
Parallelized N-Gram Language Modeling with Stupid Backoff
for Text Generation

Project Report - COMS 4995 Parallel Functional Programming

Dave Epstein
ne2260

1 INTRODUCTION
I develop a parallelized n-gram language model in Haskell. The pro-
gram works on arbitrarily sized corpora of text in any whitespace-
delimited language (and can be extended to others by changing the
words and splitSpecialChars functions). The program achieves
around 94% of the ideal speedup given by Amdahl’s law on 8 HECs
(6.14×, on average) and processes the majority of Wikipedia (>3M
documents)1 into a language model in 10 minutes. It lazily builds
up and merges a forest of n-gram tries and is optimized for efficient
usage in common settings. When the model encounters unseen
sequences of text during inference, it uses the stupid backoff strat-
egy to compute a reasonable probability estimate. In the generative
setting, the model implements a variant of diverse beam search2
to create more interesting, varied outputs. The entire program, in-
cluding imports of dependencies, comments, error handling, and
command line parsing, is implemented in 352 lines. The core logic
is around 150 lines.

2 BUILDING A LANGUAGE MODEL
The primary part of this program can be thought of as a function
that takes in an input file of some text type and returns an n-gram in
some data structure. In this section, I describe the approach I use to
implement this function (don’t worry, I use far more than just one
function to do so). The general approach reads in text lazily with
Data.Text.Lazy.IO to a function splitIntoDocs. The corpus is
then tokenized by calling tokenize and processed into a forest of
tries by calling triesFrom.

2.1 Processing Input
Since corpus files may be very large (I use one around 6 GB), reading
it all into memory before running any processing or computation
is exorbitantly wasteful. Lazy IO is a necessity, with three main
options: String, ByteString, and Text. Text deals most naturally
with actual, non-byte-level text at an almost negligible increase in
runtime and memory, while also allowing the usage of non-ASCII
characters (critical for non-English language models). String is
a linked list of characters internally as opposed to Text’s packed
representation, and as such is empirically worse in every way.

The raw Text is converted into a Corpus composed of Documents,
which in turn are composed of lines of Text, by processing with
splitIntoDocs (pack docSep) . filter (/= empty) . lines.
docSep, passed in through the command line, marks the value of
a line that delineates between documents in the corpus file. Each
UntokenizedLine is transformed into a Line composed of Tokens

1https://bit.ly/2OXRSkj
2Vijayakumar, Ashwin K., et al. "Diverse beam search: Decoding diverse solutions
from neural sequence models." arXiv preprint arXiv:1610.02424 (2016).

by calling map . map tokenize.3 The user can also specify how
many documents to read from the corpus, useful for large corpora,
with the ndocs parameter.

Once we have the input text file segmented into documents
of tokenized lines, we need to slide an n-wide window across a
line to generate all possible n-grams. In practice, we want to keep
even incomplete n-grams at the end of the sentence to maintain
accurate word counts. nGrams n line :: [NGram] runs this
operation, making sure to pad the beginning of the line with n − 1
special tokens <s> indicating beginning of sentence. For example,
with n = 3 and a sentence ["point", "free", "programming"],
the first n-gram generated is ["<s>", "<s>", "point"] and the
last one is ["programming"]. These n-grams are computed by first
concatenating all Lines in a document and then running the n-wide
window on the concatenated sentence.

2.2 Storing N-Grams
Now that we have described how to go from Text -> [NGram],
we can start talking about the fun stuff. We need an efficient way
to store these n-grams in memory that matches the access patterns
of realistic language model usage while not being prohibitively
expensive (in either space or time) to create. I define realistic lan-
guage model usage as using either of the two provided test-time
functionalities: sentence probability scoring and sentence comple-
tion using random, greedy, or diverse beam search. These usage
patterns require the following main operations:

(1) getCount :: NGram -> Int
(2) getPrevCount :: NGram -> Int, which can be defined as

f [] = 0 and f x:xs = getCount xs since type NGram
= [Token]

(3) merge :: OurDataStructure -> OurDataStructure ->
OurDataStructure to combine different instances (e.g. across
documents, helpful for parallelizing)

(4) mergeMany :: [OurDataStructure] ->
OurDataStructure which trivially follows

2.2.1 Bad: Lists and Maps. The most naïve way to store the list of
NGrams and their counts may be [(NGram, Int)]. This is pretty
bad because operations (1) and (2) above cost O(n · N) time, and
the last two costO(n ·N 2), where N is the total number of n-grams
being considered by the function and n is as in n-gram. We can not
combine the first two operations into one pass either since the data
structure is flat and not hierarchical. Still, some of these costs can
be improved by using Map NGram Int or some variant, decreasing
the cost4 for operations (1) and (2) to O(n logN) and operations

3type Token = T.Text, type Line = [Token], etc.
4For all reasonable values of n and N

Epstein

0 1000 2000 3000 4000 5000
99.9

99.92

99.94

99.96

99.98

100

Map size

C
u

m
u

la
ti

ve
 f

re
q

u
en

cy

Figure 1: Cumulative distribution of map sizes at each Trie
node, after processing 1M documents with n = 5. The vast
majority of tries hold a mapping to under 10 children, making
most lookups take effectively constant time. The mean map has 1.3
elements in it.

