A Parallel ASCII Mandelbrot Renderer in Haskell

Amanda Liu, al3623

1 Introduction

The Mandelbrot Set is a set of complex numbers. Ev-
ery complex number can be represented as a linear
combination of a + bi, where a and b are real num-
bers. As such, every complex number can be plotted
on a two-dimensional Cartesian plane with one axis
representing the real component and one axis repre-
senting the complex component of a number.

The fractal shape of the Mandelbrot set comes
from plotting the points in this set on the complex
plane through the repeated iteration over the follow-
ing equation for each point on the complex plane.

fo(z) =22 +¢

The value of z starts at 0 (a = b = 0) and changes
through each iteration of the function while ¢ rep-
resents a complex number that remains the same
through each iteration of the function. A point is
considered inside the Mandelbrot set if the function
doesn’t diverge or, in other words, the norm of the
point under iteration must be bounded in a disk of
finite radius. The norm of a complex number is cal-
culated as its Euclidean distance from the origin on
the complex plane:

lla+ bil| = Va2 + b2

Often the finite radius used in this calculation is 4.
Points outside of the Mandelbrot set are often colored
differently according to the number of iterations it
takes for it to escape a certain radius. It’s along
these boundaries that the complex shapes and self-
recursive images are produced with infinite precision
and detail.

2 Mandelbrot

Since the Mandelbrot set comprises complex numbers
of the form a+bi, or is a vector space of degree 2 over
the real numbers, we can represent points as a tuple
of two Floats—one representing the real component
and one representing the imaginary component. This
can also be interpreted as the x— and y—coordinate
of the number as a point in the plane.

type Point = (Float,Float)

The complex plane can then be represented as a
two-dimensional list of Points. Most complex num-
bers do not belong to the Mandelbrot set since they
are large enough that they diverge quickly or start
with a norm greater than 2. Therefore, the grid can
be limited to having a complex domain of {—10...1.0}
and a real domain of {—2.0...1.0}. Also for the sake
of ease of computation, we will limit our granularity
to hundredths.

grid :: [[Point 1]
grid = [[(x/100 , y/100)
| x <= [-200..100]1 | y <- [-100...100]]

Since a number in the Mandelbrot set will never
diverge, it can be impossible to tell whether or not
a point has yet to escape the finite disk of radius 2
or if will remain bounded forever. As a heuristic,
we will simply cut off the number of iterations at
2000 and if the norm hasn’t diverged by then it will
be included in this rendering of the Mandelbrot set.
The ASCII encoding chosen will print an A, B, C, or
space depending on how long it takes for the point to
diverge under iteration.

mandelbrot :: Point -> State (Int,Point) Char

mandelbrot z = d
(c,p) <- get

if ¢ > 2000 || escaped p
then return $ encode c
else do

modify $ \(i,p’) -> (i+1,iterPoint z p’)
mandelbrot z
where
escaped (a,b) = a*a + bxb > 4.0
iterPoint (a_z,b_z) (a,b) =

(a*a - b*b + a_z,2.0%axb + b_z)
encode count
| count > 2000 = > °
| count > 50 = A’
| count > 10 = ’B’
| count > 1 = ’C’
-- render :: [[Char]]

-- Apply mandelbrot to each point in grid and
-- get the resulting ASCII rendering

main :: I0()
main = do
mconcat $ putStrLn <$> render

The iteration over each complex number is not only
recursive and self-contained, but also entirely inde-
pendent from the rest and results in easily embar-
rassingly parallel computation. Therefore the render
function that describes how the mandelbrot function
will be applied over the plane will be the primary
point of variation in parallelization.

3 Serial Mandelbrot

The fully serial version of the Mandelbrot set
render is shown below. In this implementation, the
mandelbrot function is simply mapped over the two-
dimensional list of Points, so each point is iterated
over in sequence.

render :: [[Char]]
render = map (map evalPoint) grid
where

evalPoint z =

evalState (mandelbrot z) (0,(0.0,0.0))

This implementation of the Mandelbrot renderer
was used as the baseline for all relative statistics and
speedups when comparing with parallel implementa-
tions.

As shown in Figure 1, this implementation of the
Mandelbrot renderer results in a simple event time-
line with all work being done on one processor. The

HECC ‘

HECT ‘

R WA,

HEC3 ‘

Figure 1: Timeline of events for the serial Mandelbrot
renderer by processor.

total average run time was 80.27s with about 5.5% of
that time dedicated to garbage collection.

4 Parallel Mandelbrot

In order to test the effects of different parallelization
methods on the runtime performance of the ASCII
Mandelbrot renderer, all implementations were run
on a virtual environment with 1,2,4, and 8 processors
and 8GB of RAM. The statistics listed below in this
section are averaged after running multiple trials on
4 CPUs.

