Gomoku Game in Haskell

Qinhan Zhou (qz2380)
Zheng Yao (zy2388)

Contents

1__Introduction 1

2 Implementation| 1
AT
3 Mainhs 2

(3 Performancel 2

[4__Codes 4
4.1 Main.hsl 4
AT

1 Introduction

We implement an Al v.s. Al Gomoku game, also called Five in a Row. Here it’s played on
a board with size 10*10. Black and white players alternate turns to place a stone of their
color on an empty intersection.

We use minimax search algorithm to depth of three employing alpha-beta cut-off strategy
to address the two players playing against each other.

2 Implementation

There are three files: Board.hs, AlLhs and Main.hs.

2.1 Board.hs

Define a 10*10 Board and each player’s move can denote by a Point. Each point has its
color(Black or White) and its corresponding position (Int, Int).

Key methods are addPoint and checkWin. After each move, we check four directions
whether there is already five same color points in a row. There is no need to check all
the boards, just four lines those includes the latest point.

2.2 Al.hs

Key method here is where to put the current point to realize a game of competition. We
use Minimax algorithm to alternate between the two Al players, the player desires to pick
the move with the maximum score. In turn, the scores for each of available moves are
determined by the opposing player which of its available moves has the minimum score.
Scores are calculated as: score 100000 when 5 in a row; 10000 with 4 in a row; 1000 with
3 in a row and 100 with 2 in a row. Build a tree of depth 3 to compare all possible next
three moves and pick the most favorable one for current move.

Then we improve Minimax by alpha-beta cut-off. Each node has a boundary [alpha,
beta]. alpha means lower boundary and beta means the upper boundary. Each time
when beta < alpha, we no longer search more sub-trees, This is a process of pruning.
We refer to other’s codes when we implement the minmaxAlpha and minmaxBeta methods
but we modified it to fit our data structures.

We used parallel strategies in two places. First, we run the minmax algorithm on each
child board of the current board in the board tree in parallel and choose the one with
highest score as the next move. Second, to rate each board, we use parallel to get the
score of current board in each possible directions. In both cases, we use parMap rdeepseq
as our parallel strategy.

Some steps of alternatively running two Als on a 10*10 board is shown in the table below.
0 and X denotes the two users and _ denote a vacant place in board.

Lttt mr et) | | TN | |
| N | P | vt rr—rr—rry]
Lttt mr et) | | TN | | o PO |
TP | [P P [y_s b0, X, sy] Y O 1 SO
| GO [P G | PR RN | | ORI |
| N | P | vt rr—rr—rry]
Lttt mr et) | | TN | |
| N | P | vt rr—rr—rry]
Lttt mr et) | | TN | |
| N | P | vt rr—rr—rry]

o]

L]

P
[Lror00,X,

1 ,
1 ,
1 ,
1 ,
v Xo s] Lo Xo]
1 ,
1 ,
1 ,
1 ,
1 ,

1ol

il

roiriX,
P

v

il

_ 1]

il

o]

L]

|| | Lttt ettt e] v iy]
Lo X] X] | PRI U PP o P SO
PP | PP « P | PR o PN, PR o PO,
00 Xe_y sy] [,_,_,0,X0,_,_,_,_1] [_,_s_,0,X0,_,_,_,_] [_y_b_,0,X0,_,_,_,_]
L0, Xy sy] L0 Xy syl [raO0y Xy Xy gy] [0y Xy Xyy]
X Xo_saas] X Xo—sav sl Lo Xe—vsXo—srv_s_] L Xo—r o Xo—rrr]
PR | MU PR « PN | | PR o PN | P o PO |
P | | Lyt rrrr—r] vt rr—rr—rry]
|| | Lttt ettt e] v iy]
P | | Lyt rrrr—r] vt rr—rr—rry]

T

PP P, P

X0,y iy
—200,X,0,_,_,
[0 XXy -

) SR R XX a e

SR PP

XX,
[roirs 0y

i

i]

T

L]

[
L
[
L
,,0,_,X, WXo_a_s_l [0, %, X, _
L
[
L
[
L

PP i]

2.3 Main.hs

Method gameLoop turns on the game by repeatedly calling method moveAI until method
checkWin no longer returns Empty, i.e. one player wins.

3 Performance

We compare performance on one core and that on four cores. We find that running time
on one core is 1.44s and 0.94 on four cores.