(3) and (4) to O(n · N).5 In practice, both of these approaches are
prohibitively slow and memory-hungry. They both suffer from
a factor of N in all their costs since they use lists of tokens as
keys. This is particularly bad (since we exactly want to work in the
large-N regime) and should be avoidable with a more fitting data
structure...

2.2.2 Good: Tries. Let’s use tries (annoyingly pronounced just
like “trees") instead. Tries are frequently used as an efficient data
structure for storing strings, for applications like spell-checking (in
fact, Haskell has a very good one in Data.Trie). However, we can’t
use that implementation because we wish to store a Token at each
node and not a Char, so we make our own: data Trie = Trie
Int (Map Token Trie). Note that the Nil is implicitly provided
by a key’s absence from the map. In this formulation, an n-gram
is stored recursively in a trie, starting from a root node. Now, ops
(1) and (2) take O(n + logV) time on average, where V is the size
of the vocabulary we consider6, with no added cost of calling both
together (see L155-158 of Lib.hs). Figure 1 shows the sensibility
of these complexity derivations. Ops (3) and (4) now takeO(n) time
on average.7 Indeed, this is much better than using one global list
or map. Note that even in the worst-case scenario, the factor of N
is entirely absent from big-O costs (and V << N).

Storing Children. Since we use a recursive data structure, we
need some dynamic way to store children. Above, I suggest the
Map, but we can use List or HashMap instead (or, stupidly, IntMap
with a separately maintained Token -> Int function, but this is a
worse version of what HashMap does internally). Empirically, Map
and HashMap are best, and they perform almost identically. I suspect
the overhead of HashMap cancels out its faster lookup and merge
operations in a typical use-case. For simplicity, I just use Map.

Strictness. Having chosen Map to store Tries recursively, the
decision between a strict and lazy version remains, with profound
effects on parallelism. The lazy version offloads all work on its keys

5Assuming the two maps never differ in size by more than some large constant factor
6The logV term comes from the fact that every word in the vocabulary will appear in
the root node’s Map. If every word realistically could follow every other word in some
language, this becomes O (n logV). In practice, that does not happen.
7With the same assumptions about the long-tail distribution of language

to an on-demand basis, which is much less parallelizable than fully
evaluating a key as part of a sparked job. As such, performance
significantly improves by switching from Map.Lazy to Map.Strict.

Tries as Monoids. Joyously, our Tries are Monoids (see L23-
28 of Lib.hs). We now have operations (3) and (4) given by (<>)
and mconcat, and elegantly defined using Map.unionWith (<>) to
recurse.

2.3 Constructing a Model
Now, all that is left is to define a function triesFrom :: Corpus
-> Trie (the actual type signature in code is slightly different, and
returns a forest of tries [Trie]). This function builds a trie for
each document separately using buildTrie :: [NGram] -> Trie,
optionally prunes infrequent paths in the trie with pruneTrie, and
then optionally merges the tries using mergeTries (which utilizes
mconcat but is not identical to it when parallelizing). Of course,
this structure is designed with parallelism at the forefront, and it is
rich in maps of non-trivial functions that are well-suited to running
concurrently on separate cores.

We define buildTrie = foldl' insertNGram mempty, and
insertNGram traverses the input trie, calling itself to appropriately
augment nodes along the n-gram’s path (L126-134 in Lib.hs). Thus,
buildTrie inserts n-grams one at a time starting from an empty
trie. This operation is O(n · N) where there are N n-grams in the
input to the function.8 Note that this time complexity increases
to O(N 2) on one large list and O(N logN) on one large map (the
naïve structures discussed in Section 2.2.1), but stays the same if we
were to use a list instead of a map to store elements at trie nodes.
In practice, there is some constant factor that scales cost which
is exponentially larger when using lists (thanks to Map’s O(logN)

insert that doesn’t require a linear search).
The tries can then be optionally processed to prune low-frequency

paths to save memory and improve runtime slightly, and merged
into one final large trie. Thanks to Haskell’s laziness, though, it is
much faster not to eagerly merge all tries into one (very expensive
and, since it is a fold, not good for parallelizing). Instead, we lazily
merge tries when it is absolutely necessary, preferring strongly to
run independent computations on each trie and merge their results,
as discussed later in Section 4.3.

3 USING A LANGUAGE MODEL
Now that we have a built language model (in the form of a trie
forest) we should use it to do some cool things. In the project pro-
posal, I mentioned diverse beam search, which I implement and
discuss in Section 3.2.2. I also implement stochastic and greedy
sentence completion (the latter is beam search with β = 1), and
write a simple function to evaluate the likelihood of a sentence
given the training corpus. All the above functionalities use stupid
backoff internally. This functionality can be used, e.g., to discrimi-
nate between candidate speech transcripts or sentence translations
to find the most fluent one.

