Yefri Gaitan
Ecenaz Ozmen

MapReduce Word Count

1. Map Reduce for Word Count

We implemented a word counter in haskell using the map-reduce framework. We first designed a
sequential implementation in which the map and reduce operations happen sequentially. We also
implemented two different parallel implementations of the word counter using two different monads. We
achieved 2x speedup when ran on 1 vs 4 cores.

The map phase involves getting each word in a text file and making a list of tuples including the word
and the integer 1. (eg. [(word, 1)]) In the reduce step, we treat the tuple as a key value pair and sum up the
numbers corresponding to the same key. At the end we get a mapping of each word to the number of times
it was used in the file.

To parallelize this map-reduce framework, we split up our data into chunks, both for the map step
and the reduce step. For mapping, we split up a list of words into chunks, resulting in a list of list of words.
Each chunk went through the map step in parallel. After the map phase, each chunk in the list became a list
of tuples (with (word, 1) as mentioned above) and the reduce function was applied to these same chunks.
The reduce step involves building a Map and using the (+) operator as a combining function for the same
keys. Reducing the chunks ran in parallel, resulting in each chunk becoming a map containing the mapping of
a word to the number of times it was used. To merge these multiple maps we used a final reduce phase that
merges all the maps and again uses (+) as the combining function for the same keys. At the end we convert
the map into a list of tuples again, and to get the result, we sort it based on the second element of the tuples
and print the 10 most repeated words.

2. How we implemented it

We ended up implementing our word counter using two different frameworks of parallelism in
haskell. The first, used the monad and basic strategies to parallelize the file split into chunks. Also, we
used to monad with the Stream module borrowed from
[https://github.com/simonmar/parconc-examples/blob/master/Stream.hs] Marlow’s textbook. Both

implementations used the lazy to improve both the performance and memory footprint of our
program.

First, we designed a generic map-reduce helper function that applied provided map and reduce
functions with a provided . The strategies were applied using to take advantage of the
laziness of . This allowed to regulate the amount of outstanding sparks used while the program
was executing. with this number sparked the full evaluation of each map and reduce operation
using the strategy.

The maps operations were forced to occur first by using the function and helper functions were
added to strip non-alphabetic characters from the file split into words, all done lazily by haskell by default.
We decided to hardcode the number of words per chunk as 100,000 since chunks with less words did not
warrant the creation of a spark for them as the computation for map was just building a tuple. We also
needed to find a threshold for this size since if we increased it too much, the heap would overflow with too
much data, but if we made the chunks too small, they would be too cheap to warrant a spark each and the
pool size would stay close to 0.

https://github.com/simonmar/parconc-examples/blob/master/Stream.hs

NOTE: In order to force the evaluation of the code, we took and printed to stdout the length of the
final list of tuples of words and their final count.

Second, we used the monad in a different implementation as did not provide the results we
had anticipated. Also, the monad provided a higher level of abstraction since we no longer had to keep
track of spark limits, laziness, and strategies while trying to understand and diagnose the tricky performance
of our program. Mostly, the logic remains the same, but the list data constructor, [], was replaced with a lazy
implementation of Ivars represented as lists using Streams (provided by Marlow). This was done in order to
provide abstracted lists that could have each elemented evaluated by a core in parallel. Since the lists were
replaced by streams, the map and reduce functions were updated accordingly using the helper functions in
the Stream module. Lastly, a pipeline function was used to set the order of each computation in parallel.

