Parallel Functional 2048

Colin Brown and Jonathan Rich

Fall 2019

1 Setup

To build, navigate to the project root directory. Then, run:

stack build

This will build an executable hidden in the .stack-work folder. To run the program, run:
stack exec <player type> <search depth>

The options for player type are:

int: Interactive player where you can play the game (just like the original game)

simple: A basic adversarial search agent without any parallelism or alpha-beta pruning

par: An agent that runs basic adversarial search in parallel across subtrees

ab: An agent that uses a sequential alpha-beta pruning algorithm

mixed: An agent that merges some parallelism and alpha-beta pruning using a ”Young Brothers Can Wait”
approach

2 Explanation of the Algorithms Implemented

All of the different algorithms are variants on a minimax algorithm to play 2048, modelling the random choices
of where the next tile is placed as the intelligent decisions of an adversary.

simple: Implements a minimax algorithm. No parallelization or pruning is used.
ab: Implements an alpha-beta pruning algorithm. No parallelization is used.
par: Implements a minimax algorithm in parallel. This is a parallel version of the simple player.
mixed: Implements a minimax algorithm in parallel using a ” Young Brothers Can Wait Strategy”, which means
exploring the first option at each level of the search tree in full, then using the alpha and beta values obtained
from the first ”Oldest Brother” branch to prune while running the remaining branches in parallel.

The mixed strategy is used due to the tradeoff between alpha-beta pruning, which speeds up the overall
computation time required for the search but requires information to be propagated from one subtree to the
next, vs parallelization, which splits the overall computation time across multiple processors but requires each
subtree to be independent. The YBCW strategy gets some of the benefits of both, resulting in an overall faster
algorithm.

3 Code Listing

The code is broken down into three files.

Main.hs: Entrypoint of the program. Parses command-line arguments (main), and contains the main game
loop (playGame).

Base2048.hs: Implements functions and defines data types to simulate 2048 gameplay.

GameAgents.hs: Implements various different agents to play 2048. Some agents take advantage of parallel
computation, and some do not.

The most important sections of each file are broken down below.

3.1 Main.hs
main: Parses command line arguments

main :: I0 ()
main = do args <— getArgs
case args of
[maxdepth, playerType] —> playGame $ player (read maxdepth)
where player = case playerType of
”simple” —> simplePlayer
7ab” —> alphaBetaPlayer
"par” —> fullParallelPlayer
"mixed” —> ybcwPlayer
p — error $§ p ++ 7_is_not_a_valid_player_type”
[7int”] —> playGame interactivePlayer
- —> do pn <— getProgName
die $ ”Usage:.” 4++ pn ++ " .<max.depth>.<player._type>"

playGame: Given a player agent function, simulates a game of 2048 and prints the gameboard
after each move.

playGame :: (GameState —> IO GameState) —> IO ()
playGame player = newGame >>= playFrom
where playFrom g = do
print g
case g of
(PlayerTurn _) —> player g >>= playFrom
(ComputerTurn _) —> playComputer g >>= playFrom
(GameWon _) —> putStrLn ” Congratulations!” >> exitSuccess
(GameLost _) —> putStrLn ”Try_again_soon!” >> exitFailure

3.2 Base2048.hs

Constant declarations

size = 4
goal = 2048
computerChoices = [2, 4]

computerProbs = [0.9, 0.1]
instance Show GameState: determines how to print a GameState

instance Show GameState where

show (PlayerTurn b) = ”Player._to_Move.\n” ++ printBoard b
show (ComputerTurn b) = ”Computer.to_Move.\n” ++ printBoard b
show (GameWon b) = ”Player _ Won.the._ Game!\n” ++ printBoard b
show (GameLost b) = ”Player._.Lost._the_Game!\n” 4++ printBoard b
printBoard :: Board —> String
printBoard b = ”\n” 4++ (intercalate ”\n” $ map showBoardRow b) ++ ”\n”
where showBoardRow r = intercalate ”\t” $ map show r

newGame: represents a new game where the computer has played a single time

newGame :: IO GameState
newGame = playComputer $§ ComputerTurn [replicate size 0 | _ <— replicate size 0]

scoreGame: a heuristic function for GameState
{_
Heuristic for how good a state is for the player