Since both general usagemodes follow the same “prompt-compute-
return” loop, I write a function promptLoop :: String -> (String

8Again under the assumption of very low average map size (or some constant upper
bound)

2

Parallelized N-Gram Language Modeling with Stupid Backoff for Text Generation

Sentence Score
he briefed reporters on the main contents of the statement 4.546
he introduced reporters to the main contents of the statement 0.535
he briefed to reporters the main contents of the statement 0.191

Figure 2: Sentence probability scores for three candidate sen-
tence translations (higher means more likely).9 The language
model is able to distinguish between small changes to select the
most fluent translation.

-> IO String) -> IO () which takes in a prompt string and a
stdin-to-output function and generalizes control flow.

3.1 Sentence Probability
The lineScore function takes in the trie forest and an untokenized
line (which is transformed into [NGram] using text processing func-
tions described in Section 2.1) and returns a probability score defined
as:

s({wi }
N
0) =

∑
{wi }

N
0

log P(wi |wi−n, . . . ,wi−1)

P(wi |wi−n, . . . ,wi−1) =
C(wi−n, . . . ,wi)

C(wi−n, . . . ,wi−1)

(1)

We work in log space and add to avoid numerical underflows. In
practice, when C(wi−n, . . . ,wi) = 0, the model defines:

P(wi |wi−n, . . . ,wi−1) = λ · P(wi |wi−n+1, . . . ,wi−1) (2)

This shrinks the context by one gram and scaling the score down
by a constant factor λ (I use λ = 0.4). Since this formulation no
longer yields a probability distribution where all terms sum up to
1, some NLP literature prefers using S for score instead of P for
probability. I avoid this notation here for conciseness.

The function nGramScore returns the probability score for one
n-gram by computing the getCount and getCountUpto values
sketched out in Section 2.2. This function is interesting since it
computes these counts for each trie in the forest separately and
parallelly, combines them by summing tuples, then computes the
final score. This is several times faster than lazily merging the tries
and taking the counts in the final merged trie, highlighting the
importance of correct order of operations. Further, each n-gram’s
score is computed independently and is parallelized.

Figure 2 demonstrates this functionality and shows some scores
assigned to three candidate translations output by a Chinese-to-
English translator. As expected, the most fluent sentence gets the
highest score.

3.2 Sentence Completion
The lineComplete function does some processing on the input
string received by promptLoop and feeds its last n-gram to ei-
ther of two monadic text-generation functions: randomSearch or
beamSearch. Both these functions call themselves to generate the
next token based on previous input and output. They terminate
with a 1% chance at each iteration, giving an expected sentence

9Speech and Language Processing (3rd ed. draft), Jurafsky and Martin
9https://www.oreilly.com/library/view/parallel-and-
concurrent/9681449335939/ch02.html

(1) The first $20 million is always the hardest, because it takes years to build up
the amount of existing support that an open entry creates. But in general,
once a winner is determined, it’s difficult for anybody to "squeeze" the other
bidders out of the process.

(2) The first blast of the trumpet comes from right in the middle of the crowd,
and it hits just above the one chord the trumpet has needed to play: B. You
can use the same concept here for things like A, E and G.

(3) The first Fat Truckers album is for sale, a 12-inch that features four songs—one
for each of the five main intersections of each company’s North American
route—with song titles such as "All Of These Cities Won’t Be There For Long"
and "Up On The Roof."

(4) The first circle of the Coronado Peninsula was closed off on March 29th, 1962
in an attempt to create a reef habitat that would protect the southern edge of
the Coronado Peninsula from encroachment by an expanding freeway.

(5) The first four years of the war involved about 110,000 combatants and 140,000
civilians. The troops and civilian forces suffered several thousand casualties
in the first six months, with about 650,000 people being injured.

Figure 3: “The first...": Some sentence completions with di-
verse beam search (β = 5). Capitalization and spacing were ad-
justed for readability.

Figure 4: Building a forest with triesFrom on 1M documents
with 8 cores. Threadscope shows near-perfect utilization through-
out the entire program runtime (full evaluation is forced using
deepseq). Note that times on the top axis are not wall-clock.

length of 100 tokens. This parameter is arbitrary and can easily be
consumed as a command line parameter if desired.

3.2.1 Stochastic. In stochastic text generation of n-grams, the ith
word is chosen with probability P(wi |wi−n, . . . ,wi−1) as defined in
Equation 1. A random number r ∈ [0, 1] is drawn and used to select
the next word, where each word covers up an interval of the [0, 1]
number line of length P(·). Computing this value across a forest
of tries for many words is somewhat expensive, so we merge trie
nodes as necessary with a light wrapper around mconcat and run
the computations on the result in the randomSearchTok function.

