
Yefri Gaitan
Ecenaz Ozmen

MapReduce Word Count

1. Map Reduce for Word Count

We implemented a word counter in haskell using the map-reduce framework. We first designed a

sequential implementation in which the map and reduce operations happen sequentially. We also

implemented two different parallel implementations of the word counter using two different monads. We

achieved 2x speedup when ran on 1 vs 4 cores.

The map phase involves getting each word in a text file and making a list of tuples including the word

and the integer 1. (eg. [(word, 1)]) In the reduce step, we treat the tuple as a key value pair and sum up the

numbers corresponding to the same key. At the end we get a mapping of each word to the number of times

it was used in the file.

To parallelize this map-reduce framework, we split up our data into chunks, both for the map step

and the reduce step. For mapping, we split up a list of words into chunks, resulting in a list of list of words.

Each chunk went through the map step in parallel. After the map phase, each chunk in the list became a list

of tuples (with (word, 1) as mentioned above) and the reduce function was applied to these same chunks.

The reduce step involves building a Map and using the (+) operator as a combining function for the same

keys. Reducing the chunks ran in parallel, resulting in each chunk becoming a map containing the mapping of

a word to the number of times it was used. To merge these multiple maps we used a final reduce phase that

merges all the maps and again uses (+) as the combining function for the same keys. At the end we convert

the map into a list of tuples again, and to get the result, we sort it based on the second element of the tuples

and print the 10 most repeated words.

2. How we implemented it

We ended up implementing our word counter using two different frameworks of parallelism in

haskell. The first, used the ​Eval​ monad and basic strategies to parallelize the file split into chunks. Also, we

used to ​Par​ monad with the Stream module borrowed from

[​https://github.com/simonmar/parconc-examples/blob/master/Stream.hs​] Marlow’s textbook. Both

implementations used the lazy ​ByteStrings​ to improve both the performance and memory footprint of our

program.

First, we designed a generic map-reduce helper function that applied provided map and reduce

functions with a provided ​Strategy​. The strategies were applied using ​parBuffer​ to take advantage of the

laziness of ​ByteStrings​. This allowed to regulate the amount of outstanding sparks used while the program

was executing. ​parBuffer​ with this number sparked the full evaluation of each map and reduce operation

using the ​rdeepseq​ strategy.

The maps operations were forced to occur first by using the ​pseq​ function and helper functions were

added to strip non-alphabetic characters from the file split into words, all done lazily by haskell by default.

We decided to hardcode the number of words per chunk as 100,000 since chunks with less words did not

warrant the creation of a spark for them as the computation for map was just building a tuple. We also

needed to find a threshold for this size since if we increased it too much, the heap would overflow with too

much data, but if we made the chunks too small, they would be too cheap to warrant a spark each and the

pool size would stay close to 0.

https://github.com/simonmar/parconc-examples/blob/master/Stream.hs

NOTE​: In order to force the evaluation of the code, we took and printed to stdout the length of the

final list of tuples of words and their final count.

Second, we used the ​Par​ monad in a different implementation as ​Eval​ did not provide the results we

had anticipated. Also, the ​Par​ monad provided a higher level of abstraction since we no longer had to keep

track of spark limits, laziness, and strategies while trying to understand and diagnose the tricky performance

of our program. Mostly, the logic remains the same, but the list data constructor, ​[]​,​ was replaced with a lazy

implementation of Ivars represented as lists using Streams (provided by Marlow). This was done in order to

provide abstracted lists that could have each elemented evaluated by a core in parallel. Since the lists were

replaced by streams, the map and reduce functions were updated accordingly using the helper functions in

the Stream module. Lastly, a pipeline function was used to set the order of each computation in parallel.

3. Performance figures
a. Sequential performance for primitive parallelism

b. Parallel performance primitive parallelism

i. Speed up: 2.38x between 1 core and 4 cores
ii. Ran with a 50.6 MB file

1 core:

4 cores:

c. Sequential Performance for Par Monad
Ran with a 25 MB file and only 1 core:

● MUT time 6.010s (6.060s elapsed)

d. Parallel performance for Par Monad (4 cores)

Ran with a 25 MB file and 4 cores
● MUT time 4.036s (3.274s elapsed)

As seen above, it was 1.85x speedup.

