
Names, Scope, and Types

Stephen A. Edwards

Columbia University

Fall 2018

Scope

Types

Types in C

Types of Type Systems

Overloading

Binding Time

What’s Wrong With This?

a + f(b, c)

Is a defined?

Is f defined?

Are b and c defined?

Is f a function of two arguments?

Can you add whatever a is to whatever f returns?

Does f accept whatever b and c are?

Scope questions Type questions

What’s Wrong With This?

a + f(b, c)
Is a defined?

Is f defined?

Are b and c defined?

Is f a function of two arguments?

Can you add whatever a is to whatever f returns?

Does f accept whatever b and c are?

Scope questions Type questions

Scope
What names are visible?

Names Bindings Objects

Obj 1

Obj 2

Obj 3

Obj 4

Name1

Name2

Name3

Name4

Scope

Scope: where/when a name is bound to an object

Useful for modularity: want to keep most things hidden

Scoping Visible Names Depend On
Policy

Static Textual structure of program
Names resolved by compile-time symbol tables
Faster, more common

Dynamic Run-time behavior of program
Names resolved by run-time symbol tables,
e.g., walk the stack looking for names
Slower, more dynamic

Basic Static Scope in C, C++, Java, etc.

A name begins life where it is
declared and ends at the end
of its block.

From the CLRM, “The scope
of an identifier declared at
the head of a block begins at
the end of its declarator, and
persists to the end of the
block.”

void foo()
{

int x;

}

Hiding a Definition

Nested scopes can hide earlier
definitions, giving a hole.

From the CLRM, “If an
identifier is explicitly declared
at the head of a block,
including the block
constituting a function, any
declaration of the identifier
outside the block is
suspended until the end of
the block.”

void foo()
{

int x;

while (a < 10) {
int x;

}

}

Static vs. Dynamic Scope

C

int a = 0;

int foo() {
return a + 1;

}

int bar() {
int a = 10;

return foo();
}

OCaml

let a = 0 in
let foo x = a + 1 in
let bar =
let a = 10 in
foo 0

Bash

a=0

foo ()
{

a=‘expr $a + 1‘
}

bar ()
{

local a=10
foo
echo $a

}

bar

Basic Static Scope in O’Caml

A name is bound after the
“in” clause of a “let.” If the
name is re-bound, the
binding takes effect after the
“in.”

let x = 8 in

let x = x + 1 in

Returns the pair (12, 8):
let x = 8 in

(let x = x + 2 in
x + 2),

x

Let Rec in O’Caml

The “rec” keyword makes a
name visible to its definition.
This only makes sense for
functions.

let rec fib i =
if i < 1 then 1 else

fib (i-1) + fib (i-2)
in

fib 5

(* Nonsensical *)
let rec x = x + 3 in

Let...and in O’Caml

Let...and lets you bind
multiple names at once.
Definitions are not mutually
visible unless marked “rec.”

let x = 8
and y = 9 in

let rec fac n =
if n < 2 then

1
else

n * fac1 n
and fac1 n = fac (n - 1)
in
fac 5

Forward Declarations

Languages such as C, C++, and Pascal require forward
declarations for mutually-recursive references.

int foo(void);
int bar() { ... foo(); ... }
int foo() { ... bar(); ... }

Partial side-effect of compiler implementations. Allows
single-pass compilation.

Dynamic Definitions in TEX

% \x, \y undefined
{
% \x, \y undefined
\def \x 1
% \x defined, \y undefined

\ifnum \a < 5
\def \y 2

\fi

% \x defined, \y may be undefined
}
% \x, \y undefined

Static vs. Dynamic Scope

Most modern languages use static scoping.

Easier to understand, harder to break programs.

Advantage of dynamic scoping: ability to change
environment.

A way to surreptitiously pass additional parameters.

Application of Dynamic Scoping

program messages;
var message : string;

procedure complain;
begin

writeln(message);
end

procedure problem1;
var message : string;
begin

message := ’Out of memory’;
complain

end

procedure problem2;
var message : string;
begin

message := ’Out of time’;
complain

end

Open vs. Closed Scopes

An open scope begins life including the symbols in its outer
scope.

Example: blocks in Java

{
int x;
for (;;) {
/* x visible here */

}
}

A closed scope begins life devoid of symbols.

Example: structures in C.

struct foo {
int x;
float y;

}

Types
What operations are allowed?

Types

A restriction on the possible interpretations of a segment of
memory or other program construct.

Two uses:

Safety: avoids data being treated
as something it isn’t

Optimization: eliminates certain
runtime decisions

Types in C
What types are processors best at?