Rewards empty squares, higher wvalue tiles , and evenly increasing rows/cols
Penalizes large gaps in value between mneighboring tiles

2

Adds weighted rewards for wvalues along a snaking path for easy combination

-}

scoreGame :: GameState —> Double

scoreGame (GameLost _) = —1 % (read ”Infinity”)::Double

scoreGame (GameWon _) = (read ”Infinity”)::Double

scoreGame (PlayerTurn board) = scoreBoard board

scoreGame (ComputerTurn board) = scoreBoard board

scoreBoard :: Board —> Double

scoreBoard b = 2 "numEmpty + 0.5%sumPow + monoScore + snakeBias — 0.65%smoothPen
where numEmpty = sum $ map (length . filter (0 ==)) b

sumPow = sum $ map (sum . map (flip (xx) (1.7::Double) . fromIntegral)) b
smoothPen = fromIntegral $
sumOverDirs (sum . map (sum . (map abs) . offsetDiffs)) b
monoScore = fromIntegral $
sumOverDirs (maximum . (map sum) . transpose . (map monoScores)) b
monoScores x = map (abs . sum) $ tupTolL $ partition (0<) $ offsetDiffs x
offsetDiffs 1 = zipWith (=) 1 § tail 1
sumOverDirs f b’ = sum $ map f [b’, transpose b’]
tupToL (x,y) = [x,y]
snakeBias = fromIntegral $§ weightSum $ concat $ flipAltRows
weightSum 1 = sum $ zipWith (x) (map (flip (") 3) [0..]) 1
flipAltRows = zipWith ($) (cycle [id, reverse]) b

nextStates: a wrapper to abstract turns and moves away from agents

nextStates :: GameState —> [GameState]

nextStates (PlayerTurn b) = map snd $ getPlayerMoves b
nextStates (ComputerTurn b) = getComputerMoves b
nextStates - = []

getPlayerMoves: given a GameState, returns every possible legal tuple of move and resulting
game state from playing that move.

getPlayerMoves :: Board —> [(Move, GameState)]
getPlayerMoves board = do
move <— moves
let successor = doPlayerMove board move
state = getState successor
guard $ successor /= board
return (move, state)

where moves = [LeftMove, RightMove, UpMove, DownMove]
getState b | winState b = GameWon b
| otherwise = ComputerTurn b

winState b = any (>= goal) $ concat b
doPlayerMove: given a board and a player move, output the new board

— fourfold symmetry of board, so implemented actual transformation only once
doPlayerMove :: Board —> Move —> Board
doPlayerMove b LeftMove = board’
where board’ = map (take size . (++ repeat 0) . merge . filter (/= 0)) b
merge (x1:x2:xs)

| x1 = x2 = (x1 % 2) : merge xs
| otherwise = x1 : merge (x2 : xs)
merge | = 1

doPlayerMove b RightMove = map reverse $ doPlayerMove (map reverse b) LeftMove
doPlayerMove b UpMove = transpose $ doPlayerMove (transpose b) LeftMove
doPlayerMove b DownMove = transpose $ doPlayerMove (transpose b) RightMove

parsePlayerMove: used to convert string input to a move for interactive player

parsePlayerMove :: String —> Maybe Move
parsePlayerMove ”"L” = Just LeftMove
parsePlayerMove "R’ = Just RightMove
parsePlayerMove 7U” Just UpMove
parsePlayerMove "D” = Just DownMove
parsePlayerMove = Nothing

getComputerMoves: given a board, returns a list of all possible GameStates after the computer
plays

getComputerMoves :: Board —> [GameState]
getComputerMoves board = map getComputerState newBoards
where newBoards = map snd $ allComputerMoveProbs board

playComputer: simulates a computer move on a GameState

playComputer :: GameState —> IO GameState

playComputer (ComputerTurn b) = doComputerMove b >>=
\b’ —> return $ getComputerState b’

playComputer _ = error ”It ’s.not.the_.Computer’s_turn.”

