
COMS 4995 Parallel Functional
Programming

Project Proposal-Word AutoComplete

Shengkai Li (sl4685), Wenqian Yan (wy2249)

 November 23, 2020

1 Introduction

Word AutoComplete, or Word AutoSuggestion is a feature in which an application predicts the
rest of a word a user is typing [1]. It is most commonly used in search engines, like Google, to
suggest queries when users begin typing the first few letters of their search string.

These auto-suggestions should be as responsive as possible: they need to show up on the
screen before users finish typing, otherwise the suggestion becomes pointless and useless.
Hence, the speed of Word AutoSuggestion is crucial, which brought us to this project: speeding
up word auto-suggestion with parallelism in Haskell.

We divided our work into three main steps: Word Cleanup, Word/N-Grams Count, and
Word/N-Grams AutoSuggestion. At each step, we compare the performance of sequential
implementation and parallel implementation to see how much we could speed up. Also, we
analyze further on garbage collection and number of chunks running in parallel to optimize our
parallel implementation. In summary, the performance of parallel implementation has been
significantly improved, which is ​300 times​ faster than pure serial implementation.

2 Word Cleanup
Given a large enough text file as the dictionary of suggestion, we want to clean it up by
discarding all non-alphabetic characters aside from whitespace and treating what's left as
lowercase, and finally producing a list of cleaned words. The fully sequential implementation of
word cleanup is shown below.

2.1 Sequential Word Cleanup
1. Map all characters to lowercase
2. Filter out words that are non-alphabetic

wordFilter​ :: [[​Char​]] -> [[​Char​]]
wordFilter lines = map ((map toLower) . filter (\x -> isAlpha x || isSpace x)) lines

As shown in Figure 1, all the work of Word Cleanup was done on a single processor. The total
runtime was 51.04s while 6.5% of that time was spent on garbage collection. This
implementations’ result should be the baseline for the parallel implementations to speed up.

Figure 1: Timeline of Word Cleanup on a single processor

2.2 parList​ Parallel Word Cleanup

wordFilter​ :: [[​Char​]] -> [[​Char​]]

wordFilter lines = map ((map toLower) . filter (\x -> isAlpha x || isSpace x)) lines

`using` parList rdeepseq

This is the first attempt at parallel implementing Word cleanup. Since the Word Cleanup is
supposed to deal with phenomenally large datasets, this attempt tries to simultaneously clean
up each line of that datasets. We run our implementations on a Unbuntu virtual machine with 1,
2, 4, 8 processor.

 Table 1: ​parList​ Parallel Performance
As shown in Table1, the parList parallel implementation does not speed up Word Cleanup at all
but even result in worse performance. This is because it spent most of the time on garbage
collection, about 50% of total run time, and “​parList​ ​Strategy forces the whole spine of the list,
preventing the program from streaming in constant space[2]”.

2.3 parBuffer​ Parallel Word Cleanup
wordFilter​ :: [[​Char​]] -> [[​Char​]]

wordFilter lines = map ((map toLower) . filter (\x -> isAlpha x || isSpace x)) lines

`using` parBuffer ​4​ rdeepseq

The parBuffer Parallel implementation is the second and real implementation. Since we don’t
want to force our program to load the entire file (because of memory consumption) and
generate all the sparks at the beginning (because of spark pool overflow), the ​parBuffer ​strategy
is the best choice even though we have to specify a particular value of buffer size[3].

As shown in Table2 and Figure 2, we successfully speedup our Word Cleanup and four
processors have balance work.

 Table 2: ​parBuffer​ Parallel Performance

Cores Time(s) Speedup

1
2
4
8

160.99
116.44
82.42
86.55

0.37
0.43
0.61
0.589

Cores Time(s) Speedup

1
2
4
8

57.53
43.35
37.48
41.85

0.887
1.117
1.541
1.068

Figure 2: Timeline of events for parBuffer implementation
using four cores

3 Word Count

Given the large cleaned words list, we want to generate (word, frequency) pairs to help us
provide top N word suggestions based on frequency in the future.
An example of ​“Word Count​” result: [(“haskell”, 4995), (“plt”, 4115)]

3.1 Sequential word count

1. Iterate through the word list to map each word to (word, 1)
2. Merge entries with the same word to (word, frequency) list

