :: IntMap (IntMap b) -> Key -> Key -> Maybe b
weight graph i j = do
 rowMap <- Map.lookup i graph
 Map.lookup j rowMap

fromJust :: Num p => Maybe p -> p
fromJust (Just a) = a
fromJust Nothing = 0

myMinList2 :: (Ord a, Num a, Num t, Eq t) =>
 t -> [(Maybe a, b)] -> Maybe (a, b)
myMinList2 depth xs = myMinList2Helper depth (Vector.fromList xs)
 where
 myMinList2Helper d vxs
 | Vector.length vxs == 0 = Nothing
 | Vector.length vxs == 1 && (fst $ Vector.head vxs) == Nothing = Nothing
 | Vector.length vxs == 1 && (fst $ Vector.head vxs) /= Nothing = Just (fromJust (fst $ Vector.head vxs), (snd
$ Vector.head vxs))
 | d == 0 = myMin (myMinList2Helper 0 $ Vector.fromList [Vector.head vxs]) (myMinList2Helper 0 $ Vector.tail vxs)
 | otherwise = par leftMin (myMin leftMin rightMin)
 where
 lxs = Vector.length vxs
 splittedVecs = Vector.splitAt (div lxs 2) vxs
 leftMin = myMinList2Helper ((-) d 1) (fst splittedVecs)
 rightMin = myMinList2Helper ((-) d 1) (snd splittedVecs)

myMinList1 :: (Ord a, Eq t, Num t) =>
 t -> [(Maybe a, b)] -> Maybe (a, b)
myMinList1 _ [] = Nothing
myMinList1 _ [(Nothing, _)] = Nothing
myMinList1 _ [(Just x, i)] = Just (x, i)
myMinList1 0 (x:xs) = myMin (myMinList1 (0 :: Int) [x]) (myMinList1 (0 :: Int) xs)
myMinList1 d xs = leftMin `par` rightMin `pseq` (myMin leftMin rightMin)
 where
 lxs = List.length xs
 leftMin = myMinList1 ((-) d 1) (List.take (div lxs 2) xs)
 rightMin = myMinList1 ((-) d 1) (List.drop (div lxs 2) xs)

myMinList0 :: Ord a => [(Maybe a, b)] -> Maybe (a, b)
myMinList0 [] = Nothing
myMinList0 [(Nothing, _)] = Nothing
myMinList0 [(Just x, i)] = Just (x, i)
myMinList0 (x:xs) = myMin (myMinList0 [x]) (myMinList0 xs)

myMin :: Ord a => Maybe (a, b) -> Maybe (a, b) -> Maybe (a, b)
myMin Nothing Nothing = Nothing
myMin Nothing (Just (x, i)) = Just (x, i)
myMin (Just (x, i)) Nothing = Just (x, i)
myMin (Just (x, i)) (Just (y, j))
 | x <= y = Just (x, i)
 | otherwise = Just (y, j)

bellmanFordParV1 :: IntMap (IntMap Int) -> IntMap Key
bellmanFordParV1 graphMap = Map.mapWithKey getParent (bellmanFordHelper (getVertices graphMap))
 where
 bellmanFordHelper vertices = List.foldl' iterRelaxRound (initDistParentMap 0) [1..((List.length vertices) - 1)]
 where
 initDistParentMap i = Map.insert i (0, i) (Map.fromList [])
 iterRelaxRound dpmap1 _ = runPar $ do
 m <- Map.traverseWithKey (_ v -> spawnP (relaxAll v)) (getVerticesMap graphMap)
 traverse get m
 where
 relaxAll target = fromJust2 (myMin (Map.lookup target dpmap1) (myMinList0 relaxResult))

 where
 relaxResult = (Prelude.map relaxTarget vertices)
 relaxTarget source =
 case (prevDist, edgeWeight) of
 (Nothing, Nothing) -> (Nothing, source)
 (Nothing, Just _) -> (Nothing, source)
 (Just _, Nothing) -> (Nothing, source)
 (Just pd, Just ew) -> (Just ((+) pd ew), source)
 where
 prevDist
 | a == Nothing = Nothing
 | otherwise = Just (fst $ fromJust2 $ a)
 where
 a = Map.lookup source dpmap1
 edgeWeight = weight graphMap source target
 fromJust2 (Just a) = a
 fromJust2 Nothing = (0,0)
 getParent _ (_,i) = i