getComputerState: gets all possible successor boards when the computer plays

getComputerState :: Board —> GameState
getComputerState b | loseState b = GameLost b
| otherwise = PlayerTurn b

where loseState b’ = gridMin b’ > 0
&& minimum (map diffMin [b’, transpose b’]) > 0
diffMin b’ = minimum $ map (minimum . (map abs) . offsetDiffs) b’
offsetDiffs 1 = zipWith (=) 1 § tail 1
gridMin g = minimum (map minimum g)

doComputerMove: simulates a computer move on a board

doComputerMove :: Board —> I0 Board
doComputerMove board = getStdRandom random >>=
\r — return $ snd $ head $ filter ((> r) . fst) $ cumulativeProbs
where
cumulativeProbs = scanll addCumulative $ allComputerMoveProbs board
addCumulative = \(p, b) (p’, b’) = (p +p’, b’)

allComputerMoveProbs: given a board, returns a list of tuples of probability and successor
board, for every possible successor board after the computer plays. This function works by
flattening the 2D board array, generating a list of all possible ”deltas” (lists of zeros except for
the computer’s move), and then combining the two.

allComputerMoveProbs :: Board —> [(Double, Board)]
allComputerMoveProbs board = zip probs boards’
where flatboard = concat board
flatboards = replicate (size 2 * length(computerChoices)) flatboard
flatboards ’ = zipWith combineDelta flatboards deltas
uniqueflatboards > = filter (/= flatboard) flatboards’
boards’ = map (divvy size size) uniqueflatboards’

probs = cycle $
map (* (lenratio computerChoices uniqueflatboards ’))
computerProbs

deltas = interleave $ map ndeltas computerChoices
ndeltas n = (n : repeat 0) : (map (0:) $§ ndeltas n)

lenratio a b = (fromIntegral $ length a) / (fromIntegral $ length b)

interleave = concat . transpose

combineDelta flatboard delta = zipWith combine flatboard delta
combine 0 new = new
combine orig _ = orig

3.3 GameAgents.hs

The players frequently reuse code from other players; for example, the YCBM player (Mixed strategy) uses
sequential alpha-beta search below the depth limit rather than parallelizing further.
Constants, Data Types, and Convenience Functions

inf = read ”"Infinity” :: Double
depthLimit = 2 :: Int

— types to clean up function signatures

type MMResult = (Double, GameState)

type Minimax = Int —> GameState —> MMResult

type ABMinimax = Double —> Double —> Int —> GameState —> MMResult
type ABMap = Double — Double —> Int —> [GameState] —> [MMResult]

fstMax = maximumBy (comparing fst) :: [MMResult] —> MMResult

fstMin = minimumBy (comparing fst) :: [MMResult] —> MMResult
simplePlayer: implements the ”simple” Player

simplePlayer :: Int —> GameState —> IO GameState

simplePlayer maxdepth game = return $ snd $ segMM maxdepth game

seqMM :: Minimax

seqgMM 0 g = (scoreGame g, g)
seqMM d g@(PlayerTurn _) = fstMax $ seqMMVals seqMM d $ nextStates g
seqMM d g@(ComputerTurn _) = fstMin $§ seqMMVals seqMM d $ nextStates g
seqMM _ g = (scoreGame g, g)