4.1 seq Parallel Traversal

The implementation below represents the first at-
tempt at parallizing the Mandelbrot computations.
The innerPar map parallelizes the computation per-
formed on each point in one line of the complex plane
with a constant complex value (y-coordinate). The
map of innerPar parallelizes the per-line computa-
tion over all the constant y-coordinate lines in the
plane. This attempt tries to parallelize computation
of every point in the grid.

render :: [[Char 1]]
render = do
let evalPoint z =
evalState (mandelbrot z)
let innerPar 1 =

(0,(0.0,0.0))

Adiy

Figure 2: Timeline of events by processor for the par-
allel Mandelbrot renderer implemented with two par-
allel maps with the strategy rseq .

map evalPoint 1 ‘using‘ parList rseq
map innerPar grid ‘using‘ parList rseq

Since both maps attempt to parallelize using the
strategy rseq, the parallelized computation attempts
to reduce the call to weak head normal form. For the
inner map that maps a computation on a Point re-
turning a Char, reducing to weak head normal form
actually completes the computation. The outer map,
however, maps a function that operates on a list of
Points and returns a list of Chars. This reduction
into weak head normal form will only reduces the re-
sult into a thunk head containing the full Mandelbrot
iterative computation to be evaluated cons-ed onto a
thunk representing the tail.

As shown in figure 2, the resulting event log shows
that the load on the processors is extremely unbal-
anced. This is likely due to the fact that vast major-
ity of much of the iterative calculations performed on
each point in the grid is actually still serialized and
only the first computation of each row is fully sparked
and parallelized. This attempt results in an average
run time of 39.49s which is still a 2.033x speedup with
about 9.0% of that time dedicated to garbage collec-
tion. However, in order to more fully take advantage
of the four cores, more point computations should be
distributed in parallel.

Aty

HECC

HECT

HECZ

HEC

Figure 3: Timeline of events by processor for the par-
allel Mandelbrot renderer implemented with two par-
allel maps with the strategy rdeepseq .

4.2 deepseq Parallel Traversal

This parallel implementation of the Mandelbrot ren-
derer uses deepseq which will force the full evaluation
of its argument in parallel.

render :: [[Char]]
render = do
let evalPoint z =

evalState (mandelbrot z) (0,(0.0,0.0))
innerPar 1 =

map evalPoint 1 ‘using®
innerPar grid ‘using‘

let
parList rdeepseq

map parlList rdeepseq

Since rdeepseq reduces the given computation to
normal form, each inner map is evaluated in paral-
lel, resulting in a much more balanced load for the
processors, as seen in the event timeline.

This implementation resulted in an average run
time of 11.56s or a 6.94x speedup with about 9.2%
of that time dedicated to garbage collection. Due to
the large number of sparks that either fizzled or were
garbage collected, it’s likely better performance can
be achieved by parallelizing computations in a more
controlled manner.

4.3 Real Axis Parallel Traversal

In this implementation of the parallel Mandelbrot
renderer, only the inner map is a parallel traversal.
This means that within one line of the complex plane

Adity

= QUL I e
= AR O OO ERAEEEEEONOCE NTRER MR

= VR 1A A R
= JHON O O

Figure 4: Timeline of events by processor for the par-
allel Mandelbrot renderer implemented with one in-
ner parallel map with the strategy rdeepseq .

(holding constant the y-coordinate or complex com-
ponent of the complex number), iteration over each
point is being computed in parallel with the others.

render :: [[Char]]
render = do
let evalPoint z =

evalState (mandelbrot z) (0,(0.0,0.0))
innerPar 1 =
map evalPoint 1
innerPar grid

let

‘using ¢ parlist rdeepseq

map

In per-processor breakdown it can be seen that cer-
tain processors ran a significantly greater number of
sparks than others. This is largely due to the way
the computation was parallelized. Since all computa-
tions were parallelized pointwise, certain points out-
side the Mandelbrot set will escape earlier and ter-
minate almost immediately compared to points inside
that Mandelbrot set that will fully iterate 2000 times
before terminating.

This implementation resulted in an average run
time of 13.531s or a 5.93x speedup with about 8.65%
of that time dedicated to garbage collection. This ap-
proach is largely comparable to the previous attempt
both in terms of run time and garbage collection time.

4.4 Complex Axis Parallel Traversal

This parallelization attempt parallelizes along the
complex axis, meaning the outermost map is com-

(s 55 105
L

Ity

HECC

HEC1

HECZ

HEC:

Figure 5: Timeline of events by processor for the
parallel Mandelbrot renderer implemented with one
outer parallel map with the strategy rdeepseq .

puter in parallel while computation over each point
on a single row in the complex map is done serially.

render :: [[Char]]
render = do
let evalPoint z =

evalState (mandelbrot z) (0,(0.0,0.0))
innerPar 1 = map evalPoint 1
innerPar grid ‘using‘ parList rdeepseq

let
map

This implementation resulted in an average run
time of 11.52s or a 7.0x speedup with about 7.7%
of that time dedicated to garbage collection. This
implementation results in fewer troughs in activity
due to garbage collection in addition to having a per-
processor distribution with a more similar number of
sparks.

