
Parallel Cellular Automata Fluid Simulation
Rongcui Dong

December 16, 2019

1 Introduction
This project implements a simple fixed time step cellular automata fluid simula-
tor using finite difference method. Two programs are included, cellularfluid-
sim and cellularfluid-view. The former implements a command line pro-
gram, reading initial state from an input file and outputting states of each time
step to an output file. The latter reads the output file generated by the simu-
lator, and plays back the simulation using an SDL2 window at nominal frame
rate of 60 FPS. Detailed usage is included in Appendix A.

2 Algorithm
2.1 Cellular Automata
The project’s algorithm is based on a grid cellular automata where the state of
each grid depends only on the state of its eight adjacent grids. The grid is a
Data.Vector of cells, stored in row major format. Each cell may be a fluid cell,
a wall, or an edge. As will be described in the Simulation section, the wall and
edge distinction was originally useful, but in final implementation they behave
the same.

The grid’s origin is at top-left, with x going right and y going down. This
grid structure yields the following type for next state function, which is mapped
over the grid:

stepCell :: AdjCells -> Cell -> Cell

The adjacent cells themselves are created by a vector imap operation. An
adjacent cell located outside the grid is assumed to be an edge.

In essense, the next state function computes the next value of the center cell
given a local 3× 3 grid. I built parallism out of this map operation.

2.2 Simulation: Navier-Stokes Equation
Originally, I attempted to simulate the an incompressible Navier-Stokes equation
without external force [1, 3], as shown in Equation 1. However, this resulted in

1

extremely numerically unstable simulation, oscillating within a few time steps
and blowing up to NaN quickly. Therefore, the final implementation does not
use this simulator. This simulation method is described for completeness and
for show of effort.

∂u

∂t
= −(u · ∇)u− 1

ρ
∇p+ ν∇2u (1)

I discretized the equation combining methods described in [3, 2]. I split
the integrator into stages like [3], but in places where solving linear or Poisson
systems were required, I used relaxation method described in [2]. This was done
to avoid treating the simulation grid as a large matrix and defeating the purpose
to use cellular automata in the first place.

I used staggered grid discretization, as showin in Figure 1. Therefore, for
the 9 cells available for state updating, there are 9 defined points of velocity u
(blue dots), 6 defined points for each component of gradient velocity ux (red)
and uy (green). Pressure in staggered grid is also similar.

Figure 1: Staggared grid. Blue: a; red: ax; green: ay

Quantities at all points other than defined ones were linearly interpolated
from the closest 4 valid points forming a square. Any quantity outside the rect-
angle bounded by all valid points were “clamped” to the boundary. Therefore,
time step must be sufficiently small for discretization to be valid.

2

The following are discretization methods I used on defined points,

ux(x, y) =
u(w/2 + x, y)− u(−w/2 + x, y)

w
(2)

ux(x, y) =
u(x,w/2 + y)− u(x,−w/2 + y)

w
(3)

∇ · u(x, y) = ux(w/2 + x, y)− ux(−w/2 + x, y) + uy(x,w/2 + y)− uy(x,−w/2 + y)

w
(4)

where w is grid width.
A wall is a boundary condition where velocity is always 0, and pressure

gradient is 0. An edge is a boundary condition where both velocity gradient
and pressure gradient are 0

The first step in integration was advection step, corresponding to the second
step in [3],

u1 = u(p(~x,−∆t)) (5)

where p(~x, t) is the velocity at ~x + u(~x)t. In other words, it is the veloc-
ity obtained by tracing backwards in the velocity field for ∆t. This step was
straightforward, by sampling u(x−∆tu).

The second step was diffusion step, corresponding to the third step in [3].