— gets minimax values of mext layer lazily
seqMMVals :: Minimax —> Int —> [GameState] —> [MMResult]
seqMMVals mm d gs = [(fst $ mm (d—1) x, x) | x <— gs]

fullParallelPlayer: implements the ”par” Player
fullParallelPlayer :: Int —> GameState —> IO GameState
fullParallelPlayer maxdepth game = return $ snd $ parMM maxdepth game

parMM :: Minimax

parMM 0 g = (scoreGame g, g)

parMM d g@(PlayerTurn _) = fstMax $ seqMMVals parMM d $ nextStates g
parMM d gQ@(ComputerTurn _) = fstMin $ parMMVals parMM seqMM d $ nextStates g
parMM _ ¢ = (scoreGame g, g)

— gets minimax values of next layer in parallel
— wuses parmm minimax function in parallel if above a certain depth
— otherwise finishes tree using seqgqmm minimaz function

parMMVals :: Minimax —> Minimax —> Int —> [GameState] —> [MMResult]
parMMVals parmm seqmm d gs | d > depthLimit = zipWith (,) scores gs
| otherwise = seqMMVals seqmm d gs

where scores = map fst $ parMap rpar (parmm (d—1)) gs
alphaBetaPlayer: implements the ”ab” player

alphaBetaPlayer :: Int —> GameState —> IO GameState
alphaBetaPlayer maxdepth game = return $ snd $ abMM (—1xinf) inf maxdepth game

abMM :: ABMinimax

abMM _ _ 0 g = (scoreGame g, g)
abMM a b d gQ(PlayerTurn _) = fstMax $§ maxABEval a b d $§ nextStates g
abMM a b d gQ(ComputerTurn _) = fstMin $§ minABEval a b d $§ nextStates g
abMM _ _ _ g = (scoreGame g, g)

— functions implementing the AB updates and pruning
maxABFold :: ABMinimax —> ABMap
—> Double —> Double —> Int —> [GameState] —> [MMResult]
maxABFold mm - a b d [g] = [(s, g)]
where s = fst $mm a b (d-1) g
maxABFold mm eval a b d (g:gs) | newA >=b =
| otherwise = (
g

|
w o~

s, g)]

) eval newA b d gs

where s = fst $ mm a b (d-1)
newA = max a s

minABFold :: ABMinimax —> ABMap
—> Double —> Double —> Int —> [GameState] —> [MMResult]
minABFold mm _ a b d [g] = [(s, g)]
where s = fst $mm a b (d-1) g
minABFold mm eval a b d (g:gs) | a >= newB = [(s, g)]
| otherwise = (s) eval a newB d gs
where s = fst $ mm a b (d-1) g

newB = min b s

— Map a list of gameStates using sequential propagation of AB values
maxABEval :: ABMap

maxABEval a b = maxABFold abMM maxABEval a b

minABEval :: ABMap

minABEval a b = minABFold abMM minABEval a b

ycbwPlayer: implements the ”mixed” player

ybecwPlayer :: Int —> GameState — IO GameState
ybcwPlayer maxdepth game = return $ snd $ ybewMM (—1xinf) inf maxdepth game

ybewMM :: ABMinimax

ybewMM _ _ 0 g = (scoreGame g, g)
ybewMM a b d g@(PlayerTurn _) = fstMax $ maxYBCWEval a b d $ nextStates g
ybewMM a b d g@(ComputerTurn _) = fstMin $ minYBCWEval a b d $§ nextStates g
ybewMM _ _ _ g = (scoreGame g, g)

— Map a list of gameStates wusing by mapping in parallel until the depthLimit
parABEval :: ABMap
parABEval a b = parMMVals (ybewMM a b) (abMM a b)

— Map a list by getting ab wvalues from the first and then mapping in parallel
maxYBCWEval :: ABMap

maxYBCWEval a b = maxABFold ybcwMM parABEval a b

minYBCWEval :: ABMap

minYBCWEval a b = minABFold ybcwMM parABEval a b

interactivePlayer: implements the ”int” player (human controlled)

interactivePlayer :: GameState —> IO GameState
interactivePlayer g@(PlayerTurn b) = do
putStrLn ” Choose_Move_ (L, _R, .U, .D)”
m <— parsePlayerMove <$> getLine
case m of
Just m’ —> do
case lookup m’ $ getPlayerMoves b of

