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Project Background 
Sudoku is a logic based, number placement puzzle. The objective of this game is to fill a 9*9 
grid with digits that satisfy some rules, like no duplicate elements in a row/column/box. 

 
It's easy to understand as it looks. Sudoku can be modeled as a constraint satisfaction problem, 
and also can be solved with naive backtracking, even possible with heuristic search if you like. 
There are many ways to solve this problem, but their efficiency may vary a lot.  
 

Project Goal 
I chose to take this course because I didn't have any functional programming experience. And I 
did some multi-thread programming and performance related projects. As far as I know, some 
object oriented programming language like Golang, C++, Python has some functional 
programming paradigm embedded in. And sometimes it's hard for me to follow a fixed 
programming paradigm. Because some code looks like functional and some looks like object 
oriented, and they are in the same project. And some people say that it's easy to use FP to 
solve  parallel computing problems. 
 
 
 
 



So I'd like to take this chance to learn:  
1. How to write parallel and concurrency code(example question: I've read some posts 

about add -threaded when compile may make the program faster, but there isn't any 
code start a new thread) 

2. Pros and Cons of FP(efficiency, maybe easy to code for parallel and concurrency?) 
3. When to use FP? What kind of projects is more suitable for FP? 

Instead of choosing a hard problem to solve, I'd like to take this simple problem and try to find 
out the answers of these three problems. So that I can focus more on the language rather than 
the problem. 
 

Sudoku solver algorithms 

1. Dancing Links 

Dancing links is a data structure invented by Donald Kruth for his project Algorithm X, 
which is a backtracking solution for the exact cover problems. And N Queens problem 
and Sudoku are both exact cover problems. On Hackage I found a package called 
"exact-cover" aiming to solve exact cover problem. But learning to use a package 
wouldn't help me know more about haskell efficiency, and I better know how to use the 
language first before I implement an algorithm with it. Otherwise, I can only implement 
the algorithm as the pseudo-code describes and it's hard for me to optimize it and make 
full use of syntax sugar from Haskell. 

2. Naive backtracking 

To me, this is still a good point to start with. I wouldn't say I can write efficient 
backtracking code in Haskell. So it's a good point for me to start and improve my code. 
Dancing links can count as a backtracking algorithm, and it's also a search algorithm. 
How you make the next guess and prune unnecessary branch can largely affect the 
running time of your code. 

3. Constraint Satisfaction Problem 

CSP is also a backtracking problem, on finite domains, it's typically solved using a form 
of search(backtracking, constraint propagation). In Sudoku, you may have multiple 
options for a black cell, and your choice for this cell will definitely affect constraints set of 
other cells. Constraint propagation is a method that prune unnecessary branches and 
reduce search time based on your choice on current cell. 

 



Code 
I managed the project with the help of stack. A simple usage of the code is in "README.md", 
and source code is in "app/Main.hs" and "src/Sudoku.hs", test cases are in "test/Spec.hs", and I 
ran multi-core test with input from "easy.txt", "hard.txt". 
 
Main.hs 
 
module​ Main ​where 
 
import​ Control.Applicative 
import​ Control.Monad 
import​ System.Environment 
import​ System.IO 
 
import​ Sudoku (​solve​) 
 
-- Solve Sudoku puzzles from a file of Sudoku strings 
main​ = ​do 
  [f] <- getArgs 
  lines <$> readFile f >>= mapM_ (mapM_ putStrLn . solve) 
 
Sudoku.hs 
 
module​ Sudoku(​solve​) ​where 
 
import​ Data.List 
import​ Data.Char 
 
type​ ​Cell​ = ​Maybe​ ​Int 
type​ ​Row​ a = [a] 
type​ ​Grid​ a = [​Row​ a] 
type​ ​Options​ = [​Cell​] 
 
boxes​ :: ​Grid​ a -> ​Grid​ a 
boxes​ = deser . (map transpose) . ser 
    ​where 
    ser = (front ​3​) . map (front ​3​) 
    deser = map concat . concat 
    front _ [] = [] 
    front n xs = take n xs : front n (drop n xs) 
 



filter_elem​ :: [​Options​] -> [​Options​] 
filter_elem​ ops = [op `minus` single | op <- ops ] 
    ​where 
    single = concat (filter (\l -> length l == ​1​) ops) 
    op1 `minus` op2 = ​if​ length op1 == ​1​ ​then​ op1 ​else​ op1\\op2 
 
-- filter duplicate pairs 
filter_pair​ :: [​Options​] -> [​Options​] 
filter_pair​ x = [​if​ (isInfixOf dup_pair xs) && (dup_pair /= xs) ​then​ xs\\dup_pair ​else​ xs | xs <- x] 
    ​where 
    dup_pair = concat $ getDups $ filter (\l -> length l == ​2​) x 
    getDups t = t \\ nub t 
 
