
 
 

text++ 

Final Report 

 
 
 
 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Joi Anderson - jna2123      // Manager + Tester 
Klarizsa Padilla - ksp2127  // Language Guru + Tester 
Maria Javier - mj2729       // System Architect + Tester 
 

 

 

1 



Contents 
 

 
 

Contents 2 

1. Introduction 4 

2. Language Tutorial 5 
2.1 Environment Setup 5 
2.3 Environment Setup 6 

3. Language Manual 7 

1. Introduction 7 
1.1 Software Used 7 
The bulk of our code is written in OCaml and compiles to LLVM. We also have a file written 
in C to make use of  the external library LibHaru, which is used in our display/PDF functions. 
The open source library for generating PDF files (libHaru) is run through a shell script that 
calls our code and the LLVM interpreter. (We also used the LLVM interpreter frequently 
when testing individual cases.) To compile to rendering mode, we use the run.sh shell 
script, which in turn calls a tpp source program. We used github for version control and for 
the repository. Each team member pulled code to their own computer or virtual machine 
and used their own choice of IDE. 7 
1.2 LibHaru Overview 7 
libHaru is a free, cross platform, open source library for generating PDF files. text++ utilizes 
the following features of LibHaru: 7 
Generating PDF files with lines and  text. 7 
Text placement via a coordinate system. 7 
Embedding Type1 font and TrueType font. 7 
libHaru is written in ANSI C, so theoretically it supports most of the modern operating 
systems. 7 

2. Lexical Conventions 8 
2.1 Comments 8 
2.2 Identifiers 8 
2.3 Keywords 8 

2.3.1 Type-specifiers 9 
2.4 Data Types 9 

2.4.1 Integer 9 
2.4.2 Float 9 

2 



2.4.3 String 9 
2.5 Operators (Overview) 9 
2.6 Separators 9 
3.1 Function Declarations 10 
3.2 Variable Declarations 10 

4. Expressions 11 
4.1.1 Identifier 11 
4.1.2 String Literal 11 
Increment 11 
Decrement 11 

4.3 Multiplicative Operators 12 
Division 12 
Modulus 12 
Concatenation 12 
Addition 12 
Subtraction 13 
Equal and Not Equal 13 
And 13 
Or 13 

5. Statements 14 
5.3 Conditional Statements 14 
5.5 For Statements 15 
5.6 Return statements 15 

6. Scope Rules 16 
6.1 Variable Scope 16 
6.2 Function Scope 16 
6.3  Function Call 16 

7. Primitives 17 
7.1 Page Creation 17 
7.2 Text 17 
7.3 Alignment 20 

8. Standard Library 21 
8.1 Title 21 
8.2 Drawing 21 
8.3 Headings 22 

9. PDF Defaults 22 

3 



4. Project Plan 24 
4.1 Process Used 24 
4.3 Project Timeline 24 
4.4 Roles and Responsibilities 25 
4.5 Software Development Environment Used 25 
4.6 Project Log 26 

5. Architectural Design 27 
5.1 Block Diagram 27 
5.2 Interfaces Between the Components 27 
5.2 Who Implemented Each Component 28 

6. Test Plan 29 
6.1 Source Language Programs 29 
6.2 Test Suites to Test Translators 30 
6.3 Why and How These Test Cases Were Chosen 30 
6.4 Automation Used in Testing 31 
6.5 Division of Tasks 31 

7. Lessons Learned 32 
7.1 Lessons Learned 32 

8. Code Listings 34 

7.1 Most Important Learnings 31 
7.2 Advice for Future Teams 32 

8. Code Listings 33 

 
 

 

1. Introduction 
 

 

text++ is a markup language designed for the production of technical documentation                       
in an intuitive programming form. Unlike other templating languages like LaTeX,                     
text++ is a markup language with algorithmic computing capabilities, allowing                   
programmers to write documents as efficiently as they would write code. 
 

4 



2. Language Tutorial 
 

To begin writing a document in text++, your document must include the def void                           
start() {}. The function named start is a special function in all text++ programs; it is the                                 
function called when the program is run. The start function does not need to be called                               
explicitly. The execution of all text++ programs begins with the start function,                       
regardless of where the function is actually located within the code. The document will                           
begin with a first page so you may begin calling write, or textout functions without first                               
calling the function addPage. When you would like to begin writing on a new page,                             
you simply call addPage. If you write def void start, a document will be created with a                                 
new page. Outside of start you may declare functions and call them inside of start. You                               
may also create a function and call that function inside of start. Note: you can declare a                                 
variable outside of start but you cannot initialize it to a value.  

 

2.1 Environment Setup  
text++ was developed in OCaml. Before using text++ to program, make sure that 
Ocaml is installed properly.  To do this, follow these steps:  
 
    Step 1: Install Homebrew  
 

$ /usr/bin/ruby -e "$(curl -fsSL  https://raw.githubusercontent.com/Homebrew/install/master/install)"  

   

5 



    Step 2: Install Opam and Configure OPAM  
 
    Opam is the OCaml Package Manager to install Ocaml packages and libraries. For  
    installation instructions, see: https://opam.ocaml.org/doc/1.1/Advanced_Install.html 
 
 
    Step 3: Install libharu 
 
    Additionally, text++ utilizes the libharu library. Haru is a free, cross platform,  
    open-source software library for generating PDF. 
 
