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1 Introduction 

Word AutoComplete, or Word AutoSuggestion is a feature in which an application predicts the 
rest of a word a user is typing [1]. It is most commonly used in search engines, like Google, to 
suggest queries when users begin typing the first few letters of their search string.  
 
These auto-suggestions should be as responsive as possible: they need to show up on the 
screen before users finish typing, otherwise the suggestion becomes pointless and useless. 
Hence, the speed of Word AutoSuggestion is crucial, which brought us to this project: speeding 
up word auto-suggestion with parallelism in Haskell. 
 
We divided our work into three main steps: Word Cleanup, Word/N-Grams Count, and 
Word/N-Grams AutoSuggestion. At each step, we compare the performance of sequential 
implementation and parallel implementation to see how much we could speed up. Also, we 
analyze further on garbage collection and number of chunks running in parallel to optimize our 
parallel implementation. In summary, the performance of parallel implementation has been 
significantly improved, which is ​300 times​ faster than pure serial implementation. 

2 Word Cleanup 
Given a large enough text file as the dictionary of suggestion, we want to clean it up by 
discarding all non-alphabetic characters aside from whitespace and treating what's left as 
lowercase, and finally producing a list of cleaned words. The fully sequential implementation of 
word cleanup is shown below. 



2.1 Sequential Word Cleanup 
1. Map all characters to lowercase 
2. Filter out words that are non-alphabetic 

 
 

 
 
wordFilter​ :: [[​Char​]] -> [[​Char​]] 
wordFilter lines =  map ((map toLower) . filter (\x -> isAlpha x || isSpace x)) lines 

 
As shown in Figure 1, all the work of Word Cleanup was done on a single processor. The total 
runtime was 51.04s while 6.5% of that time was spent on garbage collection. This 
implementations’ result should be the baseline for the parallel implementations to speed up. 
 

 
Figure 1: Timeline of Word Cleanup on a single processor 

 

2.2 parList​ Parallel Word Cleanup 
 
wordFilter​ :: [[​Char​]] -> [[​Char​]] 

wordFilter lines =  map ((map toLower) . filter (\x -> isAlpha x || isSpace x)) lines 

`using` parList rdeepseq 

 
This is the first attempt at parallel implementing Word cleanup. Since the Word Cleanup is 
supposed to deal with phenomenally large datasets, this attempt tries to simultaneously clean 
up each line of that datasets. We run our implementations on a Unbuntu virtual machine with 1, 
2, 4, 8 processor. 
 



                                        Table 1: ​parList​ Parallel Performance 
As shown in Table1, the parList parallel implementation does not speed up Word Cleanup at all 
but even result in worse performance. This is because it spent most of the time on garbage 
collection, about 50% of total run time, and “​parList​ ​Strategy forces the whole spine of the list, 
preventing the program from streaming in constant space[2]”.  
 

2.3 parBuffer​ Parallel Word Cleanup 
wordFilter​ :: [[​Char​]] -> [[​Char​]] 

wordFilter lines =  map ((map toLower) . filter (\x -> isAlpha x || isSpace x)) lines 

`using` parBuffer ​4​ rdeepseq 

 
 
The parBuffer Parallel implementation is the second and real implementation. Since we don’t 
want to force our program to load the entire file (because of memory consumption) and 
generate all the sparks at the beginning (because of spark pool overflow), the ​parBuffer ​strategy 
is the best choice even though we have to specify a particular value of buffer size[3]. 

 
As shown in Table2 and Figure 2, we successfully speedup our Word Cleanup and four 
processors have balance work. 
 