-- pruneWith prune by (func) rule 
prune​ :: ​Grid​ ​Options​ -> ​Grid​ ​Options 
prune​ = (pruneWith filter_pair) . (pruneWith filter_elem) 
    ​where 
    pruneWith func = pruneBy id . pruneBy transpose . pruneBy boxes 
        ​where 
        pruneBy f = f . map func . f 
 
allOptions​ :: ​Grid​ [a] -> [​Grid​ a] 
allOptions​ g = cardProd $ map cardProd g 
    ​where  
    cardProd [] = [[]] 
    cardProd (x:xs) = [y:ys | y <- x, ys <- cardProd xs] 
 
-- start with the cell have fewest choices 
try​ :: ​Grid​ ​Options​ -> [​Grid​ ​Options​] 
try​ ops  = [rows_t ++ [row_t ++ [c] : row_aft] ++ rows_aft | c <- cs] 
    ​where 
    (rows_t, row:rows_aft) = break (any fit) ops 
    (row_t, cs:row_aft) = break fit row 
    fit t = (length t == len) 
    len = minimum . filter(>​1​) . concat $ map (map length) ops 
 
search​ :: ​Grid​ ​Options​ -> [​Grid​ ​Cell​] 
search​ ops 
    | any (any null) ops || not (success ops) = [] 
    | all (all (\l -> length l == ​1​)) ops = allOptions ops 
    | otherwise = [s | ops' <- try ops, s <- search (arriveAt prune ops')] 
    ​where 
        arriveAt f x  



            | x == f x = x  
            | otherwise = arriveAt f (f x) 
        success t = all good (t) && all good (transpose t) && all good (boxes t) 
        good = noDup . concat . filter (\l -> length l == ​1​) 
        noDup l = nub l == l 
 
-- convert grid cell to sudoku string 
deFormat​ :: ​Grid​ ​Cell​ -> ​String 
deFormat​ cl = toStr $ concat cl 
    ​where 
    toStr [] = ​"" 
    toStr (​Nothing​:xs) = ​"."​ ++ toStr xs 
    toStr (​Just​ a:xs) = [intToDigit a] ++ toStr xs 
 
-- convert sudoku string to grid cell 
format​ :: ​String​ -> ​Grid​ ​Cell 
format​ xs  
    | length xs == ​0​ = [[]] 
    | otherwise = (takeS ​9​ xs) : (format (drop ​9​ xs)) 
    ​where 
        takeS :: ​Int​ -> ​String​ -> ​Row​ ​Cell 
        takeS ​0​ _ = [] 
        takeS _ [] = [] 
        takeS _ [x] = convert x 
        takeS n (x:xt) = convert x ++ takeS (n-​1​) xt 
        convert x = ​if​ x == '.' ​then​ [​Nothing​] ​else​ [​Just​ (digitToInt x)] 
 
solve​ :: ​String​ -> [​String​] 
solve​ str = mtxToStr matrix 
    ​where 
        matrix = search $ prune $ options $ format str 
        mtxToStr mtx = [deFormat m | m <- mtx] 
        options = map (map cur) 
        cur v = ​if​ v == ​Nothing​ ​then​ [​Just​ i | i <- [​1.​.​9​]] ​else​ [v] 
 
Spec.hs(test file) 
 
import​ Sudoku 
 
eg1​ :: ​String 
eg1​ = ​"3.6.7...........518.........1.4.5...7.....6.....2......2.....4.....8.3.....5....." 
eg2​ :: ​String 
eg2​ = ​"1.....3.8.7.4..............2.3.1...........958.........5.6...7.....8.2...4......." 



eg3​ :: ​String 
eg3​ = ​".237....68...6.59.9.....7......4.97.3.7.96..2.........5..47.........2....8......." 
 
main​ :: ​IO​ () 
main​ = ​do 
    runTest eg1 
    runTest eg2 
    runTest eg3 
 
runTest​ :: ​String​ ->  ​IO​ () 
runTest​ eg = ​do 
    putStrLn $ ​"running test" 
    putStrLn $ ​"case:   "​ ++ eg 
    putStrLn $ ​"answer: "​ ++ $ concat $ solve eg 
 

Explanation of my solution 
 
A sudoku problem is described as a 81 characters string. And the "solve" function takes in a 
sudoku string and return a list of solutions in the format of strings. For a single Sudoku problem, 
I start with a brute force backtracking solution. At first, I take in the sudoku string and parse it 
into a 9*9 Maybe grid. Cell will no number filled in will be filled in with "Nothing". Then I filled in 
all options(from 1 to 9) into "Nothing" cells, then start brute force searching until every cell only 
has one option left. This is the 1st version of my solution and it's extremely slow. Then I start to 
prune some unnecessary branches to save some search time, which is called constraint 
propagation. If you make a choice on current cell, then choices on cells on the same 
row/column/box will be affected. So I delete invalid options before next search to save some 
time. And when I start searching, I start will the cell has the fewest options left, which will also 
make the search faster. 
 

