report.md

Project Report

12/18/2019

Chengtian Xu

Abstract

This is the project report for my final project for Parallel Functional Programming class 2019. My project was
Othello played by two Als and with minimax of depth 3 and 4. To finish a game with depth > 3 with single core
takes really long time, but with parallelism and 4 cores it is quite fast.

The program does a little simple rendering of the game, one snapshot of the final board looks like:

e 1 2 3 4 5 6 7
e e e it L L L e
01 O0OTOITOITOIOIOI X
e e it e S L
I X1TO01TO0O1TOIXI1OI XTI X
e e e it L L L e
I X1 O0lTO0OlTOIOIXI| XTI X |
e e it e S L
I XTI XTO0OlTOI X I X1 X1 X
e e e it L L L e
| I X I XTI XTI X101l X1 X |
e e it e S L
O I XTI XTI XTI XTI X1 X1 X|
e e e it L L L e
O I XTI XTI XTI XTI X1 X1 X
e e it e S L
O I XTI XTI XTI XTI X1 X1 X|
e e e it L L L e

Compile & Run

Prerequisites: stack/cabal ghc, threadscope

To compile, run

To run with single core and display time analytics, run
1/9



report.md 12/18/2019

e o run with four cores and display time analytics, run

¢ To run and output a eventlog for threadscope to inspect, run , this outputs
othello.eventlog

e To inspect with threadscrope, run

Performance Enhancement with Strategy

Parts of Program Parallelized

The major place for the program to be parallelled at was inside the minimax algorithm. When a player A using
minimax tries to maximize its advantage over the opponent, it evaluates multiple branches (depends on games,
in this case the possible legal moves) down to a certain depth, and then choose the one with maximum
advantage.

Haskell tool used for Parallelism

| choose to use the Strategy package (parList, parWith, rdeepSeek, etc.) because they provide very easily usable

parallel strategies on top of different datastructures, also | really like how it separates the algorithm from the

parallism using keywords like . They make the code easy to understand. The exact strategy | used is
when | called

Result and Performance measurement

1. Experiments with minimax of depth 3

o Since my Mac is quad-core, | tested at most with 4 cores.
o When | ran with , the result is the following:

2/9



report.md

57,254,026,704 bytes
137,107,488 bytes
87,360 bytes

29,192 bytes

Gen 0 54823 colls,
28 colls, @ par

Gen 1

12/18/2019

allocated in the heap

copied during GC

maximum residency (28 sample(s))
maximum slop

@ MB total memory in use (@ MB lost due to fragmentation)

@ par

Tot time (elapsed) Avg pause Max pause
0.422s 0.458s 0.0000s 0.0001s
0.003s 0.003s 0.0001s 0.0002s

TASKS: 4 (1 bound, 3 peak workers (3 total), using -N1)

SPARKS: 368083(0@ converted, @ overflowed, @ dud, 241450 GC'd, 126633 fizzled)

INIT time
MUT time
GC time
EXIT time
Total time

Alloc rate

0.000s ( 0.002s
21.105s ( 21.343s
0.425s ( 0.462s
0.000s ( 0.008s
21.530s ( 21.815s

2,712,810,935 bytes

elapsed)
elapsed)
elapsed)
elapsed)
elapsed)

per MUT second

Productivity 98.0% of total user, 97.8% of total elapsed

o Threadscope shows the following:

Timeline

Actiny

HEC D

]

Time | Heap |GG |Spark stats | Spark sizes| Process info | Raw events

Total time: 21.26s
Mutator time: 20.83s
GC time: 0.43s
Productivity: 98.0% of mutator vs total

o When | ran with

, the result is the following:

3/9



report.md

X won by 4
60,763,541,784 bytes
153,064,880 bytes
367,544 bytes
70,528 bytes

Gen 0 15018 colls, 15018 par
Gen 1 213 colls,

allocated in the heap
copied during GC
maximum residency (213 sample(s))

maximum slop
@ MB total memory in use (@ MB

212 par

Tot time (elapsed) Avg pause
14.695s 0.197s 0.0000s
@.287s 0.014s 0.0001s

Parallel GC work balance: ©69.96% (serial 0%, perfect 100%)

TASKS: 1@ (1 bound, 9 peak workers (9 total), using -N4)

lost due to fragmentation)

Max pause
0.0010s
0.0002s

12/18/2019

SPARKS: 384477(35697 converted, @ overflowed, @ dud, 225243 GC'd, 123537 fizzled)

INIT time 0.001s ©.003s
MUT time 9.339s 6.098s
GC time  14.982s 0.211s
EXIT time 0.000s 0.012s
Total time  24.323s 6.324s

Alloc rate 6,506,094,748 bytes

elapsed)
elapsed)
elapsed)
elapsed)
elapsed)

per MUT second

Productivity 38.4% of total user, 96.4% of total elapsed

o Threadscope shows the following:

4/9




report.md 12/18/2019

Timeline

HEG O

HEG 1

HEG 2

HEC 3

]
Time | Heap | GC | Spari stats | Spark sizes | Process info | Raw events

aaaaaaa

Total time: B.55s
Mutator time: 6.34s
GC time: 0.21s
Productivity: 96.8% of mutator vs total

2. Experiment with minimax of depth 4 (4 core test only).

o When | ran with , the result is the following:

5/9



report.md

12/18/2019

749,645,794 ,024 bytes allocated in the heap
1,895,703,872 bytes copied during GC
464,528 bytes maximum residency (1187 sample(s))
73,736 bytes maximum slop
@ MB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen @ 185542 colls, 185542 par 222.273s 2.782s @.0000s @.0097s
Gen 1 1187 colls, 1186 par 1.956s ©.095s 0.0001s 0.0021s