[XN] |Users/Y Z/Desktop/Gomoku/main.eventlog - ThreadScope
File View Move Help

Elk sl @ Q &

Key | Traces | | Timetine
. running
. GC

GC waiting AWy

| create thread
seq GC reg
par GC reg
migrate thread
thread wakeup HECO
shutdown
user message

perf counter

perf tracepoint
I all create spark

| ol dudspark
I all spark [
I run spark Time | HeaplGClSparkstas Spark sizes | Process info | Raw events
| ol fizzled spark Total time: 144s
Mutator time: 1.25s
| =l Gcedspark GCume: 0188

Productivity: 86.8% of mutator vs total

b

1
TUsers(Y ZIDesKlop/GomoKL/Main eventiog (2055 events, 1.4405)

Figure 1: Running on one core

[] [] {Users/YZ/Desktop/Gomak in.eventlog - Tt
File View Move Help

E ksl & 8

key | Traces | | Timeline _
I running 0Os 0.1s 0.2s 0.3s 0.4s 0.58 0.6s 0.7s 0.8s =
[____Nec :

‘GC waiting Ay

| create thread
seq GC req
par GC req

migrate thread
thread wakeup HECO

1 O (O U, OO O O

user message

st ot N NN OO, A) N

perf tracepoint

I .“ create spark E HECZ

k| NRLNUELT L DDA TRl W ALl l ey
| adl overfowed spark -“|I| !.J..Ill |.|- .l|||. lll. -.I In--|lll|- .|. |I-..-..||

I all runspark
| a fizzled spark
| ol GCedspark

Ll

[[l
'ﬂmelHeap'GC'Sparks'ms Spark sizes | Process info | Raw events

Totaltime: 0.945
Mutator time: 0.80s
GC time: 0.14s
Productivity: 84.9% of mutator vs total

[l b

[Users/YZ/Desktop/Gomoku/main.eventlog (4055 events, 0.937s)

Figure 2: Running on four cores

4 Codes
4.1 Main.hs

module Main where

import AT

import Board

import Data.Char

gameLoop :: Board -> Color -> [Board] -> IO ()

gameLoop board color list
| null curPoint = putStrLn "Tie"
| checkWin (head curPoint) curBoard == Empty = do
putStrLn (show curBoard ++ "\n")
gameLoop curBoard (oppositeColor color) (list ++ [curBoardl])
| otherwise = do
putStrLn (show curBoard ++ "\n")
putStrLn (show color ++ "wins"

where
curPoint = getCurPoint board curBoard
curBoard = moveAI board color
main :: I0 Q)
main = gameLoop initBoard Black []
Listing 1: Main.hs
4.2 Board.hs

module Board
(Color(..)
, Point (..)
, Board(..)
, initBoard
, oppositeColor
, filterBoard
, isEmptyBoard
, addPoint
, isValidPoint
, isVacant
, checkWin
getCurPoint
) where

-

import Data.List

; data Color

= Black
| White
| Empty
deriving (Eq)

instance Show Color where
show Black "X
show White "g"
show Empty "

data Point =
Point
{ color :: Color
, position :: (Int, Int)
}

instance Show Point where
show (Point color _) = show color

instance Eq Point where
(Point colorl (x1, y1)) == (Point color2 (x2, y2))
y2 && colorl == color2

1]
o]
-

1]

1]
o]
[\
&
&

<
e

1]

]

instance Ord Point where
compare (Point (x1,y1)) (Point
*10+y2)

_ (x2,y2)) = compare (x1*10+yl) (x2

newtype Board = Board [[Point]]

instance Show Board where
show (Board points) = intercalate "\n" $ map show points

instance Eq Board where

(Board pointsl) == (Board points2) = pointsl == points2
initBoard :: Board
initBoard = Board points
where
points = [initRow x 10 | x <- [1 .. 10]]
initRow _ 0 = []
initRow row col = initRow row (col - 1) ++ [Point Empty (row, col)]
getPoint :: Board -> (Int, Int) -> Point
getPoint (Board points) (x, y) = (points !! (x - 1)) !! (y - 1)
isValidPoint :: Point -> Bool

isValidPoint (Point _ (x, y))
| x >0 & x <= 10 && y > 0 && y <= 10 = True

| otherwise = False
7 isVacant :: Point -> Board -> Bool
isVacant (Point color (x, y)) (Board points) = curColor == Empty
where
(Point curColor (_, _)) = getPoint (Board points) (x, y)
addPoint :: Board -> Color -> Int -> Int -> Board

addPoint (Board points) color x y

7 | isValidPoint (Point color (x, y)) && isVacant (Point color (x, y)) (
Board points) =
75 add (Point color (x, y)) (Board points)