Test  
Test environment:  
OS: Ubuntu 18.04.1  
Mem: 16GB 
CPUs: 8 vCPUs 

1. Comparing with online solution for a single problem 

A ​Constraint Propagation solution​ by Peter Norvig:  
solving same Sudoku problem: 

https://wiki.haskell.org/Sudoku#Constraint_Propagation_.28a_la_Norvig.29


".......2143.......6........2.15..........637...........68...4.....23........7...." 
 
 

 running time - till the solution is printed 

Peter Norvig's 0.025s 

mine 0.938s 

 
I tried a lot to optimize my logic and prune more branches before searching, but my 
solution is still much more slower than Peter Norvig's. It seems to me that the complexity 
of Haskell is not that observable and don't similar to the algorithm logic. And this is 
different in object oriented languages. In OO languages and other procedure oriented 
languages, it's easier to analyze running time. I searched online about this problem and 
one answer is reasonable to me. It says that OO and PO languages are based on turing 
machine, which is easier to analyze time complexity. So most algorithms we learned in 
"Introduction to Algorithms" so far are based on this, and it's easier to learn. But Haskell 
and other languages are based on lambda calculus. There's a ​paper​ talked about this, 
and it's hard and meaningless to apply Big O notation on functional languages. So this is 
the reason why two programs' running time may differ a lot even if they follow the same 
pseudo code. But how can we write efficient code? Do we have to run profiling everytime 
to check the bottleneck? Or maybe functional programming languages shouldn't be used 
at efficiency critical situation? There's a book called "Pure functional data structure" and 
from that I know the data structures behind functional languages is totally different from 
what I used before. Simply applying my experience from that is definitely a wrong 
decision.  

 
Profiling for my final solution: 
 

https://arxiv.org/abs/1405.3311


 
 
The "minus" function is very slow, but even if I can improve its speed as other functions 
like "boxes", it still can't catch up with Peter Norvig's solution.  
And this is the profiling for his solution: 

 
 



And his solution is not the fastest among all Sudoku solvers. How to write efficient and 
elegant Haskell code is still an open question to me. :)  
 
Then I dig deeper about Peter Norvig's solution. It turns out his ​original solution​ is in 
Python and Emmanuel ported his thoughts to Haskell. And ​here​ is the email thread 
about how did Emmanuel and some gurus improve his code. I read all those emails, 
though they made the code very fast at last, they still can't draw a conclusion why it ran 
fast like that. Some said using array is faster than list in this problem, some said a better 
algorithm is a better optimization. My conclusion is, I should know better about data 
structures/packages commonly used in Haskell, and learn more about functional 
programming paradigm and functional thoughts. And I gradually agree with Yitz said in 
the email thread: "But I personally find that for my own purposes, pure, simple, clear 
Haskell is almost always more than fast enough. And it saves truckloads of debugging 
time." 
 

2. Running parallely 

Before I start this project, I don't know why Haskell divided into parallel and concurrent 
programming two parts. But after I read this ​notes​,  which is written by Simon 
Marlow(author of Parallel and Concurrent Programming in Haskell), I think I gradually 
understand why it is designed like this. Parallel is typically used when you want to run a 
program on multiple core. Although in some occasions in OO languages, we start 
multiple processes to run faster instead of using multiple threads. I think the idea is 
similar but the mechanism is different. This kind of parallel requires no data exchanging 
in sub-problems. And in Haskell, spark pool is implemented as a ring buffer. Though I'm 
not sure will there be "fork" system call happens or not when you use spark in Haskell on 
multi-cores. But more memory level operation and less fork is always good for efficiency. 
And concurrency is different, it supports thread communication but at the cost of 
efficiency. So for this kind of problem, like solve many Sudoku/Kenken problems, and 
web crawler, I would like to use parallel. But parallel granularity is still a hard problem.  
 
Because my solution is too slow, 1000 problems will take forever, so I tested with much 
less problems in the following tests. 
 
50 easy problems running with 7 cores: 

http://norvig.com/sudoku.html
https://mail.haskell.org/pipermail/haskell-cafe/2007-August/031049.html
http://www.it.uu.se/edu/course/homepage/avfunpro/ht17/haskell-parallel-marlow.pdf


 
From this we can say that tasks are evenly dispatched.  
 

 
 
And from this graph, we can see that HEC5 ran for quite a long time, for job 10. This 
search takes too long, so that running time on different core differs a lot. 
 
For 5 cores and 3 cores are similar. 



 
 
 

 
 
But 3 cores is the fastest among these 3 tests. 
 
For 2 cores: 

 



 
 
So running with 3 cores is (maybe) the fastest among all my test. I think for some 
Sudoku problems, search with my algorithm is very slow. So how did it dispatch tasks 
will affect total running time a lot. 
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