In this variant of stupid backoff, if the previous n − 1 words of
context never appeared in sequence in the training set, the function
resorts to using n − 2 words of context instead. Outputs from this
function are not insensible, since they are conditioned on training
data, but are still essentially nonsensical over long sequences. To
alleviate this, we need a better sampling strategy...

3.2.2 Diverse Beam Search. One slight adjustment we can make
to random search to output likelier sentences is to sample greedily

3

Epstein

0 5 10 15 20 25 30

1

2

3

4

5

6 # docs

10k

100k

1M

HECs

R
ea

l
ti

m
e

sp
ee

d
u

p

Figure 5: Real time speedup on 1-32 cores (n = 5). Best perfor-
mance is with 8 HECs which achieves up to a 6.5× speedup, 94% of
the limit given by Amdahl’s law.

instead, picking argmaxwi P(wi). However, these sentence tend to
be quite boring (think of spamming the middle suggestion given
by your phone’s autocomplete) and do not properly display the
breadth of language learned by even our simple n-gram model.

To reintroduce diversity into sentence completions, we can use
a greedy search where we take the β best alternatives from the
previous iteration (or the input sentence, at iteration 0), expand
them, pick the top β , and repeat. Of course, with β = 1 this is a
regular greedy search. In practice, β ∈ [3, 20] is used, and I set β = 5.
While standard beam search somewhat improves the variety of
outputs from the model, it still tends to have high overlap between
different beams of output.

To discourage this, the score assigned to an n-gram can be aug-
mented with a diversity constraint. The simplest one, which is often
used in practice with good results, assigns a penalty α to the ith

word of the bth beamwb
i if any ofwb′

i = w
b
i (b , b ′). With this sys-

tem in place (α = 20 in practice), the model outputs an interesting
variety of sentences (as in Figure 3).

4 PARALLELIZING
While the structures described above were of course designed with
parallelism in mind, they do not require it to run. On one core, the
program can process the entirety of the > 3M-article Wikipedia
corpus into a language model in under an hour. When multiple
cores are brought into the equation and the program is intelligently
parallelized (there are a few small pitfalls in algorithm design that,
when avoided, make a big difference), speedups of 6−7× are possible,
in close agreement with the theoretical limit yielded by Amdahl’s
law.

4.1 Amdahl Strikes Again
To compute the parallelizable portion of the task P in S = 1

(1−P)+ P
N
,

I run untokCorpus `deepseq` () to force the full processing of
the text file on one core (the tokenization is parallelized, so is not
included in this calculation). I then run the full computation of the
trie forest also on one core and set P as the ratio of these two times.
Averaging across three runs, I find P ≈ 2.95%, giving a maximum
theoretical speedup of 6.61× on 8 HECs or 33.9 as N → ∞. In
practice, the overhead of running on more cores seems to start

0 5 10 15 20 25 30

2

4

6

8

10 # docs

10k

100k

1M

HECs

T
o
ta

l
ti

m
e / e

la
p

se
d

 t
im

e

Figure 6: Total to elapsed time ratio on 1-32 cores (n = 5).
Marlow10uses this metric to measure the effectiveness of code par-
allelization. This ratio gives some intuition into the peak at real time
speedup at 8 HECs: the effectiveness increases at a much slower
rate after that point.

overpowering the benefits after 8 HECs. Figure 5 shows wall-clock
speedup on different corpus sizes as a function of number of cores.

4.2 A Universal Parallelization Strategy
Compared to most other languages, Haskell has a truly beautiful
ability to parallelize. I define a helper function par' = (`using`
parBuffer bufferSize rdeepseq) which I apply systematically
to eight different map operations, which range from tokenizing
corpous documents to computing beam search candidates. Each
one of these improvements significantly improves speedup metrics
and together they yield a very satisfying graph of CPU utilization
(Figure 4).

Further indicating the effectiveness of this simple approach is the
total-to-elapsed ratio in Figure 6 (computed by running programs
with +RTS -s) that Marlow uses to quantify the power of going
parallel. At 32 HECs, this ratio tops out at 10.5. I opt for parBuffer
instead of parList because they behave similarly on shorter lists
but the former is not strict in the spine of the list, especially impor-
tant for the size of corpus being considered in this project. I find
this universal, relatively naïve approach to be highly effective.

The program scales effectively (around O(N)) to large corpora.
Figure 7 shows program run-time as a function of corpus size. One
could even download a more recent dataset (∼3.3B words) used to
train state-of-the-art machine learning models, which is around
double the size of the corpus I use, and build an n-gram model in
under half an hour on an 8-core machine!