                                        Table 2: ​parBuffer​ Parallel Performance 

Cores Time(s) Speedup 

1 
2 
4 
8 

160.99 
116.44 
82.42 
86.55 

0.37 
0.43 
0.61 
0.589 

Cores Time(s) Speedup 

1 
2 
4 
8 

57.53 
43.35 
37.48 
41.85 

0.887 
1.117 
1.541 
1.068 



Figure 2: Timeline of events for parBuffer implementation  
using four cores 

 

3 Word Count 
 
Given the large cleaned words list, we want to generate (word, frequency) pairs to help us 
provide top N word suggestions based on frequency in the future.  
An example of ​“Word Count​” result: [(“haskell”, 4995), (“plt”, 4115)] 
 
3.1 Sequential word count 
 

1. Iterate through the word list to map each word to (word, 1)  
2. Merge entries with the same word to (word, frequency) list 

 

 
We tested our wordMapper sequential implementation on a 40MB text file to generate word 
count (word, frequency) pair list.  

wordMapper :: [String] -> [(String, Int)] 
wordMapper w = map (\x -> (x, ​1​)) w 
 
wordReducer :: (Ord k, Num a) => [(k, a)] -> [(k, a)] 
wordReducer l =  M.toList $ M.fromListWith (+) l 

$​ ./sequential ../../test/test.txt +RTS -N1  -s -ls  

 

  SPARKS: 0 (0 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled) 
 
  INIT    time    0.001s  (  0.001s elapsed) 

  MUT     time    8.177s  (  8.727s elapsed) 
  GC      time    1.118s  (  1.132s elapsed) 
  EXIT    time    0.001s  (  0.001s elapsed) 

  Total   time    9.297s  (  9.861s elapsed) 



 
The total runtime to run wordMapper is 9.861s on a single processor. It’s not terrible with 11.5% 
of time spent on GC but there's still space to accelerate it. The complete sequential 
implementation on this 40MB text file is 22.681s and it takes wordReducer 12.304s running on a 
single processor, which is the benchmark for our parallelled wordReducer. 
 

 
 
3.2 mapper in parallel 
 
3.2.1 Speed up wordMapper with parList rdeepseq 
 
wordMapper​, in the sequential implementation above, maps each word w in the list to (w,1) for 
future accumulation in reducer. The first intuition for speeding up word count is to run this map 
job parallelly for each list element.  With this idea, we implemented a parallel function called 
`parWordMapper​` by giving wordMapper, the map function in serial, a parallel strategy: 
parMap rdeepseq​.  
 
parMap rdeepseq​ is to evaluate each list element in parallel with strategy fully evaluating then 
proceeding. With this strategy, we are able to generate (w,1) pairs parallely on each list element 
rather than slowly walking through the whole file one by one. 
 

 
Here is the output to run our sequential and parallel implementations on a Ubuntu virtual 
machine with 1, 2, 4, 6 processors over 9.861s by sequential wordMapper. 

 

  Alloc rate    3,160,261,895 bytes per MUT second 
 
  Productivity  88.0% of total user, 88.5% of total elapsed 

reduce takes12.304750443 seconds. 

 
 TASKS: 4 (1 bound, 3 peak workers (3 total), using -N1) 
 SPARKS: 0 (0 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled) 

 INIT    time    0.001s  (  0.001s elapsed) 
 MUT     time   12.589s  ( 12.748s elapsed) 
 GC      time    9.200s  (  9.927s elapsed) 

 EXIT    time    0.000s  (  0.005s elapsed) 
 Total   time   21.790s  ( 22.681s elapsed) 
 Alloc rate    1,286,410,934 bytes per MUT second 

 Productivity  57.8% of total user, 56.2% of total elapsed 

wordMapper :: [String] -> [(String, Int)] 
wordMapper w = map (\x -> (x, ​1​)) w 
 
parWordMapper :: [String] -> [(String, Int)] 
parWordMapper w = wordMapper w `using` parList rdeepseq 
 



 

Table 3 Performance of parWordMapper with ​parMap rdeepseq 
 As table 3 shows, ​parMap rdeepseq ​does not speed up Word Count and all the tests take 
longer than 9.861s by sequential wordMapper. Thus, it is not the proper strategy for 
wordMapper. 
 