The C/C++ Machine Model

Arithemtic and other operators map to machine instructions

+ % -> [] *

Aggregate objects are composed by simple concatenation

Arrays, structs, C++ classes

Memory is a set of sequences of objects; pointers are
machine addresses

(After Stroustroup, due to Ritchie)

Basic C Types

C was designed for efficiency: basic types are whatever is
most efficient for the target processor.

On an (32-bit) ARM processor,

char c; /* 8-bit binary */

short d; /* 16-bit two’s-complement binary */
unsigned short d; /* 16-bit binary */

int a; /* 32-bit two’s-complement binary */
unsigned int b; /* 32-bit binary */

float f; /* 32-bit IEEE 754 floating-point */
double g; /* 64-bit IEEE 754 floating-point */

Number Behavior

Basic number axioms:

a +x = a if and only if x = 0 Additive identity

(a +b)+ c = a + (b + c) Associative

a(b + c) = ab +ac Distributive

Misbehaving Floating-Point Numbers

1e20 + 1e-20 = 1e20

1e-20 ¿ 1e20

(1 + 9e-7) + 9e-7 6= 1 + (9e-7 + 9e-7)

9e-7 ¿ 1, so it is discarded, however, 1.8e-6 is large enough

1.00001(1.000001−1) 6= 1.00001 ·1.000001−1.00001 ·1

1.00001 ·1.000001 = 1.00001100001 requires too much
intermediate precision.

What’s Going On?

Floating-point numbers are represented using an
exponent/significand format:

1 10000001︸ ︷︷ ︸
8-bit exponent

01100000000000000000000︸ ︷︷ ︸
23-bit significand

= −1.0112 ×2129−127 =−1.375×4 =−5.5.

What to remember:

1363.4568︸ ︷︷ ︸
represented

46353963456293︸ ︷︷ ︸
rounded

What’s Going On?

Results are often rounded:

1.00001000000
×1.00000100000

1.00001100001︸ ︷︷ ︸
rounded

When b ≈−c, b + c is small, so ab +ac 6= a(b + c) because
precision is lost when ab is calculated.

Moral: Be aware of floating-point number properties when
writing complex expressions.

Pointers and Arrays

A pointer contains a memory address.

Arrays in C are implemented with arithmetic on pointers.

A pointer can create an alias to a variable:

int a;
int *b = &a; /* "pointer to integer b is the address of a" */
int *c = &a; /* c also points to a */

b = 5; / sets a to 5 */
c = 42; / sets a to 42 */

printf("%d %d %d\n", a, *b, *c); /* prints 42 42 42 */

a b c

Pointers Enable Pass-by-Reference

void swap(int x, int y)
{
int temp;
temp = x;
x = y;
y = temp;

}

Does this work?

void swap(int *px, int *py)
{
int temp;

temp = *px; /* get data at px */
*px = *py; /* get data at py */
py = temp; / write data at py */

}

void main()
{
int a = 1, b = 2;

/* Pass addresses of a and b */
swap(&a, &b);

/* a = 2 and b = 1 */
}

Pointers Enable Pass-by-Reference

void swap(int x, int y)
{
int temp;
temp = x;
x = y;
y = temp;

}

Does this work?
Nope.

void swap(int *px, int *py)
{
int temp;

temp = *px; /* get data at px */
*px = *py; /* get data at py */
py = temp; / write data at py */

}

void main()
{
int a = 1, b = 2;

/* Pass addresses of a and b */
swap(&a, &b);

/* a = 2 and b = 1 */
}

Arrays and Pointers

a: a[0]a[1] a[5] a[9]

int a[10];

int *pa = &a[0];
pa = pa + 1;
pa = &a[1];
pa = a + 5;

a[i] is equivalent to *(a + i)

Arrays and Pointers

a: a[0]a[1] a[5] a[9]

pa:

int a[10];
int *pa = &a[0];

pa = pa + 1;
pa = &a[1];
pa = a + 5;

a[i] is equivalent to *(a + i)

Arrays and Pointers

a: a[0]a[1] a[5] a[9]

pa:

int a[10];
int *pa = &a[0];
pa = pa + 1;

pa = &a[1];
pa = a + 5;

a[i] is equivalent to *(a + i)

Arrays and Pointers

a: a[0]a[1] a[5] a[9]

pa:

int a[10];
int *pa = &a[0];
pa = pa + 1;
pa = &a[1];

pa = a + 5;

a[i] is equivalent to *(a + i)

Arrays and Pointers

a: a[0]a[1] a[5] a[9]

pa:

int a[10];
int *pa = &a[0];
pa = pa + 1;
pa = &a[1];
pa = a + 5;

a[i] is equivalent to *(a + i)

Multi-Dimensional Arrays

int monthdays[2][12] = {
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } };

monthdays[i][j] is at address monthdays + 12 * i + j

Structures

Structures: each field has own storage
struct box {

int x, y, h, w;
char *name;

};

Unions: fields share same memory
union token {
int i;
double d;
char *s;

};

Structs

Structs can be used like the objects of C++, Java, et al.