We tested our wordMapper sequential implementation on a 40MB text file to generate word
count (word, frequency) pair list.

wordMapper :: [String] -> [(String, Int)]
wordMapper w = map (\x -> (x, ​1​)) w

wordReducer :: (Ord k, Num a) => [(k, a)] -> [(k, a)]
wordReducer l = M.toList $ M.fromListWith (+) l

$​ ./sequential ../../test/test.txt +RTS -N1 -s -ls

 SPARKS: 0 (0 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

 INIT time 0.001s (0.001s elapsed)

 MUT time 8.177s (8.727s elapsed)
 GC time 1.118s (1.132s elapsed)
 EXIT time 0.001s (0.001s elapsed)

 Total time 9.297s (9.861s elapsed)

The total runtime to run wordMapper is 9.861s on a single processor. It’s not terrible with 11.5%
of time spent on GC but there's still space to accelerate it. The complete sequential
implementation on this 40MB text file is 22.681s and it takes wordReducer 12.304s running on a
single processor, which is the benchmark for our parallelled wordReducer.

3.2 mapper in parallel

3.2.1 Speed up wordMapper with parList rdeepseq

wordMapper​, in the sequential implementation above, maps each word w in the list to (w,1) for
future accumulation in reducer. The first intuition for speeding up word count is to run this map
job parallelly for each list element. With this idea, we implemented a parallel function called
`parWordMapper​` by giving wordMapper, the map function in serial, a parallel strategy:
parMap rdeepseq​.

parMap rdeepseq​ is to evaluate each list element in parallel with strategy fully evaluating then
proceeding. With this strategy, we are able to generate (w,1) pairs parallely on each list element
rather than slowly walking through the whole file one by one.

Here is the output to run our sequential and parallel implementations on a Ubuntu virtual
machine with 1, 2, 4, 6 processors over 9.861s by sequential wordMapper.

 Alloc rate 3,160,261,895 bytes per MUT second

 Productivity 88.0% of total user, 88.5% of total elapsed

reduce takes12.304750443 seconds.

 TASKS: 4 (1 bound, 3 peak workers (3 total), using -N1)
 SPARKS: 0 (0 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

 INIT time 0.001s (0.001s elapsed)
 MUT time 12.589s (12.748s elapsed)
 GC time 9.200s (9.927s elapsed)

 EXIT time 0.000s (0.005s elapsed)
 Total time 21.790s (22.681s elapsed)
 Alloc rate 1,286,410,934 bytes per MUT second

 Productivity 57.8% of total user, 56.2% of total elapsed

wordMapper :: [String] -> [(String, Int)]
wordMapper w = map (\x -> (x, ​1​)) w

parWordMapper :: [String] -> [(String, Int)]
parWordMapper w = wordMapper w `using` parList rdeepseq

Table 3 Performance of parWordMapper with ​parMap rdeepseq
 As table 3 shows, ​parMap rdeepseq ​does not speed up Word Count and all the tests take
longer than 9.861s by sequential wordMapper. Thus, it is not the proper strategy for
wordMapper.

3.2.2 Speed up wordMapper with parBuffer rdeepseq

Same with ​WordCleanup​, parBuffer allows us not to load the entire list in, which creates
overheads, and behaves like a circular buffer with a constant buffer size, consuming input and
moving to the next. It’s useful here as it does not need to know the entire list and just step over
each element to map word to (word,1) tuple.

To find the proper buffer size for parBuffer, we ran tests with -N2 on test file (40MB), and the
results in Table 4 compares them with 9.861s by sequential wordMapper and shows that it’s the
most optimal when `parBuffer 4 rdeepseq`.

Table 4 ​parBuffer rdeepseq​ with different buffer size (+RTS -N2 -s -ls)

With the optimal buffer size 4 found, we continue to test the performance with machines with 1,
2, 4, 6 processors and their speed up to see which N is the most optimal one.