∂u2

∂t
= ν∇2u1 (6)

In that paper, the diffusion step is solved using an implicit method. For
simplicity, I used explicit method for integration:

u2 = u1 +∆t
∂u2

∂t
(7)

In the final step, divergence-free component of vector field u was solved to
fullfill the incompressibility condition:

∇ · u = 0 (8)

Since I tried to avoid transforming the problem into matrix operations, I
chose the velocity-pressure relaxation described in [2]. Note that due to the
simulator’s architecture (Section 2.1), the next state function could only update
the center cell, the relaxation was done locally on the 3 × 3 grid and only the
center cell’s value is kept.

The relaxation started with updating pressure, a process modified from [2]:

∆p = −β∇ · u (9)

β =
β0w

2

4∆t
(10)

3

where β0 is a relaxation coefficient chosen for numerical stability, in range
[1, 2][2].

Then, local 3x3 grid velocities were updated as following:

∆U =

 0 (0,−∆t∆p/w) 0
(−∆t∆p/w, 0) 0 (∆t∆p/w, 0)

0 (0,∆t∆p/w) 0

 (11)

Then, center cell pressure was updated by ∆p. The relaxation process was
repeated until ∇ · u was sufficiently small or until maximum iteration.

Finally, center cell velocity was updated by

∆u = α∆p (12)

where α is a coefficient to guess the relaxation results for adjacent cells.
As the entire simulator used explicit integration, relaxation, and heuristics,

the parameters were extremely difficult to tune for stability, and simulation
diverged numerically even with small and smooth inputs. Therefore, the final
implementation did not use the Navier-Stokes simulator.

2.3 Simulation: Divergence Flow
Due to the failure of the Navier-Stokes simlator, I designed a simple and stable
fluid simulation algorithm that models only diffusion.

The central equation is:

p̃ = p+ (∇ · p)∆t/α (13)
α = α0ν (14)

where α0 is a coefficient on the order of 109, used to dampen diffusion and
provide numerical stability.

∇ · p was discretized so that it used information on all adjacent cells:

∇ · p =
4p−

∑
p′∈edge p

′

w
+

4p−
∑

p′∈corner p
′

√
2w

(15)

Walls and edges are both treated with pressure gradient of 0.
This solver was stable, and allowed visually verification, such as in Figure 2.

3 Parallelization
Multiple parallization methods were attempted. All benchmarks were performed
on a i9-9900K CPU with 8 physical core and 16 threads, with 64GB of memory.
I identified, through profiling, two main area of performance bottleneck: grid
stepping and grid outputting. The stepper was accelerated via parallization,
while grid output acceleration was attempted using a dedicated output thread.

4

Figure 2: Small input simulation screenshots showing diffusion over time

For the stepper, multiple data structures were tested, and all were based on
the Vector type. The first method I tried was encapsulating chunks of vectors
in a datatype ParVector a, providing map and imap interface so semantically it
functioned like Vector a. The second method I tried was to keep the Vector a
structure, and to provide parallel versions of map and imap. In each method,
I tested chunking as Vector (Vector a) and as [Vector a]. In addition, I
tested sparking with par, parMap or parTraversable, and the Par monad. In
each chunking method, I tested using Vector Bundle in hopes it is more efficient
in concatenation.

For the output thread, I tested blocking IO in the computation thread and
sending the grid through a TBMQueue of various sizes to an output thread. In
each case, I tested cloning the vector and using the vector as is. In addition,
I compared performance of storing as text format and serializing into binary
format. In the same-thread case, I also tried various buffer sizes.

4 Results
Table 1 compares performance tests using final parallel implementation and
sequential implementation (not included in source code, but easy to change by
substituting all parMapV and parMapV with map and imap).