76 | otherwise = Board points

78 add :: Point -> Board -> Board

79 add (Point color (newx, newy)) (Board points) = Board newPoints

80 where

81 newPoints = upperRows ++ (leftCells ++ (Point color (newx, newy)
rightCells)) : lowerRows

82 (upperRows , thisRow:lowerRows) = splitAt (newx - 1) points

83 (leftCells, _:rightCells) = splitAt (newy - 1) thisRow

84

85 checkWin :: Point -> Board -> Color

86 checkWin (Point color (x, y)) (Board points)

87 | winRow (Point color (x, y)) (Board points) /= 0 ||

88 (winCol (Point color (x, y)) (Board points) /= 0) ||

89 (winDiag (Point color (x, y)) (Board points) /= 0) || (winAntiDiag
(Point color (x, y)) (Board points) /= 0) =

90 color

91 | otherwise = Empty

93 checkRow :: [Point] -> Color -> Int -> Int
94 checkRow [] preColor cnt =

95 if cnt == 5

96 then if preColor == Black

97 then 1

98 else 2

99 else O

100 checkRow (head:xs) preColor cnt

101 | preColor == Empty = checkRow xs color 1
102 | preColor == color && cnt < 4 = checkRow xs color (cnt + 1)
103 | preColor == color && cnt == 4 =

104 if color == Black

105 then 1

106 else 2

107 | otherwise = 0

108 where

109 (Point color _) = head

11 getDiag :: Board -> Board
12 getDiag (Board points) = Board $ diagonals points

14 getAntiDiag :: Board -> Board

15 getAntiDiag (Board points) = Board $ diagonals ((transpose . reverse)
points)

116

17 diagonals :: [[al]l -> [[all

18 diagonals = tail . go []

119 where

120 go b es_ =

121 [h | h:_ <- bl

122 case es_ of

[1 -> transpose ts

e:es -> go (e : ts) es
where
ts = [t | _:t <= bl
winRow :: Point -> Board -> Int
winRow (Point color (x, y)) (Board points) = checkRow (newPoints !! (x
1)) Empty 1
where
Board newPoints = addPoint (Board points) color x y
winCol :: Point -> Board -> Int
winCol (Point color (x, y)) (Board points) = checkRow ((transpose
reverse) newPoints !! (y - 1)) Empty 1
where
Board newPoints = addPoint (Board points) color x y
winDiag :: Point -> Board -> Int
winDiag (Point color (x, y)) (Board points) = checkRow (diagonals
newPoints !! (x + y - 2)) Empty 1
where
Board newPoints = addPoint (Board points) color x y
winAntiDiag :: Point -> Board -> Int
winAntiDiag (Point color (x, y)) (Board points) =
checkRow (diagonals ((transpose . reverse) newPoints) !! (9 - x + y))
Empty 1
where
Board newPoints = addPoint (Board points) color x y
isEmptyBoard :: Board -> Bool
isEmptyBoard (Board points) = Board points == initBoard
2 oppositeColor :: Color -> Color
oppositeColor color
| color == White = Black
| color == Black = White
| otherwise = error "Invalid opposite color"
filterBoard :: Board -> Color -> [Point]
filterBoard (Board points) color =
[p | rows <- points, p <- rows, isSameColor p]
where
isSameColor (Point ¢ (_,_)) = c == color
flatten :: [[al]l -> [al

flatten xs = (\z n -> foldr (flip (foldr z)) n xs) (:) []

7 getCurPoint :: Board -> Board -> [Point]

getCurPoint (Board pointsl) (Board points2) = flatten points2 \\ flatten
pointsi

Listing 2: Board.hs

4.3 Al.hs

module AT
(moveAI
) where
import Board
; import Control.Parallel.Strategies
import Data.List
import Data.Maybe
import qualified Data.Set as Set
import Data.Tree
minInt :: Int
minInt = -(2 ~ 29)
maxInt :: Int
maxInt = 2 ~ 29 - 1
moveAI :: Board -> Color -> Board

moveAI board color

isEmptyBoard board = addPoint board color 1 1

| otherwise = bestMove
where
neighbors = possibleMoves board
(Node node children) = buildTree color board neighbors
minmax = parMap rdeepseq (minmaxBeta color 3 minInt maxInt) children
index = fromJust $ elemIndex (maximum minmax) minmax
(Node bestMove _) = children !! index
buildTree :: Color -> Board -> [Point] -> Tree Board
buildTree color board neighbors = Node board $§ children neighbors
where

newNeighbors point =
Set.tolList $
Set.union (Set.fromList (Data.List.delete point neighbors)) (Set.