Group and restrict what can be stored in an object, but not
what operations they permit.

struct poly { ... };

struct poly *poly_create();
void poly_destroy(struct poly *p);
void poly_draw(struct poly *p);
void poly_move(struct poly *p, int x, int y);
int poly_area(struct poly *p);

Unions: Variant Records

A struct holds all of its fields at once. A union holds only
one of its fields at any time (the last written).

union token {
int i;
float f;
char *string;

};

union token t;
t.i = 10;
t.f = 3.14159; /* overwrite t.i */
char *s = t.string; /* return gibberish */

Kind of like a bathroom on an airplane

Applications of Variant Records

A primitive form of polymorphism:

struct poly {
int type;
int x, y;
union { int radius;

int size;
float angle; } d;

};

void draw(struct poly *shape)
{
switch (shape->type) {
case CIRCLE: /* use shape->d.radius */

case SQUARE: /* use shape->d.size */

case LINE: /* use shape->d.angle */

}

}

Name vs. Structural Equivalence

struct f {
int x, y;

} foo = { 0, 1 };

struct b {
int x, y;

} bar;

bar = foo;

Is this legal in C? Should it be?

C’s Declarations and Declarators

Declaration: list of specifiers followed by a
comma-separated list of declarators.

static unsigned

basic type︷︸︸︷
int︸ ︷︷ ︸

specifiers

(*f[10])(int, char*);︸ ︷︷ ︸
declarator

Declarator’s notation matches that of an expression: use it
to return the basic type.

Largely regarded as the worst syntactic aspect of C: both
pre- (pointers) and post-fix operators (arrays, functions).

Types of Type Systems
What kinds of type systems do languages have?

Strongly-typed Languages

Strongly-typed: no run-time type clashes (detected or not).

C is definitely not strongly-typed:

float g;

union { float f; int i } u;

u.i = 3;

g = u.f + 3.14159; /* u.f is meaningless */

Is Java strongly-typed?

Statically-Typed Languages

Statically-typed: compiler can determine types.

Dynamically-typed: types determined at run time.

Is Java statically-typed?

class Foo {
public void x() { ... }

}

class Bar extends Foo {
public void x() { ... }

}

void baz(Foo f) {
f.x();

}

Implementing Dynamic Typing

Each variable contains both raw data and information
about its type: how to interpret the raw data.

E.g., in Python, every object is derived from PyObject:

typdef struct _object {
Py_ssize_t ob_refcnt; /* Reference count for GC */
struct _typeobject *ob_type; /* Information about actual type */

} PyObject;

E.g., integers have a PyObject header and payload:

typedef struct {
Py_ssize_t ob_refcnt;
struct _typeobject *ob_type;
long ob_ival; /* Actual integer value */

} PyIntObject;

In Tcl, Everything Is A String
Each object in Tcl can be a string, a raw value, or both.
Recomputed lazily; updating one invalidates the other.

typedef struct Tcl_Obj {
int refCount; /* Reference count for GC */
char *bytes; /* String representation */
int length; /* Length of string */
Tcl_ObjType *typePtr; /* Information about type */
union {

long longValue;
double doubleValue;
VOID *otherValuePtr;
struct { VOID *ptr1, *ptr2; } twoPtrValue;

} internalRep; /* raw value */
} Tcl_Obj;

typedef struct Tcl_ObjType {
char *name;
Tcl_FreeInternalRepProc *freeIntRepProc; /* free obj */
Tcl_DupInternalRepProc *dupIntRepProc; /* copy obj */
Tcl_UpdateStringProc *updateStringProc; /* to string */
Tcl_SetFromAnyProc *setFromAnyProc; /* from string */

} Tcl_ObjType;

Polymorphism

Say you write a sort routine:

void sort(int a[], int n)
{
int i, j;
for (i = 0 ; i < n-1 ; i++)
for (j = i + 1 ; j < n ; j++)

if (a[j] < a[i]) {
int tmp = a[i];
a[i] = a[j];
a[j] = tmp;

}
}

Polymorphism

To sort doubles, only need
to change two types:

void sort(double a[], int n)
{
int i, j;
for (i = 0 ; i < n-1 ; i++)
for (j = i + 1 ; j < n ; j++)

if (a[j] < a[i]) {
double tmp = a[i];
a[i] = a[j];
a[j] = tmp;

}
}

C++ Templates

template <class T> void sort(T a[], int n)
{
int i, j;
for (i = 0 ; i < n-1 ; i++)
for (j = i + 1 ; j < n ; j++)

if (a[j] < a[i]) {
T tmp = a[i];
a[i] = a[j];
a[j] = tmp;

}
}

int a[10];

sort<int>(a, 10);

C++ Templates

C++ templates are essentially language-aware macros. Each
instance generates a different refinement of the same code.

sort<int>(a, 10);

sort<double>(b, 30);

sort<char *>(c, 20);

Fast code, but lots of it.