Grid Size Time Steps N1 N2 N4 N8 N16
16× 16 600 0.348s 0.357s 0.372s 0.410s 0.619s
256× 256 600 40.5s 22.0s 19.5s 27.6s 44.1s
512× 512 600 2m50s 2m16s 1m58s 2m14s 4m58s

Table 1: Benchmark Results

5

I found that ParVector and parallelized Vector had nearly identical per-
formance, given identical chunk size. Therefore, for readability I kept Vector
in the final implementation. In either case, chunking did not provide any ad-
vantages until they were at least 1024 cells each, and until the simulation grid
was at least 256 × 256 in size. In addition, chunking as [Vector a] provided
significant speed up over Vector (Vector a), possibly due to how they were
manipulated when they were split and concatenated. Using Bundle provided no
speedup. In all cases, the Par monad gave best performance, but [Vector a]
chunking with parMap came close.

Single thread output writing with large buffer size worked better than send-
ing to another output thread. Cloning did not help making output and com-
putation concurrent, and had no positive effects. In all cases, binary output
performed better than text output.

In final implementation, profiling showed that IO was not the performance
bottleneck:
COST CENTRE MODULE SRC %time %alloc

divP'.f CellularFluid.Grid.FD.FDSimpleStepper src/CellularFluid/Grid/FD/FDSimpleStepper.hs:21:5-20 21.7 7.7
>>= Data.Vector.Fusion.Util Data/Vector/Fusion/Util.hs:36:3-18 11.2 10.6
adjCells.f.adjEdge CellularFluid.Grid src/CellularFluid/Grid.hs:60:11-51 8.3 4.4
primitive Control.Monad.Primitive Control/Monad/Primitive.hs:195:3-16 7.7 9.2
adjCells.f.adjCorner CellularFluid.Grid src/CellularFluid/Grid.hs:61:11-57 6.9 4.5
fmap Data.Vector.Fusion.Stream.Monadic Data/Vector/Fusion/Stream/Monadic.hs:(133,3)-(135,20) 6.2 7.6
sum Data.Vector Data/Vector.hs:425:3-11 4.9 3.8
basicUnsafeWrite Data.Vector.Mutable Data/Vector/Mutable.hs:118:3-65 3.6 5.1
basicUnsafeGrow Data.Vector.Generic.Mutable.Base Data/Vector/Generic/Mutable/Base.hs:(138,3)-(144,23) 3.4 1.4
basicUnsafeIndexM Data.Vector Data/Vector.hs:277:3-62 3.0 2.2
adjCells.f CellularFluid.Grid src/CellularFluid/Grid.hs:(50,5)-(63,19) 2.4 3.6
cellAt CellularFluid.Grid src/CellularFluid/Grid.hs:(34,1)-(42,20) 2.3 2.4
cellAt.idx CellularFluid.Grid src/CellularFluid/Grid.hs:39:5-24 2.2 0.0
basicUnsafeNew Data.Vector.Mutable Data/Vector/Mutable.hs:(99,3)-(102,32) 2.1 3.5
rnf.rnfAll Data.Vector Data/Vector.hs:(225,11)-(226,36) 1.9 0.5
basicUnsafeSlice Data.Vector.Mutable Data/Vector/Mutable.hs:89:3-62 1.2 4.1
parMapV.f' Data.Vector.Parallel src/Data/Vector/Parallel.hs:38:5-27 1.1 0.9
basicUnsafeFreeze Data.Vector Data/Vector.hs:(263,3)-(264,47) 1.0 3.2
basicUnsafeCopy Data.Vector.Mutable Data/Vector/Mutable.hs:(121,3)-(122,36) 0.5 1.8
>>= Data.Serialize.Put src/Data/Serialize/Put.hs:(173,5)-(176,37) 0.4 6.1
>>=.(...) Data.Serialize.Put src/Data/Serialize/Put.hs:175:13-36 0.3 2.4
*> Data.Serialize.Put src/Data/Serialize/Put.hs:(162,9)-(165,41) 0.1 1.7

Using threadscope, I identified sequential regions between two time steps, as
shown in Figure 3. This region was present in all implementations, including the
sequential one. I could not identify its origin from threadscope, and ghc-events-
analyze seemed to suggest an internal synchronization of the Data.Vector im-
plementation. The ParVector and cloning was an attempt to avoid this over-
head, but they both had no effect. The first sequential region in the figure is
reading grid input.