bellmanFordParV2 :: IntMap (IntMap Int) -> IntMap Key
bellmanFordParV2 graphMap = Map.mapWithKey getParent (bellmanFordHelper (getVertices graphMap))
 where
 bellmanFordHelper vertices = List.foldl' iterRelaxRound (initDistParentMap 0) [1..((List.length vertices) - 1)]
 where
 initDistParentMap i = Map.insert i (0, i) (Map.fromList [])
 iterRelaxRound dpmap1 _ = runPar $ do
 m <- Map.traverseWithKey (_ v -> spawnP (relaxAll v)) (getVerticesMap graphMap)
 traverse get m
 where
 relaxAll target = fromJust2 (myMin (Map.lookup target dpmap1) (myMinList0 relaxResult))
 where
 relaxResult = (parMap rdeepseq relaxTarget vertices) :: [(Maybe Int, Int)]
 relaxTarget source =
 case (prevDist, edgeWeight) of
 (Nothing, Nothing) -> (Nothing, source)
 (Nothing, Just _) -> (Nothing, source)
 (Just _, Nothing) -> (Nothing, source)
 (Just pd, Just ew) -> (Just ((+) pd ew), source)
 where
 prevDist
 | a == Nothing = Nothing
 | otherwise = Just (fst $ fromJust2 $ a)
 where
 a = Map.lookup source dpmap1
 edgeWeight = weight graphMap source target
 fromJust2 (Just a) = a
 fromJust2 Nothing = (0,0)
 getParent _ (_,i) = i

bellmanFordParV3 :: Int -> IntMap (IntMap Int) -> IntMap Key
bellmanFordParV3 depth graphMap = Map.mapWithKey getParent (bellmanFordHelper (getVertices graphMap))
 where
 bellmanFordHelper vertices = List.foldl' iterRelaxRound (initDistParentMap 0) [1..((List.length vertices) - 1)]
 where
 initDistParentMap i = Map.insert i (0, i) (Map.fromList [])
 iterRelaxRound dpmap1 _ = runPar $ do
 m <- Map.traverseWithKey (_ v -> spawnP (relaxAll v)) (getVerticesMap graphMap)
 traverse get m
 where
 relaxAll target = fromJust2 (myMin (Map.lookup target dpmap1) (myMinList1 depth relaxResult))
 where
 relaxResult = (parMap rdeepseq relaxTarget vertices) :: [(Maybe Int, Int)]
 relaxTarget source =
 case (prevDist, edgeWeight) of
 (Nothing, Nothing) -> (Nothing, source)
 (Nothing, Just _) -> (Nothing, source)
 (Just _, Nothing) -> (Nothing, source)
 (Just pd, Just ew) -> (Just ((+) pd ew), source)
 where
 prevDist
 | a == Nothing = Nothing
 | otherwise = Just (fst $ fromJust2 $ a)
 where
 a = Map.lookup source dpmap1
 edgeWeight = weight graphMap source target
 fromJust2 (Just a) = a
 fromJust2 Nothing = (0,0)
 getParent _ (_,i) = i

bellmanFordParV4 :: Int -> IntMap (IntMap Int) -> IntMap Key

bellmanFordParV4 depth graphMap = Map.mapWithKey getParent (bellmanFordHelper (getVertices graphMap))
 where
 bellmanFordHelper vertices = List.foldl' iterRelaxRound (initDistParentMap 0) [1..((List.length vertices) - 1)]
 where
 initDistParentMap i = Map.insert i (0, i) (Map.fromList [])
 iterRelaxRound dpmap1 _ = runPar $ do
 m <- Map.traverseWithKey (_ v -> spawnP (relaxAll v)) (getVerticesMap graphMap)
 traverse get m
 where
 relaxAll target = fromJust2 (myMin (Map.lookup target dpmap1) (myMinList2 depth relaxResult))
 where
 relaxResult = (parMap rdeepseq relaxTarget vertices) :: [(Maybe Int, Int)]
 relaxTarget source =
 case (prevDist, edgeWeight) of
 (Nothing, Nothing) -> (Nothing, source)
 (Nothing, Just _) -> (Nothing, source)
 (Just _, Nothing) -> (Nothing, source)
 (Just pd, Just ew) -> (Just ((+) pd ew), source)
 where
 prevDist
 | a == Nothing = Nothing
 | otherwise = Just (fst $ fromJust2 $ a)
 where
 a = Map.lookup source dpmap1
 edgeWeight = weight graphMap source target
 fromJust2 (Just a) = a
 fromJust2 Nothing = (0,0)
 getParent _ (_,i) = i

