
19 Fall Parallel Functional Programming Project Report

Parallel Sudoku Solver in Haskell
Jiaheng He(jh4003)

Project Background
Sudoku is a logic based, number placement puzzle. The objective of this game is to fill a 9*9
grid with digits that satisfy some rules, like no duplicate elements in a row/column/box.

It's easy to understand as it looks. Sudoku can be modeled as a constraint satisfaction problem,
and also can be solved with naive backtracking, even possible with heuristic search if you like.
There are many ways to solve this problem, but their efficiency may vary a lot.

Project Goal
I chose to take this course because I didn't have any functional programming experience. And I
did some multi-thread programming and performance related projects. As far as I know, some
object oriented programming language like Golang, C++, Python has some functional
programming paradigm embedded in. And sometimes it's hard for me to follow a fixed
programming paradigm. Because some code looks like functional and some looks like object
oriented, and they are in the same project. And some people say that it's easy to use FP to
solve parallel computing problems.

So I'd like to take this chance to learn:
1. How to write parallel and concurrency code(example question: I've read some posts

about add -threaded when compile may make the program faster, but there isn't any
code start a new thread)

2. Pros and Cons of FP(efficiency, maybe easy to code for parallel and concurrency?)
3. When to use FP? What kind of projects is more suitable for FP?

Instead of choosing a hard problem to solve, I'd like to take this simple problem and try to find
out the answers of these three problems. So that I can focus more on the language rather than
the problem.

Sudoku solver algorithms

1. Dancing Links

Dancing links is a data structure invented by Donald Kruth for his project Algorithm X,
which is a backtracking solution for the exact cover problems. And N Queens problem
and Sudoku are both exact cover problems. On Hackage I found a package called
"exact-cover" aiming to solve exact cover problem. But learning to use a package
wouldn't help me know more about haskell efficiency, and I better know how to use the
language first before I implement an algorithm with it. Otherwise, I can only implement
the algorithm as the pseudo-code describes and it's hard for me to optimize it and make
full use of syntax sugar from Haskell.

2. Naive backtracking

To me, this is still a good point to start with. I wouldn't say I can write efficient
backtracking code in Haskell. So it's a good point for me to start and improve my code.
Dancing links can count as a backtracking algorithm, and it's also a search algorithm.
How you make the next guess and prune unnecessary branch can largely affect the
running time of your code.

3. Constraint Satisfaction Problem

CSP is also a backtracking problem, on finite domains, it's typically solved using a form
of search(backtracking, constraint propagation). In Sudoku, you may have multiple
options for a black cell, and your choice for this cell will definitely affect constraints set of
other cells. Constraint propagation is a method that prune unnecessary branches and
reduce search time based on your choice on current cell.

Code
I managed the project with the help of stack. A simple usage of the code is in "README.md",
and source code is in "app/Main.hs" and "src/Sudoku.hs", test cases are in "test/Spec.hs", and I
ran multi-core test with input from "easy.txt", "hard.txt".

Main.hs

module​ Main ​where

import​ Control.Applicative
import​ Control.Monad
import​ System.Environment
import​ System.IO

import​ Sudoku (​solve​)

-- Solve Sudoku puzzles from a file of Sudoku strings
main​ = ​do
 [f] <- getArgs
 lines <$> readFile f >>= mapM_ (mapM_ putStrLn . solve)

Sudoku.hs

module​ Sudoku(​solve​) ​where

import​ Data.List
import​ Data.Char

type​ ​Cell​ = ​Maybe​ ​Int
type​ ​Row​ a = [a]
type​ ​Grid​ a = [​Row​ a]
type​ ​Options​ = [​Cell​]

boxes​ :: ​Grid​ a -> ​Grid​ a
boxes​ = deser . (map transpose) . ser
 ​where
 ser = (front ​3​) . map (front ​3​)
 deser = map concat . concat
 front _ [] = []
 front n xs = take n xs : front n (drop n xs)

filter_elem​ :: [​Options​] -> [​Options​]
filter_elem​ ops = [op `minus` single | op <- ops]
 ​where
 single = concat (filter (\l -> length l == ​1​) ops)
 op1 `minus` op2 = ​if​ length op1 == ​1​ ​then​ op1 ​else​ op1\\op2

-- filter duplicate pairs
filter_pair​ :: [​Options​] -> [​Options​]
filter_pair​ x = [​if​ (isInfixOf dup_pair xs) && (dup_pair /= xs) ​then​ xs\\dup_pair ​else​ xs | xs <- x]
 ​where
 dup_pair = concat $ getDups $ filter (\l -> length l == ​2​) x
 getDups t = t \\ nub t