3.2.2 Speed up wordMapper with parBuffer rdeepseq 
 
Same with ​WordCleanup​, parBuffer allows us not to load the entire list in, which creates 
overheads, and behaves like a circular buffer with a constant buffer size, consuming input and 
moving to the next. It’s useful here as it does not need to know the entire list and just step over 
each element to map word to (word,1) tuple. 
 

 
To find the proper buffer size for parBuffer, we ran tests with -N2 on test file (40MB), and the 
results in Table 4 compares them with 9.861s by sequential wordMapper and shows that it’s the 
most optimal when `parBuffer 4 rdeepseq`. 
 

Table 4 ​parBuffer rdeepseq​ with different buffer size (+RTS -N2  -s -ls) 
 
With the optimal buffer size 4 found, we continue to test the performance with machines with 1, 
2, 4, 6 processors and their speed up to see which N is the most optimal one. 
 

N R1 R2 R3 Average 

1 
2 
4 
6 

10.751s 
12.861s 
14.232s  
15.794s 

10.721s 
13.171s 
15.172s 
16.613s 

10.841s 
13.611s 
14.992s 
16.422s 

10.771s 
13.214s 
14.799s 
16.276s 

bufferSize :: Int 
bufferSize = 4 
 
wordMapper :: [String] -> [(String, Int)] 
wordMapper w = map (\x -> (x, ​1​)) w 
 
parWordMapper :: [String] -> [(String, Int)] 
parWordMapper w = wordMapper w `using` parBuffer bufferSize rdeepseq 

BufferSize Run time Speed up 

1 
2 
4 
6 
8 
10 

14.702s 
10.822s 
6.642s 
6.882s 
6.891s 
6.942s 

0.671 
0.911 
1.484 
1.432 
1.430 
1.332 



Table 5 Performance of parWordMapper with ​parBuffer rdeepseq 
As table5 shows, ​parBuffer rdeepseq ​can at most speed up Word Count by twice when N=1, 
compared with 9.861s by the sequential implementation.  
 
3.3 reducer in parallel 
 
3.3.1 Speed up wordReducer with parList rdeepseq 
 
wordReducer​, in the sequential implementation, adds all (w,1) together for the same word w to 
get the final frequency count for each word w. The intuition for speeding up this part is to run 
this map job parallelly for each list element. So we implemented a parallel function called 
`parWordReducer​` by giving wordReducer the parallel strategy: parList rdeepseq. To make it 
more efficient, we used ​chunksOf​ to split the large list into several chunks, each of size equals 
chunkSize, and then map wordReducer on each chunk to run parallely, and at last it concat 
results of all the chunks as output. 
 

 
To find the proper chunk size to split the list, we ran tests with -N2 on test file (40MB), and the 
results in Table 6 compares them with 12.304s by sequential wordReducer and shows that the 
most optimal acceleration is 1.436 times faster when chunkSize=100. 
 

N R1 R2 R3 Average Avg Speed up 

1 
2 
4 
6 

5.042s 
6.642s 
6.912s  
7.894s 

5.381s  
6.712s 
7.323s 
7.813s 

5.001s 
7.022s 
7.753s 
7.714s 

5.141s 
6.882s 
7.329s 
7.807s 

1.909 
1.426 
1.339 
1.263 

import Data.List.Split( chunksOf ) 

 

chunkSize :: Int 

chunkSize = 100 

 

wordReducer :: (Ord k, Num a) => [(k, a)] -> [(k, a)] 

wordReducer l =  M.toList $ M.fromListWith (+) l 

 

parWordReducer :: (Ord k, Num a, NFData k, NFData a) => [(k, a)] -> [(k, a)] 

parWordReducer l = wordReducer $ concat ((map wordReducer l') `using` parList rdeepseq) 

                    where l' = chunksOf chunkSize l 

ChunkSize Run time Speed up 

20 
50 
100 
500 
1000 

9.280s 
9.565s 
8.571s 
9.097s 
10.868s 

1.325 
1.286 
1.436 
1.352 
1.132 



Table 4 ​parList rdeepseq​ with different chunk size (+RTS -N2  -s -ls) 
 