Figure 3: Threadscope output of a typical simulation.

6

5 Conclusion
In summary, the stepper of the simulator could be parallized. However, an
unidentified sequential region limited the amount of speed up achievable.

References
[1] Navier-stokes equations. https://en.wikipedia.org/wiki/Navier%E2%

80%93Stokes_equations. Accessed 2019-12-16.

[2] Nick Foster and Dimitri Metaxas. Realistic animation of liquids. Graphical
models and image processing, 58(5):471–483, 1996.

[3] Jos Stam. Stable fluids. In Siggraph, volume 99, pages 121–128, 1999.

A Command Line Usage
Usage: cellularfluid-sim [--version] [--help] [-v|--verbose] (-i|--
input ARG)

(-o|--output ARG) --time ARG

Available options:
--version Show version
--help Show this help text
-v,--verbose Verbose logging?
-i,--input ARG Input file
-o,--output ARG Output file
--time ARG Simultaion time

Views fluid simulation

Usage: cellularfluid-view [--version] [--help] [-v|--verbose] [--width ARG]
[--height ARG] [--hidpi] (-i|--input ARG)

Available options:
--version Show version
--help Show this help text
-v,--verbose Verbose logging?
--width ARG Window width
--height ARG Window height
--hidpi HiDPI support
-i,--input ARG Input file

B Grid Input Format
First line is a header storing grid metadata, separated by space:

7

https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations

Width(# Columns)::Int Height(# Rows)::Int Grid_Size::Double Density::Double Viscosity::Double

After the header, each entry has its own format, while entries are separated
by spaces.

Walls are specified with W; fluid cells using divergence-flow simulation are
specified with FD p where p is a Double value for pressure. Edges cannot be
specified in grid input.

The number of cells must match width × height specified in header, or the
program fails a sanity check and exits without starting simulation.

C Code Listing

{−# LANGUAGE NoImplicitPrelude #−}
{−# LANGUAGE TemplateHaskell #−}
module Main (main) where

import Import
import Run
import RIO. Process
import Options . Applicative . Simple
import qualified Paths_cellularfluid

main : : IO ()
main = do

(options , ()) <− simpleOptions
$(simpleVersion Paths_cellularfluid . version)
”Simulates␣ f luid ”
”Description : ␣TODO”
(Options

<$> switch (long ”verbose”
<> short ’v ’
<> help ”Verbose␣logging?”

)
<∗> strOption (long ”input”

<> short ’ i ’
<> help ”Input␣ f i l e ”
)

<∗> strOption (long ”output”
<> short ’o ’
<> help ”Output␣ f i l e ”
)

<∗> option auto (long ”time”
<> help ”Simultaion␣time”

)
)
empty

lo <− logOptionsHandle stderr (optionsVerbose options)
pc <− mkDefaultProcessContext
withLogFunc lo $ \ l f −>

let app = App
{ appLogFunc = l f
, appProcessContext = pc
, appOptions = options
}

in runRIO app run

Listing 1: app/Main.hs

module CellularFluid
(module CellularFluid . Grid
, module CellularFluid . Grid .Types
, module CellularFluid . Grid . Parse

8

) where

import CellularFluid . Grid
import CellularFluid . Grid .Types
import CellularFluid . Grid . Parse (parseGrid)

Listing 2: src/CellularFluid.hs

{−# LANGUAGE NoImplicitPrelude #−}
module Import

(module RIO
, module Types
) where

import RIO
import Types

Listing 3: src/Import.hs

{−# LANGUAGE NoImplicitPrelude #−}
{−# LANGUAGE OverloadedStrings #−}
module Run (run) where

import Import

import Sim

import System.IO (openFile)

import CellularFluid . Grid .Types
import CellularFluid . Grid . Parse

−− | RIO top level entry point
run : : RIO App ()
run = do

app <− ask
let opt = appOptions app
when (optionsVerbose opt) outputOptions
let fpIn = optionsInput opt

fpOut = optionsOutput opt
egrid <− loadGrid fpIn
outHandle <− openOutput fpOut
sim <− case egrid of