-- pruneWith prune by (func) rule
prune​ :: ​Grid​ ​Options​ -> ​Grid​ ​Options
prune​ = (pruneWith filter_pair) . (pruneWith filter_elem)
 ​where
 pruneWith func = pruneBy id . pruneBy transpose . pruneBy boxes
 ​where
 pruneBy f = f . map func . f

allOptions​ :: ​Grid​ [a] -> [​Grid​ a]
allOptions​ g = cardProd $ map cardProd g
 ​where
 cardProd [] = [[]]
 cardProd (x:xs) = [y:ys | y <- x, ys <- cardProd xs]

-- start with the cell have fewest choices
try​ :: ​Grid​ ​Options​ -> [​Grid​ ​Options​]
try​ ops = [rows_t ++ [row_t ++ [c] : row_aft] ++ rows_aft | c <- cs]
 ​where
 (rows_t, row:rows_aft) = break (any fit) ops
 (row_t, cs:row_aft) = break fit row
 fit t = (length t == len)
 len = minimum . filter(>​1​) . concat $ map (map length) ops

search​ :: ​Grid​ ​Options​ -> [​Grid​ ​Cell​]
search​ ops
 | any (any null) ops || not (success ops) = []
 | all (all (\l -> length l == ​1​)) ops = allOptions ops
 | otherwise = [s | ops' <- try ops, s <- search (arriveAt prune ops')]
 ​where
 arriveAt f x

 | x == f x = x
 | otherwise = arriveAt f (f x)
 success t = all good (t) && all good (transpose t) && all good (boxes t)
 good = noDup . concat . filter (\l -> length l == ​1​)
 noDup l = nub l == l

-- convert grid cell to sudoku string
deFormat​ :: ​Grid​ ​Cell​ -> ​String
deFormat​ cl = toStr $ concat cl
 ​where
 toStr [] = ​""
 toStr (​Nothing​:xs) = ​"."​ ++ toStr xs
 toStr (​Just​ a:xs) = [intToDigit a] ++ toStr xs

-- convert sudoku string to grid cell
format​ :: ​String​ -> ​Grid​ ​Cell
format​ xs
 | length xs == ​0​ = [[]]
 | otherwise = (takeS ​9​ xs) : (format (drop ​9​ xs))
 ​where
 takeS :: ​Int​ -> ​String​ -> ​Row​ ​Cell
 takeS ​0​ _ = []
 takeS _ [] = []
 takeS _ [x] = convert x
 takeS n (x:xt) = convert x ++ takeS (n-​1​) xt
 convert x = ​if​ x == '.' ​then​ [​Nothing​] ​else​ [​Just​ (digitToInt x)]

solve​ :: ​String​ -> [​String​]
solve​ str = mtxToStr matrix
 ​where
 matrix = search $ prune $ options $ format str
 mtxToStr mtx = [deFormat m | m <- mtx]
 options = map (map cur)
 cur v = ​if​ v == ​Nothing​ ​then​ [​Just​ i | i <- [​1.​.​9​]] ​else​ [v]

Spec.hs(test file)

import​ Sudoku

eg1​ :: ​String
eg1​ = ​"3.6.7...........518.........1.4.5...7.....6.....2......2.....4.....8.3.....5....."
eg2​ :: ​String
eg2​ = ​"1.....3.8.7.4..............2.3.1...........958.........5.6...7.....8.2...4......."

eg3​ :: ​String
eg3​ = ​".237....68...6.59.9.....7......4.97.3.7.96..2.........5..47.........2....8......."

main​ :: ​IO​ ()
main​ = ​do
 runTest eg1
 runTest eg2
 runTest eg3

runTest​ :: ​String​ -> ​IO​ ()
runTest​ eg = ​do
 putStrLn $ ​"running test"
 putStrLn $ ​"case: "​ ++ eg
 putStrLn $ ​"answer: "​ ++ $ concat $ solve eg

Explanation of my solution

A sudoku problem is described as a 81 characters string. And the "solve" function takes in a
sudoku string and return a list of solutions in the format of strings. For a single Sudoku problem,
I start with a brute force backtracking solution. At first, I take in the sudoku string and parse it
into a 9*9 Maybe grid. Cell will no number filled in will be filled in with "Nothing". Then I filled in
all options(from 1 to 9) into "Nothing" cells, then start brute force searching until every cell only
has one option left. This is the 1st version of my solution and it's extremely slow. Then I start to
prune some unnecessary branches to save some search time, which is called constraint
propagation. If you make a choice on current cell, then choices on cells on the same
row/column/box will be affected. So I delete invalid options before next search to save some
time. And when I start searching, I start will the cell has the fewest options left, which will also
make the search faster.