4. Full Listing of our Code
wc_eval.hs

{-# ​LANGUAGE ​ TupleSections #-}
import ​ ​Control.Parallel ​(​pseq ​)
import ​ ​Control.Parallel.Strategies
import ​ ​Data.Char ​(​isAlpha ​, ​toLower ​)
import ​ ​Data.Map ​(​Map​, ​fromListWith ​, ​toList ​, ​unionsWith ​)
import ​ ​qualified ​ ​Data.ByteString.Lazy.Char8 ​ ​as ​ ​B
import ​ ​Data.List ​(​sortBy ​)
import ​ ​Data.Function ​(​on ​)
import ​ ​System.Environment ​(​getArgs ​, ​getProgName ​)
import ​ ​System.Exit ​(​die ​)
main ​ ​:: ​ ​IO​()
main ​= ​ ​do
 args ​<- ​ getArgs
 ​case ​ args ​of
 [filename, ​"par" ​] ​-> ​ ​do
 content ​<- ​ B ​. ​readFile filename
 print ​$ ​ take ​10 ​ ​$ ​ sort ​$ ​ wcpar content
 [filename, ​"seq" ​] ​-> ​ ​do
 content ​<- ​ B ​. ​readFile filename
 print ​$ ​ take ​10 ​ ​$ ​ sort ​$ ​ wcseq content
 _ ​-> ​ ​do
 pn ​<- ​ getProgName
 die ​$ ​ ​"Usage: " ​ ​++ ​ pn ​++ ​ ​" <filename> <par/seq>"

wcseq ​ ​:: ​ ​B ​. ​ByteString​ ​-> ​ [(​B ​. ​ByteString​, ​Int​)]
wcseq ​= ​ seqMapReduce wcmap wcreduce ​. ​ split ​100000

wcpar ​ ​:: ​ ​B ​. ​ByteString​ ​-> ​ [(​B ​. ​ByteString​, ​Int​)]
wcpar ​= ​ finalreduce ​. ​ parMapReduce rdeepseq wcmap rseq parwcreduce ​. ​ split ​100000

-- word count helper functions

wcmap ​ ​:: ​ [​B ​. ​ByteString​] ​-> ​ [(​B ​. ​ByteString​, ​Int​)]
wcmap ​= ​ map (, ​1 ​)

parwcreduce ​ ​:: ​ [(​B ​. ​ByteString​, ​Int​)] ​-> ​ ​Map​ ​B ​. ​ByteString​ ​Int
parwcreduce ​= ​ fromListWith ​(+)

finalreduce ​ ​:: ​ [​Map​ ​B ​. ​ByteString​ ​Int​] ​-> ​ [(​B ​. ​ByteString​, ​Int​)]
finalreduce ​= ​ toList ​. ​ unionsWith ​(+)

wcreduce ​ ​:: ​ [[(​B ​. ​ByteString​, ​Int​)]] ​-> ​ [(​B ​. ​ByteString​, ​Int​)]
wcreduce ​= ​ toList ​. ​ fromListWith ​(+) ​ ​. ​ concat

-- map reduce library

seqMapReduce ​ ​:: ​ (a ​-> ​ b) ​-> ​ ([b] ​-> ​ c) ​-> ​ [a] ​-> ​ c
seqMapReduce mf rf ​= ​ rf ​. ​ map mf

parMapReduce

 ​:: ​ ​Strategy​ b ​-- for mapping
 ​-> ​ (a ​-> ​ b) ​-- map func
 ​-> ​ ​Strategy ​ c ​-- for reducing
 ​-> ​ (b ​-> ​ c) ​-- reduce func
 ​-> ​ [a] ​-- init list
 ​-> ​ [c]
parMapReduce mstrat mf rstrat rf xs ​=
 mres ​`pseq` ​ rres
 ​where ​ mres ​= ​ map mf xs ​`using` ​ parBuffer ​200 ​ mstrat
 rres ​= ​ map rf mres ​`using` ​ parBuffer ​200 ​ rstrat