N R1 R2 R3 Average

1
2
4
6

10.751s
12.861s
14.232s
15.794s

10.721s
13.171s
15.172s
16.613s

10.841s
13.611s
14.992s
16.422s

10.771s
13.214s
14.799s
16.276s

bufferSize :: Int
bufferSize = 4

wordMapper :: [String] -> [(String, Int)]
wordMapper w = map (\x -> (x, ​1​)) w

parWordMapper :: [String] -> [(String, Int)]
parWordMapper w = wordMapper w `using` parBuffer bufferSize rdeepseq

BufferSize Run time Speed up

1
2
4
6
8
10

14.702s
10.822s
6.642s
6.882s
6.891s
6.942s

0.671
0.911
1.484
1.432
1.430
1.332

Table 5 Performance of parWordMapper with ​parBuffer rdeepseq
As table5 shows, ​parBuffer rdeepseq ​can at most speed up Word Count by twice when N=1,
compared with 9.861s by the sequential implementation.

3.3 reducer in parallel

3.3.1 Speed up wordReducer with parList rdeepseq

wordReducer​, in the sequential implementation, adds all (w,1) together for the same word w to
get the final frequency count for each word w. The intuition for speeding up this part is to run
this map job parallelly for each list element. So we implemented a parallel function called
`parWordReducer​` by giving wordReducer the parallel strategy: parList rdeepseq. To make it
more efficient, we used ​chunksOf​ to split the large list into several chunks, each of size equals
chunkSize, and then map wordReducer on each chunk to run parallely, and at last it concat
results of all the chunks as output.

To find the proper chunk size to split the list, we ran tests with -N2 on test file (40MB), and the
results in Table 6 compares them with 12.304s by sequential wordReducer and shows that the
most optimal acceleration is 1.436 times faster when chunkSize=100.

N R1 R2 R3 Average Avg Speed up

1
2
4
6

5.042s
6.642s
6.912s
7.894s

5.381s
6.712s
7.323s
7.813s

5.001s
7.022s
7.753s
7.714s

5.141s
6.882s
7.329s
7.807s

1.909
1.426
1.339
1.263

import Data.List.Split(chunksOf)

chunkSize :: Int

chunkSize = 100

wordReducer :: (Ord k, Num a) => [(k, a)] -> [(k, a)]

wordReducer l = M.toList $ M.fromListWith (+) l

parWordReducer :: (Ord k, Num a, NFData k, NFData a) => [(k, a)] -> [(k, a)]

parWordReducer l = wordReducer $ concat ((map wordReducer l') `using` parList rdeepseq)

 where l' = chunksOf chunkSize l

ChunkSize Run time Speed up

20
50
100
500
1000

9.280s
9.565s
8.571s
9.097s
10.868s

1.325
1.286
1.436
1.352
1.132

Table 4 ​parList rdeepseq​ with different chunk size (+RTS -N2 -s -ls)

4 N-Grams Count

Given the large cleaned list, we want to generate (n-grams, frequency) pairs to provide top N
phrase suggestions based on frequency in the dictionary.
An example of ‘​3-grams Count​’ result:
[(“haskell is great”, 10), (“best programming language”, 4995)]

4.1 Sequential n-grams count

mapper​ :: ​Int​ -> [​String​] -> [(​String​, ​Int​)]

mapper n str

 | n <= length str = (unwords ngram, ​1​::​Int​) : mapper n str'

 | otherwise = ​[]

 ​where​ ngram = take n str

 str' = drop (​1​::​Int​) str

reducer​ :: (​Ord​ ​k​, ​Num​ ​a​) => [(​k​, ​a​)] -> [(​k​, ​a​)]

reducer l = toList $ fromListWith (\num1 num2 -> num1 + num2) l

Sequential Implementation:

1. Break into a list of cleaned n-grams
2. Iterate through the word list to map each word to (ngram, 1)
3. Merge entries with the same word to (word, frequency) list

Because of our fully serial implementation, generating pairs of n-grams and frequency is
significantly time/space consuming. Therefore, we switched to a smaller test dataset.

We tested our sequential implementation on a 1MB text file to generate two-grams.. As shown
in Figure 3, the total runtime is 93.985s, with 0.24s on garbage collection, on a single
processor.

Figure 3: Timeline of events for sequential n-grams count
To accelerate the N-grams Count, we will focus on parallel implementation of both ​mapper​ and
reducer.