Test
Test environment:
OS: Ubuntu 18.04.1
Mem: 16GB
CPUs: 8 vCPUs

1. Comparing with online solution for a single problem

A ​Constraint Propagation solution​ by Peter Norvig:
solving same Sudoku problem:

https://wiki.haskell.org/Sudoku#Constraint_Propagation_.28a_la_Norvig.29

".......2143.......6........2.15..........637...........68...4.....23........7...."

 running time - till the solution is printed

Peter Norvig's 0.025s

mine 0.938s

I tried a lot to optimize my logic and prune more branches before searching, but my
solution is still much more slower than Peter Norvig's. It seems to me that the complexity
of Haskell is not that observable and don't similar to the algorithm logic. And this is
different in object oriented languages. In OO languages and other procedure oriented
languages, it's easier to analyze running time. I searched online about this problem and
one answer is reasonable to me. It says that OO and PO languages are based on turing
machine, which is easier to analyze time complexity. So most algorithms we learned in
"Introduction to Algorithms" so far are based on this, and it's easier to learn. But Haskell
and other languages are based on lambda calculus. There's a ​paper​ talked about this,
and it's hard and meaningless to apply Big O notation on functional languages. So this is
the reason why two programs' running time may differ a lot even if they follow the same
pseudo code. But how can we write efficient code? Do we have to run profiling everytime
to check the bottleneck? Or maybe functional programming languages shouldn't be used
at efficiency critical situation? There's a book called "Pure functional data structure" and
from that I know the data structures behind functional languages is totally different from
what I used before. Simply applying my experience from that is definitely a wrong
decision.

Profiling for my final solution:

https://arxiv.org/abs/1405.3311

The "minus" function is very slow, but even if I can improve its speed as other functions
like "boxes", it still can't catch up with Peter Norvig's solution.
And this is the profiling for his solution:

And his solution is not the fastest among all Sudoku solvers. How to write efficient and
elegant Haskell code is still an open question to me. :)

Then I dig deeper about Peter Norvig's solution. It turns out his ​original solution​ is in
Python and Emmanuel ported his thoughts to Haskell. And ​here​ is the email thread
about how did Emmanuel and some gurus improve his code. I read all those emails,
though they made the code very fast at last, they still can't draw a conclusion why it ran
fast like that. Some said using array is faster than list in this problem, some said a better
algorithm is a better optimization. My conclusion is, I should know better about data
structures/packages commonly used in Haskell, and learn more about functional
programming paradigm and functional thoughts. And I gradually agree with Yitz said in
the email thread: "But I personally find that for my own purposes, pure, simple, clear
Haskell is almost always more than fast enough. And it saves truckloads of debugging
time."

2. Running parallely

Before I start this project, I don't know why Haskell divided into parallel and concurrent
programming two parts. But after I read this ​notes​, which is written by Simon
Marlow(author of Parallel and Concurrent Programming in Haskell), I think I gradually
understand why it is designed like this. Parallel is typically used when you want to run a
program on multiple core. Although in some occasions in OO languages, we start
multiple processes to run faster instead of using multiple threads. I think the idea is
similar but the mechanism is different. This kind of parallel requires no data exchanging
in sub-problems. And in Haskell, spark pool is implemented as a ring buffer. Though I'm
not sure will there be "fork" system call happens or not when you use spark in Haskell on
multi-cores. But more memory level operation and less fork is always good for efficiency.
And concurrency is different, it supports thread communication but at the cost of
efficiency. So for this kind of problem, like solve many Sudoku/Kenken problems, and
web crawler, I would like to use parallel. But parallel granularity is still a hard problem.

Because my solution is too slow, 1000 problems will take forever, so I tested with much
less problems in the following tests.

50 easy problems running with 7 cores:

http://norvig.com/sudoku.html
https://mail.haskell.org/pipermail/haskell-cafe/2007-August/031049.html
http://www.it.uu.se/edu/course/homepage/avfunpro/ht17/haskell-parallel-marlow.pdf

From this we can say that tasks are evenly dispatched.

And from this graph, we can see that HEC5 ran for quite a long time, for job 10. This
search takes too long, so that running time on different core differs a lot.

For 5 cores and 3 cores are similar.

But 3 cores is the fastest among these 3 tests.

For 2 cores:

So running with 3 cores is (maybe) the fastest among all my test. I think for some
Sudoku problems, search with my algorithm is very slow. So how did it dispatch tasks
will affect total running time a lot.

Acknowledgement
I'd like to thank Prof. Edwards and TAs for their teaching and homework design. I have to say
homework are very interesting. This course shows me a brand new programming paradigm, and
gives a good start on functional programming languages. I have to admit that I don't have
enough to finish the concurrent programming part as I discussed in the project proposal. I need
to do a surgery 2 days later and have to be lying in bed for 2 weeks or more. So I just tried to
finish this project as fast as I can. This is the last course I have at Columbia. I'm so glad to meet
all the amazing professors and classmates, and it's a memorable journey. I did my best on this
project and got what I wanted to learn, though if I have enough time I can definitely do more. :)
It's a pity that I can't attend last several classes. Thank you for reading this report and wish you
all the best!