bellmanFordParV5 :: Int -> IntMap (IntMap Int) -> IntMap Key
bellmanFordParV5 depth graphMap = Map.mapWithKey getParent (bellmanFordHelper (getVertices graphMap))
 where
 bellmanFordHelper vertices = List.foldl' iterRelaxRound (initDistParentMap 0) [1..((List.length vertices) - 1)]
 where
 initDistParentMap i = Map.insert i (0, i) (Map.fromList [])
 iterRelaxRound dpmap1 _ = runPar $ do
 m <- Map.traverseWithKey (_ v -> spawnP (relaxAll v)) (getVerticesMap graphMap)
 traverse get m
 where
 relaxAll target = fromJust2 (myMin (Map.lookup target dpmap1) (minRelaxResult depth vertices))
 where
 minRelaxResult _ [] = Nothing
 minRelaxResult _ [x] = transformForMyMin $ relaxTarget x
 minRelaxResult 0 (x:xs) = myMin (minRelaxResult 0 [x]) (minRelaxResult 0 xs)
 minRelaxResult d xs = leftMin `par` rightMin `pseq` (myMin leftMin rightMin)
 where
 lxs = List.length xs
 leftMin = minRelaxResult ((-) d 1) (List.take (div lxs 2) xs)
 rightMin = minRelaxResult ((-) d 1) (List.drop (div lxs 2) xs)
 relaxTarget source =
 case (prevDist, edgeWeight) of
 (Nothing, Nothing) -> (Nothing, source)
 (Nothing, Just _) -> (Nothing, source)
 (Just _, Nothing) -> (Nothing, source)
 (Just pd, Just ew) -> (Just ((+) pd ew), source)
 where
 prevDist
 | a == Nothing = Nothing
 | otherwise = Just (fst $ fromJust2 $ a)
 where
 a = Map.lookup source dpmap1
 edgeWeight = weight graphMap source target
 transformForMyMin (Nothing, _) = Nothing
 transformForMyMin (Just x, i) = Just (x, i)
 fromJust2 (Just a) = a
 fromJust2 Nothing = (0,0)
 getParent _ (_,i) = i

bellmanFordParV6 :: Int -> IntMap (IntMap Int) -> IntMap Key
bellmanFordParV6 depth graphMap = Map.mapWithKey getParent $ bellmanFordHelper (getVertices graphMap) (getVerticesVec graphMap)
 where
 bellmanFordHelper vertices verticesVec = List.foldl' iterRelaxRound (initDistParentMap 0) [1..((List.length vertices) -
1)]
 where
 initDistParentMap i = Map.insert i (0, i) (Map.fromList [])
 iterRelaxRound dpmap1 _ = runPar $ do
 m <- Map.traverseWithKey (_ v -> spawnP (relaxAll v)) (getVerticesMap graphMap)
 traverse get m
 where
 relaxAll target = fromJust2 (myMin (Map.lookup target dpmap1) (minRelaxResult depth verticesVec))

 where
 minRelaxResult d vxs
 | Vector.length vxs == 0 = Nothing
 | Vector.length vxs == 1 = transformForMyMin $ relaxTarget $ Vector.head vxs
 | d == 0 = myMin (minRelaxResult 0 $ Vector.fromList [Vector.head vxs]) (minRelaxResult 0
$ Vector.tail vxs)
 | otherwise = leftMin `par` rightMin `pseq` (myMin leftMin rightMin)
 where
 lxs = Vector.length vxs
 splittedVecs = Vector.splitAt (div lxs 2) vxs
 leftMin = minRelaxResult ((-) d 1) (fst splittedVecs)
 rightMin = minRelaxResult ((-) d 1) (snd splittedVecs)
 relaxTarget source =
 case (prevDist, edgeWeight) of
 (Nothing, Nothing) -> (Nothing, source)
 (Nothing, Just _) -> (Nothing, source)
 (Just _, Nothing) -> (Nothing, source)
 (Just pd, Just ew) -> (Just ((+) pd ew), source)
 where
 prevDist
 | a == Nothing = Nothing
 | otherwise = Just (fst $ fromJust2 $ a)
 where
 a = Map.lookup source dpmap1
 edgeWeight = weight graphMap source target
 transformForMyMin (Nothing, _) = Nothing
 transformForMyMin (Just x, i) = Just (x, i)
 fromJust2 (Just a) = a
 fromJust2 Nothing = (0,0)
 getParent _ (_,i) = i