4 N-Grams Count 
 
Given the large cleaned list, we want to generate (n-grams, frequency) pairs to provide top N 
phrase suggestions based on frequency in the dictionary.  
An example of ‘​3-grams Count​’ result: 
[(“haskell is great”, 10), (“best programming language”, 4995)] 
 
 
4.1 Sequential n-grams count 
 
 
mapper​ :: ​Int​ -> [​String​] -> [(​String​, ​Int​)] 

mapper n str 

   | n <= length str = (unwords ngram, ​1​::​Int​) : mapper n str' 

   | otherwise = ​[] 

   ​where​ ngram = take n str 

         str'  = drop (​1​::​Int​) str 

 

reducer​ :: (​Ord​ ​k​, ​Num​ ​a​) => [(​k​, ​a​)] -> [(​k​, ​a​)] 

reducer l = toList $ fromListWith (\num1 num2 -> num1 + num2) l 

 
 
Sequential Implementation: 

1. Break into a list of cleaned n-grams 
2. Iterate through the word list to map each word to (ngram, 1) 
3. Merge entries with the same word to (word, frequency) list 

 
Because of our fully serial implementation, generating pairs of n-grams and frequency is 
significantly time/space consuming. Therefore, we switched to a smaller test dataset. 
 
We tested our sequential implementation on a 1MB text file to generate two-grams.. As shown 
in Figure 3,  the total runtime is 93.985s, with 0.24s on garbage collection, on a single 
processor.  
 
 



 
 

Figure 3: Timeline of events for sequential n-grams count 
To accelerate the N-grams Count, we will focus on parallel implementation of both ​mapper​ and 
reducer. 
 
 
4.1 reducer in parallel 
 
par_reducer​ :: (​Ord​ ​k​, ​Num​ ​a​, ​NFData​ ​k​, ​NFData​ ​a​) => [(​k​, ​a​)] -> [(​k​, ​a​)] 

par_reducer l = reducer $ concat 

               ((map reducer l') `using` parList rdeepseq) 

               ​where​ l' = chunksOf ​9​ l 

 
 
Based on our implementation of  reducer, we implemented a function called `par_reducer` to 
help us run ​reducer​ in parallel. To achieve parallelism, ​par_reducer​ splits the input into several 
chunks, simultaneously calls ​reducers​ on each chunk, and then computes the final result of 
each chunk. 
 
The core of ​par_reducer​ is to find out exactly how many chunks we should split. We did some 
experiments to explore the answer. 

 

Table 5: Running on a 4-cores machine 

Chunks Runtime Garbage Collection 

2 
4 
9 
32 
100 

73.429 
75.121 
69.192 
81.334 
88.040 

42 
47 
42 
62 
34 



The result in Table 3 is what we have expected. Generating too many sub-chunks  makes our 
performance worse. This is because our ​par_reducer​ is not pure parallel. In the last step of 
par_reducer,​ it needs to call​ reducer ​to sum up all the results from sub-chunks, which is 
sequential work. The more sub chunks means the more sequential jobs the ​par_reducer​ needs 
to finish. 
 
As a result, by running only the reducer in parallel, the best performance we could get is 
69.120s. Compared with pure sequential implementation, we have successfully accelerated ​25 
seconds. 
 
 
 
4.2 mapper in parallel 
 
par_mapper​ :: ​Int​ -> [[​String​]] -> [(​String​, ​Int​)] 

par_mapper n l = concat (map (mapper n) l) `using` parList rdeepseq 

 
Mapper​ in the sequential implementation did most of the duty work. To accelerate the n-grams 
count, it is crucial to run mapper in a good parallel mode. Based on our implementation of 
mapper, we implemented a parallel function called `par_mapper`. Instead of generating n-grams 
by keeping iterating the whole file, `par_mapper` simultaneously calls `mapper` on each line and 
then uses concat to group together the final result 
 
4.2.1 par_mapper’s drawback 
 
First, we have to point out that there is potential drawback in par_mapper: It may miss some n 
grams. Consider the following example: 
 
Input: “Hello world\nHaskell No” 
Under The two-grams mode: 
The expect output should be: (Hello world, 1), (word Haskell, 1), (Haskell  No, 1) 
The actually output will be:     (Hello world, 1), (Haskell NO, 1) 
 
This is because the nature of ​par_mappe​r is to focus only on line and the connection words 
between two sentences will be discarded. 
 