6

Just newState —> return newState
Nothing —> getAnotherMove
Nothing —> getAnotherMove
where getAnotherMove = do putStrLn ”Move_invalid!_Choose_another_move.”
interactivePlayer g
interactivePlayer _ = error "It ’s_not_the_Player’s_turn”

4 Results

These test suites are convenience scripts that invokes the Haskell modules several times with various options.
Python 3 is required to run the test script. Certain options like suppressing program output don’t work on
Windows (if possible, run on Linux or MacOS).

4.1 gametest.py

This test script runs each of the 4 player types calculates the average time taken to win a game for each of the
4 player types for a specified search depth. It can be run from the project root directory using:

python3 test/gametest.py <number of iterations> <maximum depth> <show games>

Recommended values for test script parameters:

number of iterations: 1 - 3. The script will run until each algorithm has successfully solved the puzzle this
many times before completing.

maximum depth: 4 - 5. The player agents will attempt to search the game tree up to this depth at a maximum.
show games: true — false. If true, the script will print the output of each game as it is played.

Note that the test suite may take a long time to run (10+ minutes) and need to retry several attempts in
the course of its run. This is normal.
This test script was run on MacOS High Sierra with a 2.2 GHz Intel Core i7 processor and 16GB of RAM. The
machine has 4 physical cores and 8 logical cores. The machine had minimal background programs and processes
running for the duration of the test.

The test averaged 20 successful iterations of the program for each algorithm, with a maximum depth of 5,
using the command:

python3 test/test.py 20 5 false
Algorithm Results:

simple: Average successful runtime 62.85371502637863, Success Rate 36.36363636363637

ab: Average successful runtime 12.893631625175477, Success Rate 21.73913043478261

par +RTS -N -s: Average successful runtime 15.325394880771636, Success Rate 39.21568627450981
mixed +RTS -N -s: Average successful runtime 6.3631915807723995, Success Rate 40.0

Using simple as a benchmark, we find:

ab: 4.87x faster for successful runs
par: 4.10x faster for successful runs
mixed: 9.88x faster for successful runs

We note that the success rate (the percentage of games that the agent wins) is comparable for all of the al-
gorithms!

4.2 searchtest.py

This script is used to test the average time taken to complete a search on a predetermined set of gamestates,
which provides a more consistent estimation of speedups of the search agents (as well as ignoring the extra time
taken in playing the game for the computer to take its turns).

7

This python script uses the compiled source file produced from Spec.hs (located in the test folder), which takes
in a list of boards in a text file (boards.txt) and solved each one in turn using the provided player type and search
depth. This file can be compiled from the test directory using the command:

stack build && stack ghc -- -make -02 - threaded -rtsopts -eventlog -0 spec
and the script itself can be run with the command:
python3 searchtest.py <number of iterations> <maximum depth> <show games>

The parallel algorithms can be run with a number of variations to control the number of created sparks, cor-
responding to the depth limit below which search is run sequentially as well as only parallelizing on min or max
rows rather than both. This can be done by changing the depthlimit argument or modifying minYBCWEval
to minABFold ybcwMM minABEval (with the equivalent for max).

The results of running each variation for the best performing algorithm, Mixed, with 10 iterations and a search
depth of 5 are as follows (all using the max number of cores):

Average Times for Mixed:

depth limit | both | max | min
6.17 | 8.87 | 9.876
6.03 | 8.89 | 9.81
5.52 | 886 | 9.79
5.07 | 880 | 9.97
12.61 | 12.83 | 10.19

= W= O

The fastest parallel variation for mixed was using full parallelization for all levels above depth 3, which gives a
speedup of 7.76x relative to the baseline (recalculated by running searchtest using simple).