getCycleFromVertex :: IntMap Key -> [Key]
getCycleFromVertex parentMap = 0 : (f parentMap 0 (Map.insert 0 (1 :: Int) (Map.fromList [])))
 where
 f pMap currentVertex visited
 | parent == Nothing = []
 | Map.lookup (fromJust parent) visited /= Nothing = [fromJust parent]
 | otherwise = (fromJust parent) : f pMap (fromJust parent) (Map.insert (fromJust parent) (1 :: Int) visited)
 where
 parent = Map.lookup currentVertex parentMap

pruneCycle :: Eq a => [a] -> [a]
pruneCycle c
 | c == [] = []
 | otherwise = processCycleHelper c (List.last c)
 where
 processCycleHelper cc st
 | List.head cc == st = List.reverse cc
 | otherwise = processCycleHelper (List.tail cc) st

getCycleWeight :: Num p => [Key] -> IntMap (IntMap p) -> p
getCycleWeight c g
 | (List.length c) < 2 = 0
 | otherwise = (+) (fromJust (weight g (List.head c) (List.head tc))) (getCycleWeight tc g)
 where
 tc = List.tail c

getCycle :: Num a =>
 [[a]] -> (IntMap (IntMap a) -> IntMap Key) -> ([Key], a)
getCycle testcase parF = cyc
 where
 cyc = ((\c -> (c, getCycleWeight c graphM)) . pruneCycle . getCycleFromVertex) parentMap
 parentMap = parF graphM
 graphM = arrayToMap testcase
 arrayToMap arr = Map.fromList $ Prelude.map f (List.zip [0..] arr)
 where
 f (i, row) = (i, Map.fromList $ List.zip [0..] row)

main :: IO ()
main = do
 args <- getArgs
 case args of
 [version, d, filename] -> do
 contents <- readFile filename
 let f line = ((Prelude.map (\x -> read x :: Int)) . (splitOn ",")) line
 let testCase = (Prelude.map f (lines contents))
 let depth = read d :: Int
 case version of
 "2" -> do
 print "using v2"

 print (getCycle testCase bellmanFordParV2)
 "3" -> do
 print ("using v3 with depth == " List.++ d)
 print (getCycle testCase (bellmanFordParV3 depth))
 "4" -> do
 print ("using v4 with depth == " List.++ d)
 print (getCycle testCase (bellmanFordParV4 depth))
 "5" -> do
 print ("using v5 with depth == " List.++ d)
 print (getCycle testCase (bellmanFordParV5 depth))
 "6" -> do
 print ("using v6 with depth == " List.++ d)
 print (getCycle testCase (bellmanFordParV6 depth))
 _ -> do
 print "using v1"
 print (getCycle testCase bellmanFordParV1)
 _ -> do
 pn <- getProgName
 die $ "Usage: " List.++ pn List.++ " <version> <filename>"

5.2 generateGraph.hs

import Data.Map as Map
import Data.List as List
import System.Random
import Control.Parallel.Strategies
import System.Exit(die)
import System.Environment(getArgs, getProgName)

generateRandomCycle :: Int -> Int -> IO([Int])
generateRandomCycle sz n = do
 g <- newStdGen
 return (List.take n . nub $ (randomRs (0, sz) g :: [Int]))

generateRandomValues :: Int -> Int -> Int -> IO([Int])
generateRandomValues 0 _ _= return []
generateRandomValues n l h = do
 r <- randomRIO (l, h)
 rs <- generateRandomValues ((-) n 1) l h
 return (r:rs)

getOldWeight :: (Num a, Ord k) => [k] -> Map k (Map k a) -> [a]
getOldWeight c g
 | (length c) < 2 = []
 | otherwise = fromJust (weight g (head c) (head tc)) : getOldWeight tc g
 where
 tc = tail c