fromList (stepFromPoint board point))

oppoColor = oppositeColor color
children [] = []
children (Point ¢ (x, y):ns) =
buildTree oppoColor (addPoint board color x y) (newNeighbors (Point
¢ (x, y))) : children ns

minmaxAlpha :: Color -> Int -> Int -> Int -> Tree Board -> Int
minmaxAlpha _ _ alpha _ (Node _ []) = alpha
minmaxAlpha color level alpha beta (Node b (x:xs))
| level == 0 = curScore
| canFinish curScore = curScore
| newAlpha >= beta = beta
| otherwise = minmaxAlpha color level newAlpha beta (Node b xs)
where
curScore = scoreBoard b color
canFinish score = score > 100000 || score < (-100000)

94

95

96

newAlpha = maximum [alpha, minmaxBeta color (level - 1) alpha beta x]

minmaxBeta :: Color -> Int -> Int -> Int -> Tree Board -> Int
minmaxBeta _ _ _ beta (Node _ []) = beta
minmaxBeta color level alpha beta (Node b (x:xs))
| level == 0 = curScore
| canFinish curScore = curScore
| alpha >= newBeta = alpha
| otherwise = minmaxBeta color level alpha newBeta (Node b xs)
where
curScore = scoreBoard b color
canFinish score = score > 100000 || score < (-100000)
newBeta = minimum [beta, minmaxAlpha color (level - 1) alpha beta x]
scoreBoard :: Board -> Color -> Int
scoreBoard board color = score (points0fColor color) - score (
points0fColor $ oppositeColor color)
where
score points = sum $ map sumScores $ scoreDirections points

points0fColor = filterBoard board

sumScores :: [Int] -> Int
sumScores [] = 0
sumScores (x:xs)

| x == 5 = 100000 + sumScores xs

| x == 4 = 10000 + sumScores xs

| x == 3 1000 + sumScores Xxs

| x == 2 = 100 + sumScores Xxs

| otherwise = sumScores xs
scoreDirections :: [Point] -> [[Int]]
scoreDirections [] = [[0]]
scoreDirections ps@(point:rest) =

parMap

rdeepseq

(scoreDirection point ps 0)

[(xDir, yDir) | xDir <- [O 1], yDir <- [-1 .. 1], not (xDir == 0
&& yDir == (-1)), not (xDir == 0 && yDir == 0)]
scoreDirection :: Point -> [Point] -> Int -> (Int, Int) -> [Int]
scoreDirection _ [] cont (_, _) = [cont]
scoreDirection (Point c (x, y)) ps@(Point cl (x1, yl1):rest) cont (xDir,

yDir)

| Point c¢ (x, y) ‘elem‘ ps =
scoreDirection (Point ¢ (x + xDir, y + yDir)) (Data.List.delete (
Point ¢ (x, y)) ps) (cont + 1) (xDir, yDir)

| otherwise = cont : scoreDirection (Point c1 (x1, y1)) rest 1 (xDir,
yDir)
possibleMoves :: Board -> [Point]

possibleMoves board = Set.tolList $ stepBoard board $ filterBoard board
White ++ filterBoard board Black

stepBoard :: Board -> [Point] -> Set.Set Point

stepBoard _ [] = Set.empty

stepBoard board (point:rest) = Set.union (Set.fromList (stepFromPoint
board point)) $ stepBoard board rest

stepFromPoint :: Board -> Point -> [Point]
stepFromPoint board (Point _ (x, y)) =

[Point Empty (x + xDir, y + yDir)

| xDir <- [-1 .. 1]

, yDir <- [-1 .. 1]

, not (xDir == 0 && yDir == 0)

, isValidPoint (Point Empty (x + xDir, y + yDir))
, isVacant (Point Empty (x + xDir, y + yDir)) board

Listing 3: ALhs

5 Reference

1. https://github.com/sowakarol/gomoku-haskell

2. https://github.com/lihongxun945/myblog/issues/14

10

https://github.com/sowakarol/gomoku-haskell
https://github.com/lihongxun945/myblog/issues/14

	Introduction
	Implementation
	Board.hs
	AI.hs
	Main.hs

	Performance
	Codes
	Main.hs
	Board.hs
	AI.hs

	Reference