4.3 Lazy N-Gram Merging
A sensible approach, and indeed the one I initially adopted, is to
eagerly merge all the tries collected for each document into one
big trie. This becomes quite an expensive operation when merging
larger tries, and tries get large very fast with a function like foldl'
mergeTwoTries mempty. One way to mitigate this damage is to
split the forest of tries into subforests of a fixed small size (say k),
merge each subforest separately and parallely, and return a new
forest (smaller by a factor of k), repeating until only one large trie is
left. This approach is already significantly faster empirically, and is
easily implemented in mergeTries (L146-150), but still slows down

4

Parallelized N-Gram Language Modeling with Stupid Backoff for Text Generation

runtime since the last larger merges keep only a fewHECs busy. The

100 2 5 1000 2 5 10k 2 5 100k 2 5 1M 2 5

0

100

200

300

400

500

600

docs

R
ea

l
ti

m
e

(s
e
c)

Figure 7: Execution time on 8 cores on corpora of 100-3M
documents. The x-axis is in log scale to show finer patterns in
data. Note that the function appears to grow on the order of N , the
size of the corpus.

key observation is that using the language model does not require
pre-merging the forest into one large trie. Many operations (such as
assigning a sentence a probability, as in Section 3.1) can be done on
each trie separately and cheaplymerged even acrossmillions of tries.
Other operations do require merging tries to sensibly implement,
but merging the trie nodes belonging to some (on average, quite
infrequent) n-gram is many times cheaper than pre-merging the
whole forest. Offsetting the merge operation either to cheap data
derived from each trie separately or to much smaller subtries was
probably the single largest contributor to faster runtime.

5 USAGE
The program can be simply built by executing stack build from
the program directory. It can then be run with stack exec --
stupidlm-exe [OPTIONS]. Running without any options yields
the following helptext:
Usage: stupidlm-exe (-m|--mode MODE) (-f|--corpus-file FILENAME)

[-n|--ngrams NUMBER] [--ndocs NUMBER]
[-s|--doc-separator SEPARATOR]
[-t|--freq-threshold NUMBER]
[--complete-mode MODE]

Build a language model from a given corpus, then use it to assign
probability scores to input lines, or to auto-complete them
(similar to your smartphone keyboard).

Available options:
-h,--help Show this help text
-m,--mode MODE Operating mode (buildOnly, score, complete)
-f,--corpus-file FILENAME

Path to corpus file
-n,--ngrams NUMBER Size of n-gram (default: 3)
--ndocs NUMBER Number of documents to parse (-1 to parse

all) (default: -1)
-s,--doc-separator SEPARATOR

Line that separates documents in
corpus (default: "---END.OF.DOCUMENT---")

-t,--freq-threshold NUMBER
Prune all n-grams that occur fewer than k
times (default: 0)

--complete-mode MODE Operating mode if --mode is complete
(beamSearch, greedy, random)
(default: "beamSearch")

The buildOnly mode processes a forest of tries and deepseqs
through them to force full evaluation. The other two modes imple-
ment the functionalities described in Section 3.

5

Epstein

6 CODE (352 LINES)
src/Lib.hs

1 {-# LANGUAGE OverloadedStrings #-}
2 {-# LANGUAGE ViewPatterns #-}
3

4 module Lib (splitIntoDocs, tokenize, pruneTrie, triesFrom, lineScore, lineComplete,
5 Trie, docNGrams, par') where
6

7 import Control.DeepSeq (NFData, rnf)
8 import Control.Monad (ap, join)
9 import Control.Parallel.Strategies (parBuffer, rdeepseq, using)
10 import Data.Char (isPunctuation, isSymbol)
11 import Data.List (foldl', foldl1', intercalate,
12 sortBy, unzip3, zip4)
13 import Data.List.Split (chunksOf, divvy, splitOn)
14 import qualified Data.Map.Strict as M
15 import Data.Maybe (mapMaybe)
16 import qualified Data.Text.Lazy as T
17 import System.Random (randomRIO)
18

19 --- Types ---
20 data Trie = Trie Count (M.Map Token Trie)
21

22 instance Semigroup Trie where
23 (Trie c1 m1) <> (Trie c2 m2) = Trie (c1 + c2) $ M.unionWith (<>) m1 m2
24

25 instance Monoid Trie where
26 mempty = Trie 0 M.empty
27 mconcat = foldl1' (<>)
28

29 instance NFData Trie where
30 rnf (Trie c m) = rnf c `seq` rnf m
31

32 instance Show Trie where
33 show t = show_ t 1
34 where
35 show_ (Trie c m) d
36 | null m = show c
37 | otherwise = "(" ++ show c ++ ", " ++
38 dictShow (sortBy (\(_, Trie a _) (_, Trie b _) -> compare b a) (M.toList m)) d
39 ++ ")"
40 dictShow l d = "{" ++ intercalate ", " (map (\(k, v) -> "\n" ++
41 replicate (d * 2) ' ' ++ show k ++ ": " ++ show_ v (d + 1))
42 l) ++ "\n" ++ replicate ((d - 1) * 2) ' ' ++ "}"
43