 
4.2.2 par_mapper evaluation  
 
However, this potential drawback won’t influence our functionality of Word AutoComplete. First, 
as long as the dataset is large enough, we can still give back the accurate suggestion. Second, 
par_mapper​ ​significantly​ improved the performance of n-grams count. 
 



We run our implementations on a Unbuntu virtual machine with 1, 2, 4, 8 processor. 
 

 
    Table 6 

 
 
Combined ​par_reducer​ and ​par_mapper​ together (though par_mapper did most of the work), 
our parallel implementation is almost ​220​ times faster than pure sequential implementation. As 
shown Figure 4, all four processors work balanced between [0s, 0.25s]. And, as expected, 
between[0.25, 0.43], we need one single processor to sequentially generate the final result. 
 
 

 
 

 Figure 4: Timeline of events for parallel n-grams count 

5 N-Grams/Word AutoComplete 
 
This is the last step. Based on the result from Clean up and Word/N-Grams Count, we move 
further to implement our own version of ​Word/N-Grams AutoComplete​. It accepts a word from 
the user's input and returns some `suggestion` to the user. 

Cores Time(s) Speedup 

1 
2 
4 
8 

0.599 
0.426 
0.428 
0.463 

155 
218 
217 
200 



 
5.1 Sequential Implementation 
 

● Filter along (word, frequency) list for words with matched prefix. 
● Sort the filtered list by frequency. 
● Find top N suggestions by taking head N of the list after filtering and sorting. 

 

 
5.2 Parallel Implementation 
 
We parallelized step1 to speed up searching lists. Similar to our parallel implementation of 
N-grams Count, we implemented a function called `par_ngram_filer` to help us run ​filters ​in 
parallel. To achieve parallelism, ​par_suggestion_filer ​splits the input into 9 chunks, 
simultaneously calls ​filters​ on each chunk, and then computes the final result of each chunk. 
 

 
5.3 Evaluation 
 
We tested Parallel/Sequential implementation with a different size of test text file, on 4 core 
machine. 

 

Table 7 Performance analysis of suggestion on Parallel/Sequential implementation (-N4) 
 
As shown in Table 7, as the test file size becomes larger, the performance difference between 
Sequential and Parallel implementations becomes more clear. 
 
 

ngram_filer :: Eq a => [a] -> [([a], b)] -> [([a], b)] 
ngram_filer str l = filter (\(x,_)->str `isPrefixOf` x) l 
 
ngram_sort :: [(a, Int)] -> [(a, Int)] 
ngram_sort = sortBy (\(_,x) (_, y) -> compare x (y::Int)) 

par_suggestion_filer :: (Eq a, NFData a, NFData b) => [a] -> [([a], b)] -> [([a], b)] 
par_suggestion_filer str l = suggestion_filer str $ concat 
                        ((map (suggestion_filer str) l') `using` parList rdeepseq) 
                        where l' = chunksOf 9 l 

 

File Size (mb) Sequential(s) Parallel(s) Speed Up 

1 
16 
32 
80 

1.02 
14.23 
29.46 
74.09 

0.92 
12.44 
24.98 
63.15 

1.11 
1.15 
1.18 
1.173 



6 Summary 
 
Combining all the steps together, we can compare the total performance of word-auto 
completion by the factors of file size and cores running on. Below are two tables running one 
complete round on word completion and ngram completion without loop. (We only recorded the 
time for running sequential implementation on 1 MB file because it takes forever for larger files, 
while running parallel can reduce the time within one minute.) 
 