4.1 reducer in parallel

par_reducer​ :: (​Ord​ ​k​, ​Num​ ​a​, ​NFData​ ​k​, ​NFData​ ​a​) => [(​k​, ​a​)] -> [(​k​, ​a​)]

par_reducer l = reducer $ concat

 ((map reducer l') `using` parList rdeepseq)

 ​where​ l' = chunksOf ​9​ l

Based on our implementation of reducer, we implemented a function called `par_reducer` to
help us run ​reducer​ in parallel. To achieve parallelism, ​par_reducer​ splits the input into several
chunks, simultaneously calls ​reducers​ on each chunk, and then computes the final result of
each chunk.

The core of ​par_reducer​ is to find out exactly how many chunks we should split. We did some
experiments to explore the answer.

Table 5: Running on a 4-cores machine

Chunks Runtime Garbage Collection

2
4
9
32
100

73.429
75.121
69.192
81.334
88.040

42
47
42
62
34

The result in Table 3 is what we have expected. Generating too many sub-chunks makes our
performance worse. This is because our ​par_reducer​ is not pure parallel. In the last step of
par_reducer,​ it needs to call​ reducer ​to sum up all the results from sub-chunks, which is
sequential work. The more sub chunks means the more sequential jobs the ​par_reducer​ needs
to finish.

As a result, by running only the reducer in parallel, the best performance we could get is
69.120s. Compared with pure sequential implementation, we have successfully accelerated ​25
seconds.

4.2 mapper in parallel

par_mapper​ :: ​Int​ -> [[​String​]] -> [(​String​, ​Int​)]

par_mapper n l = concat (map (mapper n) l) `using` parList rdeepseq

Mapper​ in the sequential implementation did most of the duty work. To accelerate the n-grams
count, it is crucial to run mapper in a good parallel mode. Based on our implementation of
mapper, we implemented a parallel function called `par_mapper`. Instead of generating n-grams
by keeping iterating the whole file, `par_mapper` simultaneously calls `mapper` on each line and
then uses concat to group together the final result

4.2.1 par_mapper’s drawback

First, we have to point out that there is potential drawback in par_mapper: It may miss some n
grams. Consider the following example:

Input: “Hello world\nHaskell No”
Under The two-grams mode:
The expect output should be: (Hello world, 1), (word Haskell, 1), (Haskell No, 1)
The actually output will be: (Hello world, 1), (Haskell NO, 1)

This is because the nature of ​par_mappe​r is to focus only on line and the connection words
between two sentences will be discarded.

4.2.2 par_mapper evaluation

However, this potential drawback won’t influence our functionality of Word AutoComplete. First,
as long as the dataset is large enough, we can still give back the accurate suggestion. Second,
par_mapper​ ​significantly​ improved the performance of n-grams count.

We run our implementations on a Unbuntu virtual machine with 1, 2, 4, 8 processor.

 Table 6

Combined ​par_reducer​ and ​par_mapper​ together (though par_mapper did most of the work),
our parallel implementation is almost ​220​ times faster than pure sequential implementation. As
shown Figure 4, all four processors work balanced between [0s, 0.25s]. And, as expected,
between[0.25, 0.43], we need one single processor to sequentially generate the final result.

 Figure 4: Timeline of events for parallel n-grams count

5 N-Grams/Word AutoComplete

This is the last step. Based on the result from Clean up and Word/N-Grams Count, we move
further to implement our own version of ​Word/N-Grams AutoComplete​. It accepts a word from
the user's input and returns some `suggestion` to the user.

Cores Time(s) Speedup

1
2
4
8

0.599
0.426
0.428
0.463

155
218
217
200

5.1 Sequential Implementation

● Filter along (word, frequency) list for words with matched prefix.
● Sort the filtered list by frequency.
● Find top N suggestions by taking head N of the list after filtering and sorting.

5.2 Parallel Implementation

We parallelized step1 to speed up searching lists. Similar to our parallel implementation of
N-grams Count, we implemented a function called `par_ngram_filer` to help us run ​filters ​in
parallel. To achieve parallelism, ​par_suggestion_filer ​splits the input into 9 chunks,
simultaneously calls ​filters​ on each chunk, and then computes the final result of each chunk.

5.3 Evaluation

We tested Parallel/Sequential implementation with a different size of test text file, on 4 core
machine.