44 -- Types for building the trie --
45 type Token = T.Text
46

47 type Line = [Token]
48

49 type NGram = [Token]
50

51 type Document = [Line]
52

53 type Corpus = [Document]
54

6

Parallelized N-Gram Language Modeling with Stupid Backoff for Text Generation

55 type UntokenizedLine = T.Text
56

57 type UntokenizedDocument = [UntokenizedLine]
58

59 type UntokenizedCorpus = [UntokenizedDocument]
60

61 -- Types for using the trie --
62 type Count = Int
63

64 type ApproxCount = Float
65

66 type Score = Float
67

68 type BeamState = (NGram, Score, Line)
69

70 type PotentialBeamState = (NGram, Score, Line, [(Token, Score)])
71

72 --- Constants ---
73 bosToken :: Token
74 bosToken = "<s>"
75

76 bufferSize :: Int
77 bufferSize = 100
78

79 chunkSize :: Int
80 chunkSize = 10
81

82 backoffWt :: Float
83 backoffWt = 0.4
84

85 penaltyWt :: Float
86 penaltyWt = 20
87

88 --- Utility functions ---
89 par' :: NFData a => [a] -> [a]
90 par' = (`using` parBuffer bufferSize rdeepseq)
91

92 --- Functions for processing text ---
93 splitIntoDocs :: UntokenizedLine -> [UntokenizedLine] -> UntokenizedCorpus
94 splitIntoDocs docSep = splitOn [docSep]
95

96 naiveNGrams :: Int -> Line -> [NGram]
97 naiveNGrams _ [] = []
98 naiveNGrams n l@(_:xs) = take n l : naiveNGrams n xs
99

100 nGrams :: Int -> Line -> [NGram]
101 nGrams n toks = naiveNGrams n (replicate (n - 1) bosToken ++ toks)
102

103 -- Adapted from Data.Text's split function to keep separators
104 splitKeepSeps :: (Char -> Bool) -> T.Text -> [T.Text]
105 splitKeepSeps _ t@(T.null -> True) = [t]
106 splitKeepSeps p t = loop t
107 where
108 loop s
109 | T.null s' = [l]
110 | otherwise = l : T.singleton (T.head s') : loop (T.tail s')
111 where

7

Epstein

112 (l, s') = T.break p s
113

114 tokenize :: UntokenizedLine -> Line
115 tokenize = filter (/= T.empty) . splitSpecialChars . T.words . T.toLower
116 where
117 splitSpecialChars =
118 concatMap $ splitKeepSeps $ oneOf [isPunctuation, isSymbol]
119 oneOf ps = or . ap ps . return
120

121 --- Functions for building n-gram tries ---
122 docNGrams :: Int -> Document -> [NGram]
123 docNGrams = (. join) . nGrams
124

125 insertNGram :: Trie -> NGram -> Trie
126 insertNGram (Trie c m) [] = Trie (c + 1) m
127 insertNGram (Trie c m) (gram:grams) = Trie (c + 1) $ M.alter go gram m
128 where
129 go Nothing = Just $ insertNGram mempty grams
130 go (Just t) = Just $ insertNGram t grams
131

132 buildTrie :: [NGram] -> Trie
133 buildTrie = foldl' insertNGram mempty
134

135 allTriesFrom :: Int -> Corpus -> [Trie]
136 allTriesFrom n = par' . map (buildTrie . docNGrams n)
137

138 triesFrom :: Int -> Count -> Corpus -> [Trie]
139 triesFrom n = (par' .) . (. allTriesFrom n) . mapMaybe . pruneTrie
140

141 pruneTrie :: Count -> Trie -> Maybe Trie
142 pruneTrie gramThreshold (Trie c m)
143 | c < gramThreshold = Nothing
144 | otherwise = Just $ Trie c $ M.mapMaybe (pruneTrie gramThreshold) m
145

146 mergeTries :: [Trie] -> Trie
147 mergeTries [ts] = ts
148 mergeTries ts = mergeTries $ mergeTriesOnce ts
149 where
150 mergeTriesOnce = par' . map mconcat . chunksOf chunkSize
151

152 --- Functions for using n-gram tries to compute probability of text ---
153 -- (Count of w_i...w_i+n-1, Count of w_i...w_i+n-2)
154 counts :: NGram -> Count -> Maybe Trie -> (Count, Count)
155 counts _ prev_c Nothing = (0, prev_c)
156 counts [] prev_c (Just (Trie c _)) = (c, prev_c)
157 counts (gram:grams) _ (Just (Trie c m)) = counts grams c $ M.lookup gram m
158

159 countsStupidBackoff :: NGram -> Maybe Trie -> (ApproxCount, ApproxCount)
160 countsStupidBackoff [] _ = (backoffWt ^ (100 :: Int), 1) -- Word not seen in training
161 countsStupidBackoff ngram trie
162 | c == 0 =
163 let (c_bo, prev_c_bo) = countsStupidBackoff (tail ngram) trie -- Back off stupidly
164 in (backoffWt * c_bo, prev_c_bo)
165 | otherwise = (fromIntegral c, fromIntegral prev_c)
166 where
167 (c, prev_c) = counts ngram 0 trie
168