Right (grid , phys) −> setupSim grid phys outHandle
Left s −> (logError . fromString $ ”Grid␣parse␣error : ␣” ++ s) >> exitFailure

runRIO sim runSim

−− | Logs options when verbose is ON
outputOptions : : (HasOptions env , HasLogFunc env)

=> RIO env ()
outputOptions = do

env <− ask
let opt = env ^. optionsL
logInfo ”Verbose␣f lag␣ON”
logInfo . fromString $ ”INPUT: ␣” ++ optionsInput opt
logInfo . fromString $ ”OUTPUT: ␣” ++ optionsOutput opt

−− | Loads simulation grid
loadGrid : : (HasLogFunc env)

=> FilePath
−> RIO env (Either String (Grid , PhysCfg))

loadGrid fp = do
logDebug . fromString $ ”Loading␣grid␣from : ␣” ++ fp
txt <− readFileUtf8 fp

9

let result = parseGrid txt
logDebug . fromString $ ”Done␣loading␣grid␣from : ␣” ++ fp
return result

−− | Opens output f i l e
openOutput : : (HasLogFunc env)

=> FilePath
−> RIO env Handle

openOutput fp = do
logDebug . fromString $ ”Opening␣output␣ f i l e : ␣” ++ fp
h <− l i f t IO $ openFile fp WriteMode
hSetBuffering h $ BlockBuffering $ Just 268435456 −− 256 MB
logDebug . fromString $ ”Done␣opening␣output␣ f i l e : ␣” ++ fp
return h

−− | Sets up simulation environment
setupSim : : (HasLogFunc env , HasOptions env)

=> Grid
−> PhysCfg
−> Handle
−> RIO env SimApp

setupSim grid phys h =
let simCfg = SimulationCFG { cfgTimeStep = 1.0 / 60.0

, cfgPhysics = phys
}

in do
env <− ask
let opt = env ^. optionsL
return $ SimApp { simHandle = h

, simCfg = simCfg
, simGrid = grid
, simLogFunc = env ^. logFuncL
, simSteps = optionsTimeStep opt
}

Listing 4: src/Run.hs

module Sim
(runSim
) where

import Import

import RIO. ByteString
import RIO. State

import qualified Data. Ser ia l ize as S

import CellularFluid

−− | The main function of simulation
runSim : : RIO SimApp ()
runSim = do

env <− ask
logDebug ”Checking␣grid␣sanity . . . ”
when (not . gridIsSane $ simGrid env) $ do

logError ”Grid␣insane”
exitFailure

logDebug ”Done␣checking␣grid␣sanity . ␣Grid␣ i s ␣sane . ”
logDebug ”Start␣simulation . ”
simLoop $ simSteps env
logDebug ”End␣simulation . ”
logDebug ”Waiting␣for␣output␣to␣ f in ish . . . ”
hClose $ env ^. outHandleL
logDebug ”Done␣waiting␣for␣output␣to␣ f in ish . ”

10

−− | Main simulation loop
simLoop : : Int −> RIO SimApp Grid
simLoop nmax = (simGrid <$> ask) >>= evalStateT (go 0)

where
go n’

| n’ >= nmax = get
| otherwise = do

when (n’ ‘mod‘ 100 == 0) $
l i f t $ logDebug . fromString $ ”Iteration : ␣” ++ show n’

stepSim
go (n’ + 1)

−− | Steps grid once and outputs
stepSim : : HasSimInfo env => StateT Grid (RIO env) ()
stepSim = do

env <− l i f t ask
grid <− get
let cfg = env ^. simCfgL

h = env ^. outHandleL
let grid ’ = stepGrid cfg grid
−− Writes output

hPut h (S. encode grid ’)
put grid ’