-- Helper functions

sort ​ ​:: ​ ​Ord​ b ​=> ​ [(a,b)] ​-> ​ [(a,b)]
sort ​= ​ sortBy (flip compare ​`on` ​ snd)

split ​ ​:: ​ ​Int​ ​-> ​ ​B ​. ​ByteString​ ​-> ​ [[​B ​. ​ByteString​]]
split n bs ​= ​ chunk n ​$ ​ map removeNonLetters ​$ ​ B ​. ​words bs

chunk ​ ​:: ​ ​Int​ ​-> ​ [a] ​-> ​ [[a]]
chunk _ ​[] ​ ​= ​ ​[]
chunk n xs ​= ​ ​let ​ (as,bs) ​= ​ splitAt n xs ​in ​ as ​: ​ chunk n bs

removeNonLetters ​ ​:: ​ ​B ​. ​ByteString​ ​-> ​ ​B ​. ​ByteString
removeNonLetters ​= ​ B ​. ​filter isAlpha ​. ​ B ​. ​map toLower

wc_par.hs

{-# ​LANGUAGE ​ TupleSections #-}
import ​ ​Data.Char ​(​isAlpha ​, ​toLower ​)
import ​ ​Data.Map ​(​Map​, ​toList ​, ​unionWith ​, ​insert ​, ​empty ​)
import ​ ​qualified ​ ​Data.ByteString.Lazy.Char8 ​ ​as ​ ​B
import ​ ​Data.List ​(​sortBy ​)
import ​ ​Data.Function ​(​on ​)
import ​ ​System.Environment ​(​getArgs ​, ​getProgName ​)
import ​ ​System.Exit ​(​die ​)
import ​ ​Stream
import ​ ​Control.Monad.Par
main ​ ​:: ​ ​IO​()
main ​= ​ ​do
 args ​<- ​ getArgs
 ​case ​ args ​of
 [filename] ​-> ​ ​do
 content ​<- ​ B ​. ​readFile filename
 print ​$ ​ take ​10 ​ ​$ ​ sort ​$ ​ pipeline ​10000 ​ content
 _ ​-> ​ ​do
 pn ​<- ​ getProgName
 die ​$ ​ ​"Usage: " ​ ​++ ​ pn ​++ ​ ​" <filename>"

wcmap ​ ​:: ​ ​Stream​ ​B ​. ​ByteString​ ​-> ​ ​Par​ (​Stream​ (​B ​. ​ByteString​, ​Int​))
wcmap ​= ​ streamMap (​\ ​bs ​-> ​ (bs, ​1 ​))

wcreduce ​ ​:: ​ ​Stream​ (​B ​. ​ByteString​, ​Int​) ​-> ​ ​Par​ (​Map​ ​B ​. ​ByteString​ ​Int​)
wcreduce ​= ​ streamFold (insertTuple) empty

finalreduce ​ ​:: ​ ​Stream​ (​Map​ ​B ​. ​ByteString​ ​Int​) ​-> ​ ​Par​ (​Map​ ​B ​. ​ByteString​ ​Int​)
finalreduce ​= ​ streamFold (unionWith ​(+) ​) empty

pipeline ​ ​:: ​ ​Int​ ​-> ​ ​B ​. ​ByteString​ ​-> ​ [(​B ​. ​ByteString​, ​Int​)]
pipeline n bs ​= ​ runPar ​$ ​ ​do
 s0 ​<- ​ streamFromList (chunk n (map removeNonLetters (B ​. ​words bs)))
 s1 ​<- ​ streamMap (runPar ​. ​ streamFromList) s0 ​--using runPar to unbox
 s2 ​<- ​ streamMap (runPar ​. ​ wcmap) s1
 s3 ​<- ​ streamMap (runPar ​. ​ wcreduce) s2
 s4 ​<- ​ finalreduce s3
 return ​$ ​ toList s4

-- helper functions

chunk ​ ​:: ​ ​Int​ ​-> ​ [a] ​-> ​ [[a]]
chunk _ ​[] ​ ​= ​ ​[]
chunk n xs ​= ​ ​let ​ (as,bs) ​= ​ splitAt n xs ​in ​ as ​: ​ chunk n bs

removeNonLetters ​ ​:: ​ ​B ​. ​ByteString​ ​-> ​ ​B ​. ​ByteString
removeNonLetters ​= ​ B ​. ​filter isAlpha ​. ​ B ​. ​map toLower

insertTuple ​ ​:: ​ ​Map​ ​B ​. ​ByteString​ ​Int​ ​-> ​ (​B ​. ​ByteString​, ​Int​) ​-> ​ ​Map​ ​B ​. ​ByteString​ ​Int
insertTuple m (k,v) ​= ​ insert k v m

sort ​ ​:: ​ ​Ord​ b ​=> ​ [(a,b)] ​-> ​ [(a,b)]
sort ​= ​ sortBy (flip compare ​`on` ​ snd)

