
J.T. Timpanaro
jtt2120
Parallel Functional Programming
December 18, 2019

Parallel Dynamic Programming Solution for 0-1
Knapsack Problem

Problem Statement

The Knapsack Problem is an optimization problem. Given a set of items, each

with a weight and value, and a capacity, the goal is to choose a subset of items such

that the total value is maximized and the total weight is less than the capacity.

The 0-1 variation of the problem specifies that only zero or one of each item can

be chosen.

The dynamic programming solution to this problem is to define a table as follows:

tbl[i, j] represents the maximum attainable using the first i items with total weight

less than or equal to j.

tbl[0, j] = 0 for all j.

tbl[i, j] = tbl[i− 1, j] if new items weight is greater than j.

tbl[i, j] = max(tbl[i − 1, j], tbl[i − 1, j − w] + v otherwise, where w is the weight

and v is the value of the current item.

Since each row only depends on the previous (no row is self-referential), the oppor-

tunity for parallelization comes in the computation of the next row’s values. Each

row is computed sequentially, but within the row, the values will be computed in

parallel.

Implementation

I/O

1

The main function handles the I/O. The program is run with two command line

arguments: the test file path and the number of chunks to process in parallel. Test

files are of the format: first line is a single Int representing the capacity, second

line is whitespace separated Ints representing the weights, and the thrid line is

whitespace separated Ints representing the values. The test file is then read into

three variables: an Int representing the capacity, an [Int] representing the weights

of the items, and an [Int] representing the values of the items. The decision to

use the Int type instead of other numeric data types came down to simplicity and

performance. The program would work with any numeric data type (if the type

signatures were changed); however, since the object of the project is to show the

improvement parallelization offers, Int is the best choice as it is simpler and faster

than polymorphic and unbounded numeric data types.

The main function then calls the knapsack function, and prints the result in the

format: first line is "Solution: [1,3,4]" where the numbers represent the 1-indexed

items selected and the second line is "Total Value: 14" where the number repre-

sents the total value of these items.

Dynamic Programming Algorithm

The first function called is knapsack. knapsack takes three parameters: an Int

number of chunks, an Int knapsack capacity, and an [(Int,Int,Int)] list of items.

The list of items consists of three-tuples (a,b,c): a is the 1-indexed position of the

item in the list, b is the weight of the item, c is the value of the item. knapsack is

just a wrapper for the real algorithm runner. All knapsack does is use the capacity

and number of chunks to determine the size of each chunk and create the first row

of the dynamic programming table.

knapsack calls kdp, which is the runner of the dynamic programming algorithm.

kdp takes three parameters: an Int chunk size, an [(Int,Int,Int)] list of items, and

2

a Seq (Int,Int,[Int]) table. I chose to use a Data.Sequence for the table because it

performed significantly better than the list version and the Data.Vector version.

This is most likely since Sequence outperforms lists in indexing and outperforms

Vector in construction. The table only represents one row of the table at a time,

since each new row only depends on the directly previous row. Each row consists

of tuples (a,b,c): a is the column (total weight allowed), b is the maximum value

for weight a, c is the current best solution (list of item numbers). kdp is a recursive

function. If the items list isn’t empty, it takes the first item and maps the step

function curried with the current table and this item over the table. If the items

list is empty, the last entry in the table is taken, and its total value and current

solution elements are returned.

The step function is what computes the value for Table(Row i+1, Col j) given Ta-

ble(Row i, Col j). It takes three parameters: the table (or row rather), the current

item, and a specific entry in the table (column, value, current solution). It finds

the entry in the table at column j-weight(item). If the current items weight isn’t

larger than the column and the value(entry)+value(item) is greater than the value

in the current entry at this column, the value is updated to this new value and

the item’s number is added to the solution. Otherwise, the current entry remains

unchanged.

Parallelization

The paraellization comes in the mapping step of knapsack. This mapping is called

with using and my strategy parSequenceChunk. parSequenceChunk is a strategy

I wrote that is essentially parListChunk adapted for sequences. It splits the se-

quence into chunks of a given size, then calls parTraversable over the chunks. The

strategy passed to parTraversable is just evalTraversable with the strategy rseq.

To summarize, the sequence is split into chunks, each chunk is handled in paraellel,

3

and within a chunk entries are handled sequentially with the strategy rseq.