Listing 5: src/Sim.hs

{−# LANGUAGE NoImplicitPrelude #−}

module Types where

import RIO
import RIO. Process

import CellularFluid . Grid .Types

−− | Command line arguments
data Options =

Options
{ optionsVerbose : : !Bool
, optionsInput : : !FilePath
, optionsOutput : : !FilePath
, optionsTimeStep : : ! Int
}

data App =
App

{ appLogFunc : : !LogFunc
, appProcessContext : : ! ProcessContext
, appOptions : : ! Options
}

data SimApp =
SimApp

{ simHandle : : !Handle
, simCfg : : !SimulationCFG
, simGrid : : ! Grid
, simLogFunc : : !LogFunc
, simSteps : : ! Int
}

instance HasLogFunc App where
logFuncL = lens appLogFunc (\x y −> x {appLogFunc = y})

instance HasLogFunc SimApp where
logFuncL = lens simLogFunc (\x y −> x {simLogFunc = y})

instance HasProcessContext App where
processContextL = lens appProcessContext (\x y −> x {appProcessContext = y})

11

class HasOptions env where
optionsL : : Lens ’ env Options

instance HasOptions App where
optionsL = lens appOptions (\x y −> x {appOptions = y})

class HasSimInfo env where
simCfgL : : Lens ’ env SimulationCFG
outHandleL : : Lens ’ env Handle

instance HasSimInfo SimApp where
simCfgL = lens simCfg (\x y −> x {simCfg = y})
outHandleL = lens simHandle (\x y −> x {simHandle = y})

Listing 6: src/Types.hs

module CellularFluid . Grid where

import RIO

import qualified RIO. Vector as V
import qualified RIO. Vector . Unsafe as V’

import Data. Vector . Parallel

import qualified CellularFluid . Grid .FD. FDSimpleStepper as FD
import CellularFluid . Grid .Types

−− | Simulates one ce l l for one timestep
stepCell : : SimulationCFG −> AdjCells −> Cell −> Cell
stepCell cfg adjs c e l l = step c e l l

where
phy = cfgPhysics cfg
step (FluidD p) =

let width = phyGridSize phy
dt = cfgTimeStep cfg
mu = phyFDMu phy
rho = phyFDRho phy
nu = mu / rho
p’ = FD. step width dt nu p adjs

in FluidD p’
step x = x

−− | Gets ce l l at (r , c)
−−
−− I f out of bounds, ce l l is Wall
cellAt : : Grid −> Int −> Int −> Cell
cellAt g r c

| r < 0 | | c < 0 | | r >= h | | c >= w = Wall
| otherwise = cs ‘ idx ‘ (w ∗ r + c) −− We guarentee not out of bounds

−− idx = parIndex ’
where

idx = V’ . unsafeIndex
cs = gridCells g
w = gridWidth g
h = gridHeight g

−− | Get vector of adjacent ce l l s
adjCells : : Grid −> Vector (Cell , AdjCells)
adjCells g = parIMapV f cs −− (V.imap f cs)

where
cs = gridCells g
w = gridWidth g
c e l l = cellAt g
f i x =

let (r , c) = i ‘divMod‘ w
acN = c e l l (r − 1) c

12

acNW = c e l l (r − 1) (c − 1)
acW = c e l l r (c − 1)
acSW = c e l l (r + 1) (c − 1)
acS = c e l l (r + 1) c
acSE = c e l l (r + 1) (c + 1)
acE = c e l l r (c + 1)
acNE = c e l l (r − 1) (c + 1)
adjEdge = V. fromList [acN, acW, acE, acS]
adjCorner = V. fromList [acNW, acNE, acSW, acSE]
adjs = Adj {. .}

in (x , adjs)