3. Performance figures
a. Sequential performance for primitive parallelism

ecenaz@ecenaz-XP5-13-9370:~/ duce_wor t$./wc_eval bigg.txt seq +RTS -N1 -ls -s
[("the",634576),("of",319504),("and",304408),("to",228360),("in",173992),("a",166760), ("
14,248,015,728 bytes allocated in the heap
6,871,397,104 bytes copied during GC
341,010,696 bytes maximum residency (36 sample(s))
19,164,616 bytes maximum slop
325 MB total memory in use (0@ MB lost due te fragmentation)

Tot time (elapsed) Awvg pause Max pause
Gen © 13550 colls, 0 par 4.099s 4.112s 0.0003s 0.0025s
Gen 1 36 colls, 8 par 2.485s 2.727s 0.0757s 0.2431s

TASKS: 4 (1 bound, 3 peak workers (3 total), using -N1)

SPARKS: 0(0 converted, © overflowed, © dud, @ GC'd, @ fizzled)

INIT time .000s (0.083s elapsed)
MUT time B8.389s (8.416s elapsed)
GC time .583s 6.839s5 elapsed)
EXIT time .001s 0.0055 elapsed)
Total time .973s 15.262s elapsed)

Alloc rate 1,698,459,792 bytes per MUT second

Productivity 56.0% of total user, 55.1% of total elapsed

b. Parallel performance primitive parallelism
i. Speed up: 2.38x between 1 core and 4 cores
ii. Ranwitha 50.6 MB file
1 core:

ecenaz@ecenaz-XP5-13-9370: 3 ord nt$./wc_eval bigg.txt par +RTS -N1 -1ls -s
[("the",634576),("of",319504),("and",304408),("to",228360),("in",173992),("a",166760), ("
13,517,322,160 bytes allocated in the heap
8,120,153,272 bytes copied during GC
1,593,823,800 bytes maximum residency (18 sample(s))
8,918,816 bytes maximum slop
1519 MB total memory in use (8@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
12882 colls, 0 par 3.585s 3.615s 0.0003s 0.0032s
18 colls, 8 par 5.1155 6.028s 0.3349s 2.2326s

TASKS: 4 (1 bound, 3 peak workers (3 total), using -N1)

SPARKS: 174(0 converted, ©® overflowed, © dud, ® GC'd, 174 fizzled)

INIT time 0.000s (©0.003s elapsed)
MUT time 8.460s (8.490s elapsed)
Gc time 8.700s (9.643s elapsed)
EXIT time 0.001s (0.0065 elapsed)
Total time 17.161s (18.143s elapsed)

Alloc rate 1,597,741,792 bytes per MUT second

Productivity 49.3% of total user, 46.8% of total elapsed

4 cores:

Timeline

0s 0.5s 1s 1.5s 2s 2:55 3s A58 4s 4.5s 5s 5.5s 6s 6.5s Is 7.55 8s

Activity

SO N T O S |
CES (11N 1T T T

S [T TN I T

GRS [(VTR T T T T

ecenaz@ecenaz-XP5-13-9370: ntS ./wc bigg.txt par +RTS -N4 -1s -s
[("the",634576),("of",319504),("and",304408),("to",228360),("Ln",173992),("a",16676
13,518,027 ,064 bytes allocated in the heap
7,184,457 ,544 bytes copled during GC
1,694,650,208 bytes maximum residency (17 sample(s))
10,207,392 bytes maximum slop
1616 MB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen © 5898 colls, 58908 par 13.645s 2.528s 0.0004s 0.0043s
Gen 1 17 colls, 16 par 5.0862s 1.816s 8.1065s 6.7813s
Parallel GC work balance: 71.20% (serial 0%, perfect 180%)

TASKS: 10 (1 bound, 9 peak workers (9 total), using -N4)

SPARKS: 174(173 converted, ©® overflowed, 8 dud, © GC'd, 1 fizzled)

INIT time 0.000s elapsed)
MUT time 6.074s .559s elapsed)
GC time 18.707s (elapsed)
EXIT time 8.0081s . elapsed)
Total time 24.781s elapsed)

Alloc rate 2,225,695,230 bytes per MUT second

Productivity 24.5% of total user, 44.9% of total elapsed

c. Sequential Performance for Par Monad
Ran with a 25 MB file and only 1 core:
e MUT time 6.010s (6.060s elapsed)

