
report.md 12/18/2019

1 / 9

Project Report
Chengtian Xu

Abstract
This is the project report for my final project for Parallel Functional Programming class 2019. My project was
Othello played by two AIs and with minimax of depth 3 and 4. To finish a game with depth > 3 with single core
takes really long time, but with parallelism and 4 cores it is quite fast.

The program does a little simple rendering of the game, one snapshot of the final board looks like:

Compile & Run
Prerequisites: stack/cabal ghc, threadscope
To compile, run stack ghc -- -O2 -threaded -rtsopts -eventlog othello.hs
To run with single core and display time analytics, run ./othello +RTS -N1 -s

report.md 12/18/2019

2 / 9

To run with four cores and display time analytics, run ./othello +RTS -N4 -s
To run and output a eventlog for threadscope to inspect, run ./othello +RTS -N1 -l, this outputs
othello.eventlog
To inspect with threadscrope, run threadscope othello.eventlog

Performance Enhancement with Strategy

Parts of Program Parallelized

The major place for the program to be parallelled at was inside the minimax algorithm. When a player A using
minimax tries to maximize its advantage over the opponent, it evaluates multiple branches (depends on games,
in this case the possible legal moves) down to a certain depth, and then choose the one with maximum
advantage.

Haskell tool used for Parallelism

I choose to use the Strategy package (parList, parWith, rdeepSeek, etc.) because they provide very easily usable
parallel strategies on top of different datastructures, also I really like how it separates the algorithm from the
parallism using keywords like using. They make the code easy to understand. The exact strategy I used is
using parList rseq when I called map.

Result and Performance measurement

1. Experiments with minimax of depth 3

Since my Mac is quad-core, I tested at most with 4 cores.
When I ran with ./othello +RTS -N1 -s, the result is the following:

report.md 12/18/2019

3 / 9

Threadscope shows the following:

When I ran with ./othello +RTS -N4 -s, the result is the following:

report.md 12/18/2019

4 / 9

Threadscope shows the following:

report.md 12/18/2019

5 / 9

2. Experiment with minimax of depth 4 (4 core test only).

When I ran with ./othello +RTS -N4 -s, the result is the following:

report.md 12/18/2019

6 / 9

Speedup Analysis

From the above experiment, I was able to achieve a speedup of (21.815 / 6.324) = 3.45, which is quite
good given we are using 4 times as many cores.

Code Listing

import Data.List as L
import Data.Maybe
import qualified Data.Map as M
import Control.Parallel.Strategies(using, parList, rseq)

data Color = White | Black | Empty deriving (Eq, Show)
type Pos = (Int, Int)
type Board = M.Map Pos Color

-- Flip the current color to get next color
flipC :: Color -> Color
flipC White = Black
flipC Black = White
flipC _ = Empty

-- All possible legal moves a given current player and board
allMoves :: Color -> Board -> [Pos]
allMoves color board = filter (isLegal color board) [(x, y) | x <- [0..7],
y <- [0..7]]
 where isLegal color board pos = cellsChanged color board pos /= []

report.md 12/18/2019

7 / 9

 && isNothing (M.lookup pos board)

-- Number of cells changed due to a step
cellsChanged :: Color -> Board -> Pos -> [Pos]
cellsChanged color board pos
 | null flipped = []
 | otherwise = pos : flipped
 where flipped = concatMap (rowChange True color board pos)
 [(0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1), (-1,
0), (-1, 1)]
 rowChange isFirst color board pos dir
 | nextColor == Just (flipC color) = case restOfRow of
 [] -> []
 (x:xs) -> if isFirst then
restOfRow
 else pos :
restOfRow
 | nextColor == Just color = [pos | not isFirst]
 | otherwise = []
 where nextPos = (\(x, y) (dx, dy) -> (x + dx, y + dy)) pos dir
 nextColor = M.lookup nextPos board
 restOfRow = rowChange False color board nextPos dir

-- Calculates advantage of a player/color
advCount :: Color -> Board -> Int
advCount color board = sum $ map (\(_, x) -> advPerCell x) $ M.toList
board
 where
 advPerCell x
 | x == color = 1
 | x == Empty = 0
 | otherwise = -1

-- Heuristic for bottom level miniMax
heuristic :: Color -> Board -> Int
heuristic color board = advCount color board + 20 * optCountAdv color
board
 where
 optCountAdv :: Color -> Board -> Int
 optCountAdv color board = optCounts color board - optCounts (flipC
color) board
 optCounts cl bd = length $ allMoves cl bd

-- Played a move and get a new board
step :: Color -> Board -> Pos -> Board
step color board pos = M.union
 (M.fromList (zip (cellsChanged color board pos) (repeat color))) board

-- Optimal move a player can take
optMove :: Color -> Board -> Pos
optMove color board =
 fst $ maximumBy (\(_, x) (_, y) -> compare x y)
 (map (\pos -> (pos, miniMax 4 color (step color board pos)))
 (allMoves color board))

report.md 12/18/2019

8 / 9

-- The minimax algorithm
miniMax :: Int -> Color -> Board -> Int
miniMax depth color board
 | gameOver = if advCount color board > 0
 then 10000000
 else -10000000
 | depth <= 0 = heuristic color board
 | otherwise = if nc /= color
 then -maxAdvOp
 else maxAdvOp
 where
 opMoves = allMoves (flipC color) board
 moves = allMoves color board
 gameOver = null moves && null opMoves
 nc = if opMoves /= [] then flipC color else color
 ncMoves = if nc /= color then opMoves else moves
 maxAdvOp = maximum (map
 (miniMax (depth - 1) nc . step nc board)
 ncMoves `using` parList rseq)

-- Renders the color pieces or empty cells
colorToChar :: Color -> String
colorToChar Empty = " "
colorToChar White = "O"
colorToChar Black = "X"

-- Renders the entire board
renderBoard :: Board -> String
renderBoard board =
 "\n 0 1 2 3 4 5 6 7 \n +---+---+---+---+---+---+---+--
-+\n" ++
 intercalate "\n +---+---+---+---+---+---+---+---+\n" (map (renderRow
board) [0 .. 7])
 ++ "\n +---+---+---+---+---+---+---+---+\n"
 where renderRow board row = show row ++ " | " ++
 intercalate " | " [helper (x, row) | x <- [0 .. 7]] ++ " | "
 helper position = colorToChar (fromMaybe Empty (M.lookup position
board))

-- Executions after game is over
gameOver :: Color -> Int -> IO ()
gameOver color advCount
 | advCount == 0 = putStr "Game tie\n"
 | advCount > 0 = putStr (colorToChar color ++ " won by " ++
 show advCount ++ "\n")
 | otherwise = putStr (colorToChar (flipC color) ++ " won by " ++
 show (-advCount) ++ "\n")

-- Major function of interative gameplay
go :: Color -> Board -> IO ()
go color board =
 if null (allMoves color board) && null (allMoves (flipC color) board)
 then gameOver color $ advCount color board

report.md 12/18/2019

9 / 9

 else do
 let oc = flipC color
 move = optMove color board
 nb = step color board move
 nc = if allMoves oc nb /= [] then oc else color
 putStr (renderBoard board)
 go nc nb

main :: IO ()
main = go White newBoard
 where newBoard = M.fromList
 [((3, 3), White), ((4, 4), White), ((3, 4), Black), ((4,
3), Black)]