Parallel GC work balance: 71.96% (serial 0%, perfect 100%)

TASKS: 10 (1 bound, 9 peak workers (9 total), using -N4)

SPARKS: 4808723(92883 converted, @ overflowed, @ dud, 2883146 GC'd, 1832694 fizzled)
INIT time 0.000s ( ©0.003s elapsed)

MUT time 124.799s ( 85.510s elapsed)

GC time 224.229s ( 2.877s elapsed)

EXIT time 0.000s ( ©0.008s elapsed)
Total time 349.028s ( 88.398s elapsed)

Alloc rate 6,006,839,574 bytes per MUT second

Productivity 35.8% of total user, 96.7% of total elapsed

Speedup Analysis

From the above experiment, | was able to achieve a speedup of , which is quite

good given we are using 4 times as many cores.

Code Listing

import Data.List as L

import Data.Maybe

import qualified Data.Map as M

import Control.Parallel.Strategies(using, parList, rseq)

data
type =
type

| | deriving (Eq, )

)

I — 1
-

flipC :: —>
flipC =
flipC =
flipC _ =

allMoves :: —> —> [Pos]
allMoves color board = filter (isLegal color board) [(x, y) | x <= [ Il
y <- [ 1]

where isLegal color board pos = cellsChanged color board pos /= []

6/9



report.md 12/18/2019
&& isNothing (M. lookup pos board)

—— Number of cells changed due to a step
cellsChanged :: Color —> Board -> Pos —> [Pos]
cellsChanged color board pos
| null flipped = []
| otherwise = pos : flipped
where flipped = concatMap (rowChange True color board pos)
[(@p 1); (1, 1); (1r 0)1 (1r _1)1 (01 _1)1 (_1r _1)1 (_11
0), (-1, 1)]
rowChange isFirst color board pos dir
| nextColor == Just (flipC color) = case restOfRow of
[] - []
(x:xs) —> if isFirst then
restOfRow
else pos :
restOfRow
| nextColor == Just color = [pos | not isFirst]
| otherwise = []
where nextPos = (\(x, y) (dx, dy) - (x + dx, y + dy)) pos dir
nextColor = M.lookup nextPos board
restOfRow = rowChange False color board nextPos dir

—— Calculates advantage of a player/color

advCount :: Color —> Board —> Int
advCount color board = sum $ map (\(_, x) —> advPerCell x) $ M.tolList
board
where
advPerCell x

| x == color =1

| x == Empty = 0

| otherwise = -1

—— Heuristic for bottom level miniMax

heuristic :: Color —> Board —> Int
heuristic color board = advCount color board + 20 x optCountAdv color
board

where

optCountAdv :: Color —> Board —> Int

optCountAdv color board = optCounts color board - optCounts (flipC
color) board

optCounts cl bd = length $ allMoves cl bd

— Played a move and get a new board
step :: Color —> Board —> Pos —> Board
step color board pos = M.union
(M.fromList (zip (cellsChanged color board pos) (repeat color))) board

—— Optimal move a player can take
optMove :: Color —> Board —> Pos
optMove color board =
fst $ maximumBy (\(_, x) (_, y) —> compare x y)
(map (\pos —> (pos, miniMax 4 color (step color board pos)))
(allMoves color board))

719



report.md 12/18/2019

—— The minimax algorithm
miniMax :: Int —> Color —> Board —> Int
miniMax depth color board
| gameOver = if advCount color board > 0
then 10000000
else -10000000
| depth <= 0 = heuristic color board
| otherwise = if nc /= color
then —-maxAdvOp
else maxAdvOp
where
opMoves = allMoves (flipC color) board
moves = allMoves color board
gameOver = null moves && null opMoves
nc = if opMoves /= [] then flipC color else color
ncMoves = if nc /= color then opMoves else moves
maxAdvOp = maximum (map
(miniMax (depth - 1) nc . step nc board)
ncMoves ‘using’ parlList rseq)

—— Renders the color pieces or empty cells
colorToChar :: Color — String

colorToChar Empty =" "

colorToChar White = "0"

colorToChar Black = "X"

—— Renders the entire board
renderBoard :: Board —> String
renderBoard board =
"\n 0 1 2 3 4 5 6 7\n +——F——F——F———f———f————+
—+\n" ++

intercalate "\n + : : : : : : : +\n" (map (renderRow
board) [0 .. 7])
++ "\n + } : } ¢ } } ¢ +\n"
where renderRow board row = show row ++ " | " ++
intercalate " | " [helper (x, row) | x <= [0 .. 7]] ++ " | "

helper position = colorToChar (fromMaybe Empty (M.lookup position
board))

—— Executions after game is over

gameOver :: Color —> Int -> IO ()
gameOver color advCount
| advCount == 0 = putStr "Game tie\n"

| advCount > @ = putStr (colorToChar color ++ " won by " ++
show advCount ++ "\n")

| otherwise = putStr (colorToChar (flipC color) ++ " won by " ++
show (-advCount) ++ '"\n")

—— Major function of interative gameplay

go :: Color —> Board —> I0 ()

go color board =
if null (allMoves color board) && null (allMoves (flipC color) board)
then gameOver color $ advCount color board

879



report.md
else do

let oc = flipC color
move = optMove color board
nb = step color board move
nc = if allWMoves oc nb /= [] then oc else color

putStr (renderBoard board)

go nc nb

main :: I0 ()

main = go White newBoard
where newBoard = M.fromList

[((3, 3), wWhite), ((4, 4), White), ((3, 4), Black),

3), Black)]

9/9

12/18/2019

((4,