−− | Steps grid once
stepGrid : : SimulationCFG −> Grid −> Grid
stepGrid cfg grid = grid {gridCells = cel l s ’}

where
ce l l s ’ = step ‘parMapV‘ adjs
adjs = adjCells grid
step (cel l , adjce l l s) = stepCell cfg adjce l l s c e l l

−− | Checks whether the grid is sane.
−−
−− Currently verif ies grid size is consistent with (width ∗ height)
gridIsSane : : Grid −> Bool
gridIsSane grid =

(V. length $ gridCells grid) == (gridHeight grid ∗ gridWidth grid)

Listing 7: src/CellularFluid/Grid.hs

{−# LANGUAGE DeriveAnyClass #−}
{−# LANGUAGE DeriveGeneric #−}

module CellularFluid . Grid .Types where

import RIO
import qualified RIO. List as L
import qualified RIO. Vector as V

import qualified Data. Ser ia l ize as S
import Data. Vector . Ser ia l ize ()

import Numeric

import Linear

−− | Time
type T = Double

type DT = Double

−− | Length
type L = Double

−− | Position
type X = V2 Double

−− | Velocity
type U = V2 Double

−− | Acceleration
type DU = V2 Double

−− | ·(u/t)
type DIV_DU = Double

−− | Pressure
type P = Double

13

type DP = Double

−− | Density
type Rho = Double

−− | Kinematic Viscosity
type Mu = Double

type Nu = Double

−− | Next state logic
type NSL = Cell −> AdjCells −> Cell

{−|
Data type for one simulation ce l l

−}
data Cell

= FluidD P −− ^ Diffusive f luid
| Wall −− ^ Perfect wall ce l l
| Edge −− ^ Edge
deriving (Generic , NFData)

instance S. Ser ia l ize Cell

−− | Adjacent ce l l s
data Adj a =

Adj
{ adjEdge : : Vector a
, adjCorner : : Vector a
}

deriving (Show, Functor, Generic , NFData)

type AdjCells = Adj Cell

data Grid =
Grid

{ gridCells : : ! (Vector Cell) −− ^ Row major, top−l e f t is (0 , 0)
, gridWidth : : ! Int
, gridHeight : : ! Int
}

deriving (Generic , NFData)

instance S. Ser ia l ize Grid

instance Show Grid where
show = showGrid

data PhysCfg =
PhysCfg

{ phyGridSize : : Double
, phyFDRho : : Double
, phyFDMu : : Double
}

deriving (Show)

showGrid : : Grid −> String
showGrid g = go c e l l s

where
rowSize = gridWidth g
c e l l s = gridCells g
go : : Vector Cell −> String
go cs

| null cs = ””
| otherwise =

let (h, t) = V. splitAt rowSize cs
hstr = showRow h ++ ”\n”

in hstr ‘seq ‘ (hstr ++ go t)

14

cloneGrid : : Grid −> Grid
cloneGrid g = g {gridCells = cel l s ’}

where
c e l l s = gridCells g
ce l l s ’ = (V.new . V. clone) c e l l s

instance Show Cell where
show = showCell

showCell : : Cell −> String
showCell (FluidD p) = L. intercalate ”␣” [”FD” , sg p]

where
sg a = showGFloat Nothing a ””

showCell Wall = ”W”
showCell Edge = ”E”

showRow : : Vector Cell −> String
showRow = L. intercalate ” ,” . toList . fmap show

{−|
Grid configuration

−}
data SimulationCFG =

SimulationCFG
{ cfgTimeStep : : Double
, cfgPhysics : : PhysCfg
}

Listing 8: src/CellularFluid/Grid/Types.hs

module CellularFluid . Grid . Parse where

import RIO
import qualified RIO. Vector as V

import Data. Attoparsec . Text

import CellularFluid . Grid .Types

data GridCfg =
GridCfg

{ width : : Int
, height : : Int
, s ize : : Double
, density : : Double
, viscosity : : Double
}

parseGrid : : Text −> Either String (Grid , PhysCfg)
parseGrid = parseOnly gridParser

gridParser : : Parser (Grid , PhysCfg)
gridParser = do

cfg <− pGridCfg
c e l l s <− pGridCells cfg
let grid =

Grid {gridCells = cel l s , gridWidth = width cfg , gridHeight = height cfg}
phys =