setWeightToMap :: (Ord a1, Num a2) =>
 Map a1 (Map a1 a2) -> [a2] -> [a1] -> Map a1 (Map a1 a2)
setWeightToMap g w c
 | (length c) < 2 = g
 | otherwise = setWeightToMap (insertGraph (insertGraph g hc htc hw) htc hc ((-1) * hw)) (tail w) tc
 where
 tc = tail c
 htc = head tc
 hc = head c
 hw = head w

generateNewWeightForNegCycle :: Ord k =>
 [k] -> Map k (Map k Int) -> IO (Map k (Map k Int), Int)
generateNewWeightForNegCycle cyc graphMap = do
 let oldWeight = getOldWeight cyc graphMap
 addWeights <- generateRandomValues ((-) (length cyc) 1) 1 100
 let newWeights = zipWith (+) oldWeight addWeights
 return ((setWeightToMap graphMap newWeights cyc), (List.foldr (+) 0 addWeights))

weight :: (Ord k1, Ord k2) =>
 Map k1 (Map k2 b) -> k1 -> k2 -> Maybe b
weight graph i j = do
 rowMap <- Map.lookup i graph
 Map.lookup j rowMap

insertGraph :: (Ord k1, Ord k2) =>
 Map k1 (Map k2 a) -> k1 -> k2 -> a -> Map k1 (Map k2 a)
insertGraph graph i j w = Map.insert i (Map.insert j w (fromJust2 (Map.lookup i graph))) graph

initGraphMap :: (Num a, Ord k, Enum k, Num k) =>
 k -> Map k (Map k a)

initGraphMap sz = Map.fromList $ Prelude.map f [0..((-) sz 1)]
 where
 f i = (i, Map.fromList $ zip [0..((-) sz 1)] (repeat 0))

fromJust :: Num p => Maybe p -> p
fromJust (Just a) = a
fromJust Nothing = 0

fromJust2 :: Ord k => Maybe (Map k a) -> Map k a
fromJust2 (Just a) = a
fromJust2 Nothing = Map.fromList []

getVertices :: Map b1 b2 -> [b1]
getVertices m = Prelude.map (\(i, _) -> i) (Map.toList m)

fillGraphMap :: (Ord b, Num p, Num b) =>
 Map b (Map b p) -> Map b p -> Map b (Map b p)
fillGraphMap graph initialValueMap = List.foldl' mapRowFunc graph (getVertices graph)
 where
 mapRowFunc graph1 rowI = Map.insert rowI (Map.mapWithKey mapValFunc (fromJust2 (Map.lookup rowI graph))) graph1
 where
 mapValFunc colJ _
 | rowI == colJ = 0
 | rowI == 0 = fromJust (Map.lookup colJ initialValueMap)
 | rowI > colJ = ((*) (-1) (fromJust (weight graph1 colJ rowI)))
 | otherwise = ((-) (fromJust (weight graph1 0 colJ)) (fromJust (weight graph1 0 rowI)))

main :: IO ()
main = do
 args <- getArgs
 case args of
 [s, l, filename] -> do
 let sz = (read s :: Int)
 let negCycleLen = (read l :: Int)
 let emptyMap = initGraphMap sz
 randomValues <- generateRandomValues ((-) sz 1) (-100) 100
 let initialValues = Map.fromList (zip [0..] (0 : randomValues))
 let graphMap = fillGraphMap emptyMap initialValues
 randomCycle <- generateRandomCycle sz negCycleLen
 (finalNegGraphMap, extraWeight) <- generateNewWeightForNegCycle randomCycle graphMap
 let f gMap = (\(_, rowMap) -> (intercalate "," . Prelude.map show) (Prelude.map (\(_, x) -> x) (Map.toList rowMap)))
gMap
 writeFile (filename ++ "-graph.txt") $ intercalate "\n" ((parMap rdeepseq f (Map.toList finalNegGraphMap)) ::
[[Char]])
 writeFile (filename ++ "-cycle.txt") $ intercalate "," $ Prelude.map show randomCycle
 writeFile (filename ++ "-weight.txt") $ show extraWeight
 _ -> do
 pn <- getProgName
 die $ "Usage: " ++ pn ++ " <size> <negCycleLen> <filename>"