Table 7 Performance analysis of suggestion on Parallel/Sequential implementation (-N4)

As shown in Table 7, as the test file size becomes larger, the performance difference between
Sequential and Parallel implementations becomes more clear.

ngram_filer :: Eq a => [a] -> [([a], b)] -> [([a], b)]
ngram_filer str l = filter (\(x,_)->str `isPrefixOf` x) l

ngram_sort :: [(a, Int)] -> [(a, Int)]
ngram_sort = sortBy (\(_,x) (_, y) -> compare x (y::Int))

par_suggestion_filer :: (Eq a, NFData a, NFData b) => [a] -> [([a], b)] -> [([a], b)]
par_suggestion_filer str l = suggestion_filer str $ concat
 ((map (suggestion_filer str) l') `using` parList rdeepseq)
 where l' = chunksOf 9 l

File Size (mb) Sequential(s) Parallel(s) Speed Up

1
16
32
80

1.02
14.23
29.46
74.09

0.92
12.44
24.98
63.15

1.11
1.15
1.18
1.173

6 Summary

Combining all the steps together, we can compare the total performance of word-auto
completion by the factors of file size and cores running on. Below are two tables running one
complete round on word completion and ngram completion without loop. (We only recorded the
time for running sequential implementation on 1 MB file because it takes forever for larger files,
while running parallel can reduce the time within one minute.)

Table 7 Performance analysis of one round word-auto completion program

Table 8 Performance analysis of one round ngram completion program

From the results, we can conclude that our parallel implementation is much more efficient both
than the sequential one. We observed that for word-auto completion, the performance is best
when N=1, and for ngram-autocomplete, the performance is best when N=3. This result is
reasonable as the simple sequential implementation of word-auto completion does not take
much time, while ngram is very time consuming to need more cores to get enough
parallelization.
Also, from the table below, if there are too many cores running on, it may create too many
unused or fizzled sparks and get wasted, while if the core is too few, it does not get enough
parallelization which is also inefficient.

Table 9 spark stats for parallelization on 16MB test file

File Size
(mb)

Sequential -N1 -N2 -N3 -N4 max speed
up

1
16
32

1.011s
21.351s
43.371s

1.140s
14.911s
30.033s

1.311s
19.442s
42.255s

2.011s
20.232s
43.165s

2.131s
20.553s
22.007s

-
1.432
1.444

File Size
(mb)

Sequential -N1 -N2 -N3 -N4 max speed
up

1
16
32

864.311s

3.061s
61.821s
69.831s

2.771s
48.611s
63.682s

2.891s
31.512s
63.622s

2.952s
33.432s
64.644s

311.9

N converted overflowed GC'd fizzled

1
2
3
4

0
2848956
2937228
2998431

3278375
285891
292498
180452

878
128916
25268
80260

16388
31878
40647
36498

A Code Listing

main.hs

WordClean.hs

import​ NgramCount (parNgramMapper, parNgramReducer)
import​ WordCount (parWordMapper, parWordReducer)
import​ WordClean (wordClean)
import​ Suggestion_Parallel (par_suggestion_filer, suggestion_sort, suggestion_filer)
import​ System.Environment (getArgs)
import​ Control.Parallel (pseq)

enterLoop :: [([Char], Int)] -> IO b
enterLoop output = do
 putStrLn ""
 putStrLn "Please enter prefix of word(s):"
 str <- getLine
 putStrLn "Enter the number of top suggestions you want:"
 k <- getLine
 putStrLn "Here are the suggestions:"
 let results = take (read k::Int) $ suggestion_sort $ par_suggestion_filer str output
 mapM_ (\(a,_) -> putStrLn a) results
 enterLoop output

processMapReduce :: Int -> String -> [(String, Int)]
processMapReduce n content
 | n==1 = parWordReducer $ parWordMapper $ words $ unwords $ lines content
 | otherwise = parNgramReducer $ parNgramMapper n $ map words $ lines content

main :: IO ()
main = do
 [filename] <- getArgs
 putStrLn "Enter the number of words you want suggestion for (1 for a single word):"
 n <- getLine
 putStrLn "Loading Dictionary ..."
 content <- wordClean filename
 let output = processMapReduce (read n::Int) content
 writeFile "output.txt" (show output)
 putStrLn "Done loading!"
 enterLoop output
 --print $ head $ suggestion_sort $ par_suggestion_filer str output
 --print $ head $ suggestion_sort $ suggestion_filer str output