Table 7 Performance analysis of one round word-auto completion program  
 

Table 8 Performance analysis of one round ngram completion program 
 

From the results, we can conclude that our parallel implementation is much more efficient both 
than the sequential one. We observed that for word-auto completion, the performance is best 
when N=1, and for ngram-autocomplete, the performance is best when N=3. This result is 
reasonable as the simple sequential implementation of word-auto completion does not take 
much time, while ngram is very time consuming to need more cores to get enough 
parallelization. 
Also, from the table below, if there are too many cores running on, it may create too many 
unused or fizzled sparks and get wasted, while if the core is too few, it does not get enough 
parallelization which is also inefficient. 

 

Table 9 spark stats for parallelization on 16MB test file 
 

File Size 
(mb) 

Sequential  -N1  -N2  -N3  -N4 max speed 
up 

1 
16 
32 

1.011s 
21.351s 
43.371s 

1.140s 
14.911s 
30.033s 

1.311s 
19.442s 
42.255s 

2.011s 
20.232s 
43.165s 

2.131s 
20.553s  
22.007s 

- 
1.432 
1.444 

File Size 
(mb) 

Sequential  -N1  -N2  -N3  -N4 max speed 
up 

1 
16 
32 

864.311s 
 

3.061s 
61.821s 
69.831s 

2.771s 
48.611s 
63.682s 

2.891s 
31.512s 
63.622s 

2.952s 
33.432s 
64.644s 

311.9 
 

N converted overflowed GC'd fizzled 

1 
2 
3 
4 

0 
2848956 
2937228 
2998431 

3278375 
285891 
292498 
180452 

878 
128916 
25268 
80260 

16388 
31878 
40647 
36498 



 

A Code Listing 
 
main.hs 

 
WordClean.hs 

import​ NgramCount ( parNgramMapper, parNgramReducer ) 
import​ WordCount ( parWordMapper, parWordReducer ) 
import​ WordClean ( wordClean ) 
import​ Suggestion_Parallel ( par_suggestion_filer, suggestion_sort, suggestion_filer )  
import​ System.Environment ( getArgs ) 
import​ Control.Parallel ( pseq ) 
 
enterLoop :: [([Char], Int)] -> IO b 
enterLoop output = do 
    putStrLn "" 
    putStrLn "Please enter prefix of word(s):" 
    str <- getLine 
    putStrLn "Enter the number of top suggestions you want:" 
    k <- getLine 
    putStrLn "Here are the suggestions:" 
    let results = take (read k::Int) $ suggestion_sort $ par_suggestion_filer str output 
    mapM_ (\(a,_) -> putStrLn a) results 
    enterLoop output 
 
processMapReduce :: Int -> String -> [(String, Int)] 
processMapReduce n content 
    | n==1  = parWordReducer $ parWordMapper $ words $ unwords $ lines content 
    | otherwise = parNgramReducer $ parNgramMapper n $ map words $ lines content 
 
main :: IO () 
main = do 
    [filename] <- getArgs 
    putStrLn "Enter the number of words you want suggestion for (1 for a single word):" 
    n <- getLine 
    putStrLn "Loading Dictionary ..." 
    content <- wordClean filename 
    let output = processMapReduce (read n::Int) content  
    writeFile "output.txt" (show output) 
    putStrLn "Done loading!" 
    enterLoop output 
    --print $ head $ suggestion_sort $ par_suggestion_filer str output 
    --print $ head $ suggestion_sort $ suggestion_filer str output 