4.5 Buffer-Limited Complex Axis

Parallel Traversal

This approach to parallelizing the Mandelbrot ren-
derer implements the same parallel map using
deepseq on the outer map (holding the complex com-
ponent of the number constant), but this time uses a
buffer limit of 100 sparks. This will further limit the
excessive creation of sparks.

render :: [[Char]]
render = do

Ay

HECC

HECT

HECZ

HEC

Figure 6: Timeline of events by processor for the
parallel Mandelbrot renderer implemented with one
outer buffer-limited parallel map with the strategy
rdeepseq and a buffer size of 100 sparks.

let evalPoint z =

evalState (mandelbrot z) (0,(0.0,0.0))
innerPar 1 = map evalPoint 1

innerPar grid

‘using ¢ parBuffer 100 rdeepseq

let
map

As the event timeline in Figure 6 shows, there are
still steep troughs due to garbage collection, but they
are much narrower (hence briefer) than in previous
runs.

This implementation resulted in an average run
time of 9.59s or a 8.59x speedup with about 6.8%
of that time dedicated to garbage collection.

5 Discussion

For a basis of comparison, the speedup for each
method of parallelization was calculated as the num-
ber of times faster it ran than the serial program
for that number of cores. The results are shown in
Figure 7. While all parallelization bethods result a
> 4x speedup, the increase from 4 tp 8 cores yeilds a
smaller acceleration than previous increases in avail-
able cores for across all methods. Additionally, the
buffer-limited complex parallel map denoted Deep2
outperforms all methods up until 8 cores, when it’s
speedup becomes comparable to that of the paral-
lelized map across the complex range.

Speedup Normalized to Sequential Program

5 /——""—

1 2 4 8

—Seg Deepseq Parallel Real =mmm=Parallel Complex ~mmmDecp2

Figure 7: This plot shows the multiple speedup of
each implementation normalized to the run time for
the serial program for that number of cores.

In order to normalize for small implementation
level differences between the different methods paral-
lelization, speedup was also normalized as the num-
ber of times faster it ran than the one core run for
that parallelization method. The results are shown
in Figure 8.

These metrics for speedup similarly confirm the re-
sults discussed above. Interestingly enough, as the
sequential program was run with more cores it actu-
ally saw a run time slow down by several factors.

The methods that require an inner parallelized
map over the complex line of the grid result in sim-
ilar total numbers of sparks generated, as shown in
Figure 9. This makes sense since this inner map cre-
ates sparks at the Point granularity while the other
two methods map at the complex line level (constant
y-coordinate).

In order to describe the utility of the sparks cre-
ated and the efficacy of the parallelization meth-
ods, the percentage breakdown of what happened to
the sparks produced by each method was analyzed.
These results are show in Figure 10. No paralleliza-
tion methods resulted in duds. The first paralleliza-
tion attempt making use of both parallel maps and
rseq results in a large fraction of overflowed sparks.
The second parallelization attempt that used both
parallel maps but with the rdeepseq strategy that
forces complete evaluation to normal form results in

Speedup Normalized to One Core

1 2 4 8

m—Sequential s—Seq Deepseq ====Parallel Real =====Paralle| Complex —wm=Deep)

Figure 8: This plot shows the multiple speedup of
each implementation normalized to the run time for
that implementation on one core.

Sparks

70000

60000
50000
40000

0 I I I

30000
20000
10000

Deepseq Parallel Real Parallel Complex Deep2

Figure 9: The total number of sparks produced by
each parallelization method.

Spark Behavior Breakdown

1.2

1
0.8
0.6
0.4
0.2

0

Deepseq Parallel Real Parallel Complex Deep2

mConverted M Overflowed WGC'd MFizzled

Figure 10: The breakdown of the sparks created by
each parallelization method by percentage converted,
overflowed, garbage collected, and fizzled (no sparks
were duds).

a number of fizzled sparks. Finally, the outer parallel
map over the complex range and the depth limited
parallel map over the complex range result in fully
converted sparks.

To analyze the load distribution across the avail-
able cores, the standard deviation of sparks of that
type across each core was calculated and normalized
into a percentage according to the total number of
sparks of that type. The results are shown in Figure
11.

The parallelization methods that used two parallel
maps of rseq and one parallel map across the real
plane resulted in the largest percent standard devia-
tions by a wide margin. Interestingly, the method
that similarly used two parallel maps only with
rdeepseq rather than seq has significantly smaller
deviations. The final two methods that involve map-
ping across the complex plane with rdeepseq (one
buffer limited and one not) have nearly no deviation
across cores and are thus the most well load-balanced.

Per-Care Percent Standard Deviation

02

015

01

0.05 I

RN, o
Seq

Deepseq Parallel Real Parallel Complex Deep2

mSparks mConverted mOverflowed ®GC'd mFizzled

Figure 11: The standard deviation of the given spark
metrics between the four processors for each paral-
lelization method. This shows how well distributed
work was between CPUs.