module WordClean
(
 wordFilter,

WordCount.hs

NgramCount.hs

 wordClean
) where

import​ Data.Char (isSpace, isAlpha, toLower)
import​ System.IO (openFile, hGetContents, IOMode(ReadMode))
import​ Control.Parallel.Strategies (parBuffer, rdeepseq, using)

wordFilter :: [[Char]] -> [[Char]]
wordFilter lines = map ((map toLower) . filter (\x -> isAlpha x || isSpace x)) lines `using` parBuffer
4 rdeepseq

wordClean :: FilePath -> IO String
wordClean input = do

 handle <- openFile input ReadMode
 contents <- fmap lines $ hGetContents handle

 let output = wordFilter contents
 return $ unlines output
 --writeFile "cleanOutput.txt" (unlines output)

module WordCount where

import​ WordClean(wordClean)
import​ qualified Data.Map ​as​ M
import​ Data.List.Split(chunksOf)
import​ Control.Parallel (pseq)
import​ Control.Parallel.Strategies
 (parList, rdeepseq, using, NFData)

chunkSize :: Int

chunkSize = ​20

wordMapper :: [String] -> [(String, Int)]

wordMapper w = map (\x -> (x, ​1​)) w

parWordMapper :: [String] -> [(String, Int)]

parWordMapper w = concat ((map wordMapper w') `using` parList rdeepseq)

 where w' = chunksOf chunkSize w

wordReducer :: (Ord k, Num a) => [(k, a)] -> [(k, a)]

wordReducer l = M.toList $ M.fromListWith (+) l

parWordReducer :: (Ord k, Num a, NFData k, NFData a) => [(k, a)] -> [(k, a)]

parWordReducer l = wordReducer l `using` parList rdeepseq

module NgramCount where

import​ Data.Map (fromListWith, toList)
--​import​ System.Environment(getArgs)
--​import​ WordClean(wordClean)

https://github.com/wy2249/word-autocompletion/blob/main/Parallel/WordCount.hs
https://github.com/wy2249/word-autocompletion/blob/main/Parallel/NgramCount.hs

Suggestion.hs

import​ Data.List.Split (chunksOf)
import​ Control.Parallel.Strategies
 (parList, rdeepseq, using, NFData)

ngramMapper :: Int -> [String] -> [(String, Int)]

ngramMapper n str

 | n <= length str = (unwords ngram, 1::Int) : ngramMapper n str'

 | otherwise = []

 where ngram = take n str

 str' = drop (1::Int) str

parNgramMapper :: Int -> [[String]] -> [(String, Int)]

parNgramMapper n l = concat (map (ngramMapper n) l) `using` parList rdeepseq

ngramReducer :: (Ord k, Num a) => [(k, a)] -> [(k, a)]

ngramReducer l = toList $ fromListWith (\num1 num2 -> num1 + num2) l

parNgramReducer :: (Ord k, Num a, NFData k, NFData a) => [(k, a)] -> [(k, a)]

parNgramReducer l = ngramReducer $ concat

 ((map ngramReducer l') `using` parList rdeepseq)

 where l' = chunksOf 9 l

module Suggestion_Parallel where

import​ Data.List (isPrefixOf, sortBy)
import​ Data.List.Split (chunksOf)
import​ Control.Parallel.Strategies
 (parList, rdeepseq, using, NFData)

suggestion_filer :: Eq a => [a] -> [([a], b)] -> [([a], b)]

suggestion_filer str l = filter (\(x,_)->str `isPrefixOf` x) l

par_suggestion_filer :: (Eq a, NFData a, NFData b) => [a] -> [([a], b)] -> [([a], b)]

par_suggestion_filer str l = suggestion_filer str $ concat

 ((map (suggestion_filer str) l') `using` parList rdeepseq)

 where l' = chunksOf 9 l

suggestion_sort :: [(a, Int)] -> [(a, Int)]

suggestion_sort = sortBy (\(_,x) (_, y) -> compare y (x::Int))

https://github.com/wy2249/word-autocompletion/blob/main/Parallel/Suggestion_Parallel.hs