Faking Polymorphism with Objects

class Sortable {
bool lessthan(Sortable s) = 0;

}

void sort(Sortable a[], int n) {
int i, j;
for (i = 0 ; i < n-1 ; i++)
for (j = i + 1 ; j < n ; j++)

if (a[j].lessthan(a[i])) {
Sortable tmp = a[i];
a[i] = a[j];
a[j] = tmp;

}
}

Faking Polymorphism with Objects

This sort works with any array of objects derived from
Sortable.

Same code is used for every type of object.

Types resolved at run-time (dynamic method dispatch).

Does not run as quickly as the C++ template version.

Parametric Polymorphism

In C++,

template <typename T>
T max(T x, T y)
{
return x > y ? x : y;

}

struct foo {int a;} f1, f2, f3;

int main()
{
int a = max<int>(3, 4); /* OK */
f3 = max<struct foo>(f1, f2); /* No match for operator> */

}

The max function only operates with types for which the >
operator is defined.

Parametric Polymorphism
In OCaml,

let max x y = if x - y > 0 then x else y

max : int -> int -> int

Only int arguments are allowed because in OCaml, - only
operates on integers.

However,

let rec map f = function [] -> [] | x::xs -> f x :: map f xs

map : (’a -> ’b) -> ’a list -> ’b list

Here, ’a and ’b may each be any type.

OCaml uses parametric polymorphism: type variables may
be of any type.

C++’s template-based polymorphism is ad hoc: there are
implicit constraints on type parameters.

Overloading
What if there is more than one object for a name?

Overloading versus Aliases

Overloading: two objects, one name

Alias: one object, two names

In C++,

int foo(int x) { ... }
int foo(float x) { ... } // foo overloaded

void bar()
{
int x, *y;
y = &x; // Two names for x: x and *y

}

Examples of Overloading

Most languages overload arithmetic operators:

1 + 2 // Integer operation
3.1415 + 3e-4 // Floating-point operation

Resolved by checking the type of the operands.

Context must provide enough hints to resolve the
ambiguity.

Function Name Overloading

C++ and Java allow functions/methods to be overloaded.

int foo();
int foo(int a); // OK: different # of args
float foo(); // Error: only return type
int foo(float a); // OK: different arg types

Useful when doing the same thing many different ways:

int add(int a, int b);
float add(float a, float b);

void print(int a);
void print(float a);
void print(char *s);

Function Overloading in C++

Complex rules because of promotions:

int i;
long int l;
l + i

Integer promoted to long integer to do addition.

3.14159 + 2

Integer is promoted to double; addition is done as double.

Function Overloading in C++

1. Match trying trivial conversions
int a[] to int *a, T to const T, etc.

2. Match trying promotions
bool to int, float to double, etc.

3. Match using standard conversions
int to double, double to int

4. Match using user-defined conversions
operator int() const { return v; }

5. Match using the elipsis ...

Two matches at the same (lowest) level is ambiguous.

Binding Time
When are bindings created and destroyed?

Binding Time

When a name is connected to an object.

Bound when Examples

language designed if else
language implemented data widths
Program written foo bar
compiled static addresses, code
linked relative addresses
loaded shared objects
run heap-allocated objects

Binding Time and Efficiency

Earlier binding time ⇒ more efficiency, less flexibility

Compiled code more efficient than interpreted because
most decisions about what to execute made beforehand.

switch (statement) {

case add:
r = a + b;
break;

case sub:
r = a - b;
break;

/* ... */
}

add %o1, %o2, %o3

Binding Time and Efficiency

Dynamic method dispatch in OO languages:

class Box : Shape {
public void draw() { ... }

}

class Circle : Shape {
public void draw() { ... }

}

Shape s;
s.draw(); /* Bound at run time */

Binding Time and Efficiency

Interpreters better if language has the ability to create new
programs on-the-fly.

Example: Ousterhout’s Tcl language.

Scripting language originally interpreted, later
byte-compiled.

Everything’s a string.

set a 1
set b 2
puts "$a + $b = [expr $a + $b]"

Binding Time and Efficiency

Tcl’s eval runs its argument as a command.

Can be used to build new control structures.

proc ifforall {list pred ifstmt} {
foreach i $list {
if [expr $pred] { eval $ifstmt }

}
}

ifforall {0 1 2} {$i % 2 == 0} {
puts "$i even"

}

0 even
2 even

	Scope
	Types
	Types in C
	Types of Type Systems
	Overloading
	Binding Time