 

module WordClean 
( 
    wordFilter, 



 
WordCount.hs 

 
NgramCount.hs 

    wordClean 
 ) where 
 
import​ Data.Char ( isSpace, isAlpha, toLower ) 
import​ System.IO ( openFile, hGetContents, IOMode(ReadMode) ) 
import​ Control.Parallel.Strategies ( parBuffer, rdeepseq, using ) 
 
wordFilter :: [[Char]] -> [[Char]] 
wordFilter lines =  map ((map toLower) . filter (\x -> isAlpha x || isSpace x)) lines `using` parBuffer 
4 rdeepseq 

 
wordClean :: FilePath -> IO String 
wordClean input = do 

    handle <- openFile input ReadMode 
    contents <- fmap lines $ hGetContents handle 

    let output = wordFilter contents 
    return $ unlines output 
    --writeFile "cleanOutput.txt" (unlines output) 
 

module WordCount where 

import​ WordClean(wordClean) 
import​ qualified Data.Map ​as​ M 
import​ Data.List.Split( chunksOf ) 
import​ Control.Parallel ( pseq ) 
import​ Control.Parallel.Strategies 
    ( parList, rdeepseq, using, NFData ) 

 

chunkSize :: Int 

chunkSize = ​20 
 

wordMapper :: [String] -> [(String, Int)] 

wordMapper w = map (\x -> (x, ​1​)) w 
 

parWordMapper :: [String] -> [(String, Int)] 

parWordMapper w = concat ((map wordMapper w') `using` parList rdeepseq) 

                where w' = chunksOf chunkSize w 

 

wordReducer :: (Ord k, Num a) => [(k, a)] -> [(k, a)] 

wordReducer l =  M.toList $ M.fromListWith (+) l 

 

parWordReducer :: (Ord k, Num a, NFData k, NFData a) => [(k, a)] -> [(k, a)] 

parWordReducer l = wordReducer l `using` parList rdeepseq 

 

module NgramCount where 

import​ Data.Map (fromListWith, toList) 
--​import​ System.Environment(getArgs) 
--​import​ WordClean(wordClean) 

https://github.com/wy2249/word-autocompletion/blob/main/Parallel/WordCount.hs
https://github.com/wy2249/word-autocompletion/blob/main/Parallel/NgramCount.hs


 
Suggestion.hs 

 
 

import​ Data.List.Split ( chunksOf ) 
import​ Control.Parallel.Strategies 
    ( parList, rdeepseq, using, NFData ) 

  

  

 

ngramMapper :: Int -> [String] -> [(String, Int)] 

ngramMapper n str 

    | n <= length str = (unwords ngram, 1::Int) : ngramMapper n str' 

    | otherwise = [] 

    where ngram = take n str 

          str'  = drop (1::Int) str 

 

parNgramMapper :: Int -> [[String]] -> [(String, Int)] 

parNgramMapper n l = concat (map (ngramMapper n) l) `using` parList rdeepseq 

 

ngramReducer :: (Ord k, Num a) => [(k, a)] -> [(k, a)] 

ngramReducer l = toList $ fromListWith (\num1 num2 -> num1 + num2) l 

 

parNgramReducer :: (Ord k, Num a, NFData k, NFData a) => [(k, a)] -> [(k, a)] 

parNgramReducer l = ngramReducer $ concat  

                ((map ngramReducer l') `using` parList rdeepseq) 

                where l' = chunksOf 9 l 

 

module Suggestion_Parallel where 

import​ Data.List ( isPrefixOf, sortBy ) 
import​ Data.List.Split ( chunksOf ) 
import​ Control.Parallel.Strategies 
    ( parList, rdeepseq, using, NFData ) 

 

suggestion_filer :: Eq a => [a] -> [([a], b)] -> [([a], b)] 

suggestion_filer str l = filter (\(x,_)->str `isPrefixOf` x) l 

 

par_suggestion_filer :: (Eq a, NFData a, NFData b) => [a] -> [([a], b)] -> [([a], b)] 

par_suggestion_filer str l = suggestion_filer str $ concat 

                         ((map (suggestion_filer str) l') `using` parList rdeepseq) 

                         where l' = chunksOf 9 l 

 

suggestion_sort :: [(a, Int)] -> [(a, Int)] 

suggestion_sort = sortBy (\(_,x) (_, y) -> compare y (x::Int)) 

 

https://github.com/wy2249/word-autocompletion/blob/main/Parallel/Suggestion_Parallel.hs