W ey v Y %

U O D 11100 0 000 0000000 00000 G

d. Parallel performance for Par Monad (4 cores)
Ran with a 25 MB file and 4 cores
e MUT time 4.036s (3.274s elapsed)

e fusttioinites pessulsetivseatcestriiin Shaaedoliineite il st e e

LALLM YRTIYTY TRCERRTYRR RSO T LT R TCRCAT AR RSN (om TRTETTRNTR AT L Ll L
B LNADRLELN TUMLELR TN ARV RTAL Ay TRCL RO SO TSR LD L TR DR T

1T 7 T T NI VT NS TNOCANONNTNCTOOY) ENSTNCNVANUINTOONTINUAEY NN N NN RN ITEE 0 T OO R G T 00 T A mmnamninan
| (WA AW AT @ S0 W (000N 0 0006 OO0 0T) 0O 0 AR N

As seen above, it was 1.85x speedup.

4. Full Listing of our Code
wc_eval.hs

TupleSections #-}
Control.Parallel (pseq)
Control.Parallel.Strategies
Data.Char (isAlpha, toLower)
Data.Map (Map, fromListWith, toList, unionsWith)

Data.ByvteString.lLazyv.Char8 B

Data.List (sortBy)
Data.Function (on)
System.Environment (getArgs, getProgName)
System.Exit (die)

getArgs
args
[filename, "par"]
content B.readFile filename
print take 10 sort wcpar
[filename, "seq"]
content B.readFile filename
print take 10 sort wcseq

pn getProgName
die "Usage: " pn " <filename> <par/seq>"
B.ByteString [(B.ByteString, Int)]

segMapReduce wcmap wcreduce split 100000

B.ByteString [(B.ByteString, Int)]
finalreduce parMapReduce rdeepseq wcmap rseq parwcreduce split 100000

B.ByteString] [(B.ByteString, Int)]
(, 1)

[(B.ByteString, Int)] Map B.ByteString Int
fromListWith (+)

[Map B.ByteString Int] [(B.ByteString, Int)]
tolList unionsWith (+)

[[(B.ByteString, Int)]] [(B.ByteString, Int)]
tolList fromListWith (+) concat

Strategy b
(a b)
Strategy c
(b c)
[a]
[c]
parMapReduce mstrat mf rstrat rf xs
mres rres

mres map mf xs parBuffer 200 mstrat

rres map rf mres parBuffer 200 rstrat

sortBy (flip compare

Int B.ByteString
n bs chunk n

[[B.ByteString]]

map removeNonLetters B.words bs

[[a]l]

(as, bs) splitAt n xs chunk n bs

removeNonLetters

B.ByteString
removeNonLetters

B.ByteString
B.filter isAlpha

B.map toLower

TupleSections #-}
Data.Char (isAlpha, toLower)
Data.Map (Map, toList, unionWith, insert, empty)
Data.ByteString.lLazy.Char8 B
Data.lList (sortBy)
Data.Function (on)
System.Environment (getArgs, getProgName)
Syvstem.Exit (die)
Stream
Control .Monad.Par

getArgs
args
[filename]
content B.readFile filename
print take 10 sort pipeline 10000 content

pn getProgName
die "Usage:

" A

pn <filename>"

Stream B.ByteString Par (Stream (B.ByteString, Int))
streamMap (\bs (bs, 1))

Stream (B.ByteString, Int) Par (Map B.ByteString Int)
streamFold (insertTuple) empty

Stream (Map B.ByteString Int) Par (Map B.ByteString Int)
streamFold (unionWith (+)) empty

Int B.ByteString [(B.ByteString, Int)]

pipeline n bs runPar

0
sl
s2
s3
s4

streamFromList (chunk n (map removeNonLetters (B.words bs)))
streamMap (runPar streamFromList) sO0

streamMap (runPar wcmap) sl

streamMap (runPar wcreduce) s2

finalreduce s3

return tolList s4

[[a]l]

(as,bs) splitAt n xs chunk n bs

removeNonLetters B.ByteString B.ByteString
removeNonLetters B.filter isAlpha B.map tolLower

insertTuple Map B.ByteString Int (B.ByteString, Int) Map B.ByteString Int

insertTuple m (k,Vv) insert k v m

[(a,b)]

(flip compare snd)