PhysCfg
{ phyGridSize = size cfg
, phyFDRho = density cfg
, phyFDMu = viscosity cfg
}

return (grid , phys)

pGridCfg : : Parser GridCfg
pGridCfg = do

width <− decimal

15

many1 space
height <− decimal
many1 space
size <− double
many1 space
density <− double
many1 space
viscosity <− double
endOfLine <?> ”Too␣many␣arguments␣on␣ f i r s t ␣ l ine ”
return $ GridCfg {. .}

pGridCells : : GridCfg −> Parser (Vector Cell)
pGridCells _ = do

cs <− pCell ‘sepBy1 ‘ space
return $ V. fromList cs

pCell : : Parser Cell
pCell = pFluidD <|> pWall

pFluidD , pWall : : Parser Cell
pFluidD = do

string ”FD” −− Diffusive Fluid
many1 space
p <− double
return $ FluidD p

pWall = string ”W” >> return Wall

Listing 9: src/CellularFluid/Grid/Parse.hs

module CellularFluid . Grid .FD. FDSimpleStepper where

{−
Simple diffusive f luid
−}

import RIO

import CellularFluid . Grid .Types

−− | Main stepping function
step : : L −> DT −> Nu −> P −> AdjCells −> P
step w dt p adjs = p − divP ∗ dt /

where
= 1e9 ∗ −− magic

divP = divP ’ adjs p / w

−− | Scaled divergence of P: w(·P)
divP ’ : : AdjCells −> P −> Double
divP ’ (Adj es cs) p = f es + f cs / (sqrt 2.0)

where
f = sum . fmap g
g (FluidD p’) =

let !dp = p − p’
in dp

g _ = 0.0

Listing 10: src/CellularFluid/Grid/FD/FDSimpleStepper.hs

module Data. Vector . Parallel where

import RIO
import qualified RIO. List as L
import RIO. List . Partial (tail)
import qualified RIO. Vector as V

import Control .Monad. Par

16

−− | Splits vector into l i s t of chunks.
−− Chunk order is reversed
−−
−− concatV . chunksOf == id
chunksOf : : Int −> Vector a −> [Vector a]
chunksOf n v = vs

where
vs = go v []
go v ’ xs

| null v’ = xs
| otherwise =

let (c , t) = V. splitAt n v’
in go t (c : xs)

−− | Concatenates chunks
−−
−− concatV . chunksOf == id
concatV : : [Vector a] −> Vector a
concatV = go V.empty

where
go v ’ [] = v’
go v ’ (v : vs) =

let v’ ’ = v <> v’
in go v ’ ’ vs

−− | Parallel version of V.map
parMapV : : NFData b => (a −> b) −> Vector a −> Vector b
parMapV f va = concatV . runPar $ f ’ ‘mapM‘ chunks >>= traverse get

where
chunks = chunksOf 4096 va
f ’ v = spawnP $ f <$> v

−− | Parallel version of V.imap
parIMapV : : NFData b => (Int −> a −> b) −> Vector a −> Vector b
parIMapV f va = concatV . runPar $ zipWithM f ’ acc chunks >>= traverse get

where
chunks = chunksOf 4096 va
lengths = V. length <$> chunks
acc = tail $ L. scanr (+) 0 lengths
f ’ i0 as = spawnP $ V.imap (\ i a −> f (i+i0) a) as

Listing 11: src/Data/Vector/Parallel.hs

17

	Introduction
	Algorithm
	Cellular Automata
	Simulation: Navier-Stokes Equation
	Simulation: Divergence Flow

	Parallelization
	Results
	Conclusion
	Command Line Usage
	Grid Input Format
	Code Listing