8

Parallelized N-Gram Language Modeling with Stupid Backoff for Text Generation

169 nGramScore :: [Trie] -> NGram -> Score
170 nGramScore tries ngram =
171 let (c, prev_c) =
172 sumTuples (par' $ map (countsStupidBackoff ngram . pure) tries)
173 in log c - log prev_c
174 where
175 sumTuples = foldl1' (\(a1, b1) (a2, b2) -> (a1 + a2, b1 + b2))
176

177 lineScore :: [Trie] -> Int -> UntokenizedLine -> Score
178 lineScore tries n =
179 sum . par' . map (nGramScore tries) . divvy n 1 .
180 (replicate (n - 1) bosToken ++) . tokenize
181

182 --- Functions for using n-gram tries to generate text ---
183 trieFind :: NGram -> Maybe Trie -> Maybe Trie
184 trieFind [] t = t
185 trieFind _ Nothing = Nothing
186 trieFind (gram:grams) (Just (Trie _ m)) = trieFind grams $ M.lookup gram m
187

188 trieFindMerge :: NGram -> [Trie] -> Trie
189 trieFindMerge n = mergeTries . par' . mapMaybe (trieFind n . Just)
190

191 topBToks :: Int -> Trie -> [(Token, Score)]
192 topBToks b (Trie c m) =
193 map (\(tok, Trie c1 _) -> (tok, log (fromIntegral c1) - log (fromIntegral c))) $
194 take b $ sortBy (\(_, Trie c1 _) (_, Trie c2 _) -> compare c2 c1) $ M.toList m
195

196 -- Penalize with Hamming distance, number of shared (ordered) tokens between two lines
197 -- sim("Functional programming is cool and advanced", "Advanced Programming is boring") = 2
198 diversify :: [BeamState] -> [(BeamState, Score)]
199 diversify = f []
200 where
201 f _ [] = []
202 f hs (x@(_, _, h):xs) =
203 (x, penaltyWt * fromIntegral (sim h hs)) : f (h : hs) xs
204 sim _ [] = 0
205 sim h hs =
206 length $ filter id $ foldl1' (zipWith (||)) $ map (zipWith (==) h) hs
207

208 -- Each current state has b candidate expansions
209 -- We define state as a tuple of score, history, current n gram, and list of expansions
210 -- Process each expansion into its own state by merging its information with parent state
211 scoreCandidates :: [PotentialBeamState] -> [(BeamState, Score)]
212 scoreCandidates = diversify . concatMap f
213 where
214 f (n, s, h, cs) = map (\(tok, s') -> (tail n ++ [tok], s + s', tok : h)) cs
215

216 beamSearch :: Int -> [Trie] -> [NGram] -> [Score] -> [Line] -> UntokenizedLine
217 -> IO String
218 beamSearch b tries ngrams scores hists input = do
219 randExitFlag <- randomRIO (0, 100 :: Int)
220 let histStr = unlines $ map (T.unpack . T.unwords . (input :) . reverse) hists
221 beamTries = par' $ map ((`trieFindMerge` tries) . tail) ngrams
222 candidates = par' $ map (topBToks b) beamTries
223 scoredCands = scoreCandidates $ zip4 ngrams scores hists candidates
224 sortedCands = sortBy finalScoresAsc scoredCands
225 (ngrams', scores', hists') = unzip3 $ map fst $ take b sortedCands

9

Epstein

226 if randExitFlag == 0
227 then return histStr
228 else beamSearch b tries ngrams' scores' hists' input
229 where finalScoresAsc ((_, s1, _), p1) ((_, s2, _), p2) = compare (s2 - p2) (s1 - p1)
230

231 wordAtIndex :: Int -> [(Token, Trie)] -> Token
232 wordAtIndex _ [] = "" -- Couldn't find any child word (i.e. method was called on leaf)
233 wordAtIndex i ((tok, Trie c _):rest)
234 | i <= 0 = tok
235 | otherwise = wordAtIndex (i - c) rest
236

237 randomSearchTok :: NGram -> [Trie] -> IO Token
238 randomSearchTok ngram tries = do
239 let (Trie c m) = trieFindMerge ngram tries
240 idx <- randomRIO (0, c - 1)
241 let tok = wordAtIndex idx $ M.toList m
242 if T.null tok -- Couldn't find next word, back off stupidly!
243 then randomSearchTok (tail ngram) tries
244 else return tok
245

246 randomSearch :: [Trie] -> NGram -> IO String
247 randomSearch _ [] = error "Random search failed" -- Not reachable
248 randomSearch tries (_:grams) = do
249 randExitFlag <- randomRIO (0, 100 :: Int)
250 if randExitFlag == 0
251 then return "..."
252 else do
253 tok <- randomSearchTok grams tries
254 rest <- randomSearch tries (grams ++ [tok])
255 return $ T.unpack tok ++ " " ++ rest
256