Performance

Test Information

All performance tests were run on Test 8 (6404180 capacity and 24 items). Each

test was run 25 times. Times are shown in seconds. SC represents spark conversion

percentage.

Variable Cores, 1024 Chunks

Cores Min Time Max Time Mean Time Min SC Max SC Mean SC

1 58.289 63.322 59.580 0 0 0

2 37.371 42.363 38.703 99.821 99.890 99.857

3 26.196 28.105 27.050 99.882 99.915 99.902

4 21.881 23.132 22.629 99.882 99.919 99.901

As the number of cores increased, there is a clear speedup. However, there are

diminishing returns on this improvement.

Variable Chunks, 8 Cores

Chunks Min Time Max Time Mean Time Min SC Max SC Mean SC

2 47.530 48.122 48.715 65.888 66.667 69.730

16 22.612 24.611 23.552 94.121 95.332 94.384

256 21.507 22.139 21.9304 98.397 98.461 98.449

Once again, as the number of chunks increased, there is a speedup. However,

this has even less returns as the number of chunks increase. This makes sense,

considering less parallel work is being done as the number of chunks increase, and

it is to be expected at some point the performance will decrease as well. The major

benefit of more chunks is the spark conversion percentage increases significantly

as the number of chunks increases.

4

Code Listing

import Control.Parallel.Strategies

(Strategy

, evalTraversable

, parTraversable

, rseq

, using

)

import Data.Sequence as DS

(Seq

, ViewR((:>), EmptyR)

, (!?)

, (><)

, chunksOf

, iterateN

, replicate

, viewr

, zip3

)

import System.Environment (getArgs)

import System.Exit (die)

import System.IO.Error

(catchIOError

, ioeGetFileName

, isDoesNotExistError

, isPermissionError

, isUserError

)

5

{-

Read in data, call knapsack function, print result.

-}

main :: IO ()

main =

do [filename, chunks] <- getArgs

content <- readFile filename

let n = read chunks :: Int

[[c], wts, vals] = map toInt $ map words $ lines content

(val, sol) = knapsack n c $ Prelude.zip3 [1,2 ..] wts vals

putStrLn $

"Solution: " ++ (show sol) ++ "\n" ++ "Total Value: " ++ (show val)

‘catchIOError‘ \e -> die $ handler e

where

toInt = map (\x -> read x :: Int)

handler e =

case ioeGetFileName e of

Just fn

| isDoesNotExistError e -> fn ++ ": File does not exist."

| isPermissionError e -> fn ++ ": Permission denied."

_

| isUserError e -> "Usage: knapsack <filename> <# parallel chunks>"

| otherwise -> show e

{-

Wrapper to generate initial table and call dynamic programming algorithm.

-}

knapsack :: Int -> Int -> [(Int, Int, Int)] -> (Int, [Int])

knapsack n c items =

kdp (c ‘div‘ n) items $

6

DS.zip3

(DS.iterateN (c + 1) ((+) 1) 0)

(DS.replicate (c + 1) 0)

(DS.replicate (c + 1) [])

{-

Runner for knapsack dp algorithm.

-}

kdp :: Int -> [(Int, Int, Int)] -> Seq (Int, Int, [Int]) -> (Int, [Int])

kdp n (item:items) tbl =

kdp n items ((fmap (step tbl item) tbl) ‘using‘ (parSequenceChunk n rseq))

kdp _ _ tbl =

case DS.viewr tbl of

EmptyR -> (0, [])

_ :> (_, val, sol) -> (val, sol)

{-

Computes value in next row for specific column.

-}

step ::

Seq (Int, Int, [Int])

-> (Int, Int, Int)

-> (Int, Int, [Int])

-> (Int, Int, [Int])

step tbl (i, w, v) (j, val, sol)

| w > j || val > nval = (j, val, sol)

| otherwise = (j, nval, osol ++ [i])

where

Just (_, oval, osol) = tbl !? (j - w)

nval = oval + v

7

{-

Divide sequence into chunks, then apply evalTraversable in parallel.

Modified version of Control.Parallel.Strategies.parListChunk.

-}

parSequenceChunk :: Int -> Strategy a -> Strategy (Seq a)

parSequenceChunk n strat xs

| n <= 1 = parTraversable strat xs

| otherwise =

fmap (foldr1 (><)) (parTraversable (evalTraversable strat) (chunksOf n xs))

8