257 lineComplete :: String -> [Trie] -> Int -> UntokenizedLine -> IO String
258 lineComplete mode tries n line = do
259 let lastNGram =
260 (last . divvy n 1 . (replicate (n - 1) bosToken ++) . tokenize) line
261 launchBeamSearch b = beamSearch b tries [lastNGram] [0] [[]] line
262 case mode of
263 "beamSearch" -> launchBeamSearch 5
264 "greedy" -> launchBeamSearch 1
265 "random" -> do
266 putStr $ T.unpack line ++ " "
267 randomSearch tries lastNGram
268 _ ->
269 error $ "Mode " ++ mode ++
270 " is unsupported. Please choose from [beamSearch, greedy, random]."

app/Main.hs

1 module Main where
2

3 import Control.DeepSeq (deepseq)
4 import Control.Monad (join)
5 import Data.Monoid ((<>))
6 import qualified Data.Text.Lazy as T
7 import qualified Data.Text.Lazy.IO as TIO
8 import Lib
9 import Options.Applicative
10 import System.Exit (die, exitSuccess)

10

Parallelized N-Gram Language Modeling with Stupid Backoff for Text Generation

11 import System.IO (hFlush, stdout)
12

13 -- Adapted with permission from https://bit.ly/35WGzyB
14 main :: IO ()
15 main = join . customExecParser (prefs showHelpOnError) $
16 info (helper <*> parser)
17 (fullDesc <>
18 header
19 "Parallelized N-Gram Language Modeling with Stupid Backoff for Text Generation" <>
20 progDesc ("Build a language model from a given corpus, then use it to assign" ++
21 " probability scores to input lines, or to auto-complete them" ++
22 " (similar to your smartphone keyboard)."))
23 where
24 parser :: Parser (IO ())
25 parser =
26 work <$>
27 strOption
28 (long "mode" <> short 'm' <> metavar "MODE"
29 <> help "Operating mode (buildOnly, score, complete)") <*>
30 strOption
31 (long "corpus-file" <> short 'f' <> metavar "FILENAME"
32 <> help "Path to corpus file") <*>
33 option auto
34 (long "ngrams" <> short 'n' <> metavar "NUMBER" <> help "Size of n-gram"
35 <> value 3 <> showDefault) <*>
36 option auto
37 (long "ndocs" <> metavar "NUMBER" <> value (-1) <> showDefault <>
38 help "Number of documents to parse (-1 to parse all)") <*>
39 strOption
40 (long "doc-separator" <> short 's' <> metavar "SEPARATOR" <>
41 value "---END.OF.DOCUMENT---" <> showDefault <>
42 help "Line that separates documents in corpus") <*>
43 option auto
44 (long "freq-threshold" <> short 't' <> metavar "NUMBER" <> value 0 <> showDefault
45 <> help "Prune all n-grams that occur fewer than k times") <*>
46 strOption
47 (long "complete-mode" <> metavar "MODE" <> value "beamSearch" <> showDefault <>
48 help "Operating mode if --mode=complete (beamSearch, greedy, random)")
49

50 work :: String -> String -> Int -> Int -> String -> Int -> String -> IO ()
51 work mode corpusFile n nDocs docSep thresh completeMode = do
52 corpusText <- TIO.readFile corpusFile
53 let untokCorpus =
54 splitIntoDocs (T.pack docSep) $ filter (/= T.empty) $ T.lines corpusText
55 corpus = par' $ map (map tokenize) untokCorpus
56 maybePartialCorpus = if nDocs < 0 then corpus else take nDocs corpus
57 nGramTries = triesFrom n thresh maybePartialCorpus
58 if mode == "buildOnly" then do
59 putStrLn "Building n-gram model..."
60 putStrLn $ nGramTries `deepseq` "Built."
61 exitSuccess
62 else if mode == "score" then scoreLoop nGramTries n
63 else if mode == "complete" then completeLoop nGramTries n completeMode
64 else die $ "Mode must be one of [score, complete]. You gave " ++ mode ++ "."
65

66 promptLoop :: String -> (String -> IO String) -> IO ()
67 promptLoop prompt f = do

11

Epstein

68 putStr prompt
69 hFlush stdout
70 line <- getLine
71 if null line
72 then return ()
73 else do
74 out <- f line
75 putStrLn out
76 promptLoop prompt f
77

78 scoreLoop :: [Trie] -> Int -> IO ()
79 scoreLoop tries n = promptLoop "Score> " $ return . show . lineScore tries n . T.pack
80

81 completeLoop :: [Trie] -> Int -> String -> IO ()
82 completeLoop tries n mode = promptLoop "Complete> " $ lineComplete mode tries n . T.pack

12

	1 Introduction
	2 Building a Language Model
	2.1 Processing Input
	2.2 Storing N-Grams
	2.3 Constructing a Model

	3 Using a Language Model
	3.1 Sentence Probability
	3.2 Sentence Completion

	4 Parallelizing
	4.1 Amdahl Strikes Again
	4.2 A Universal Parallelization Strategy
	4.3 Lazy N-Gram Merging

	5 Usage
	6 Code (352 lines)