    Installing libHaru on Linux/Unix is as easy as this:  
 

./configure && make && make install  

 
 
    If you're using a Git checkout or a Github tarball, don't forget to run  
 

./buildconf.sh  

 
    in order to create ./configure script.  
 
    For more detailed instructions: https://github.com/libharu/libharu/wiki/Installation 

 

2.3 Environment Setup  

 
See more detailed instructions here: 
https://github.com/libharu/libharu/wiki/Installation 

 

   

6 

https://opam.ocaml.org/doc/1.1/Advanced_Install.html
https://github.com/libharu/libharu/wiki/Installation
https://github.com/libharu/libharu/wiki/Installation


3. Language Manual 
 

1. Introduction 
 

text++ is a markup language designed for the production of technical documentation                       
in an intuitive programming form. Unlike other templating languages like LaTeX,                     
text++ is a markup language with algorithmic computing capabilities, allowing                   
programmers to write documents as efficiently as they would write code. 
 

1.1 Software Used  

The bulk of our code is written in OCaml and compiles to LLVM. We also have a file                                   
written in C to make use of the external library LibHaru, which is used in our                               
display/PDF functions. The open source library for generating PDF files (libHaru) is run                         
through a shell script that calls our code and the LLVM interpreter. (We also used the                               
LLVM interpreter frequently when testing individual cases.) To compile to rendering                     
mode, we use the run.sh shell script, which in turn calls a tpp source program. We                               
used github for version control and for the repository. Each team member pulled code                           
to their own computer or virtual machine and used their own choice of IDE. 

1.2 LibHaru Overview 

libHaru is a free, cross platform, open source library for generating PDF files. text++ 
utilizes the following features of LibHaru: 

● Generating PDF files with lines and  text.  
● Text placement via a coordinate system. 
● Embedding Type1 font and TrueType font. 

libHaru is written in ANSI C, so theoretically it supports most of the modern operating 
systems.   

7 



2. Lexical Conventions 
 
This section covers the text++ lexical convention for comments and tokens. There are 
six kinds of tokens: identifiers, keywords, constants, strings, operators, and separators. 
Blanks, tabs, newlines, and comments separate tokens, but they otherwise have no 
syntactic significance. 

2.1 Comments 

Single or m ulti-line comments start with the /* characters and terminate with the                         
*/ characters, ignoring all other characters encapsulated between the start and                     
terminating characters.  
 

/* This is a comment. 

    It can have multiple lines. */ 

 

 

2.2 Identifiers 

An identifier is a sequence of letters and digits, and the first character must 
be alphabetic. Identifiers must start with an alphabetic character, including 
the ‘_’ character. Identifiers are case-sensitive. 

2.3 Keywords 

The following identifiers are reserved for use as keywords, and may not be used 
otherwise. 

●   if 

●   else 

●   for 

●   while 

 

●   return 

●   int 

●   bool 

●   float 

●   string 

●   void 

●   true 

●   false 

●   def 

 

 

8 



2.3.1 Type-specifiers 
Type-specifiers include bool, int, float, and string. 

2.4 Data Types 

There are three data types each with their own type, form and value : 

2.4.1 Integer 

An integer literal is a sequence of digits, represented by characters [0-9]. 

Integer constants have type int.  

2.4.2 Float 
A floating constant consists of an integer part, a decimal point, and a 
fraction part.  Float constants have type float.  

2.4.3 String 

Strings are marked with double quotes.  
 

2.5 Operators (Overview) 

An operator character signifies that an operation should be performed. The                     
operators [], (), and {} are used to encapsulate expressions and must                      
occur in pairs.  

 

Operator can be one of the following:  

+   -   *   /   %  = == <  <= > >=  ! | | -- ++ 

 

For more on operators, please reference section 4 of this guide. 
 

2.6 Separators 

A separator is a symbol between each element. There is a single separator                         
token in text++. The separator token in this language is a ‘,’ and whitespace                           
is ignored. Separators are allowed in the following syntax: 

 Argument Separation:  myFunction( x, y)  

 

9 



3. Declarations 
 

3.1 Function Declarations 
  

Functions are declared as: 
 

def returnType functionName(type parameter, type parameter2){  
// local variables 

// statements 

} 

 
3.2 Variable Declarations 

  

 Variables are declared as: 
 

 type variableName; 
 variableName = expression; 

 

A variable may have its value updated, as long as its type remains consistent. 

 

int a; 
a = 23; 
a;                 // 23 
a = “word”;      // Compiler error. 

  

 

 

 

   

10 



4. Expressions 
Precedence of operators follows the following order of operations: Grouping symbols,                     
Multiplication, Division, Addition, Subtraction. Text++ is a left-associative language                 
(evaluated left to right, after the application of order of operations). 
 
  

 4.1 Primary Expressions 

  4.1.1 Identifier 
An identifier (like a variable) is a primary expression whose type is 
required to be defined in its declaration. 

 

4.1.2 String Literal 

A string literal is a sequence of zero or more characters enclosed within 
quotation marks. A string literal is a primary expression. 

 

4.2 Unary Operators 
  Not 

  ! expression 

 

Logical negation operator. Applicable for type boolean. 

 

Increment 

   expression ++ 

 

The left-value expression is incremented. Applicable to type int. 

 

Decrement 

  expression -- 

 

The left-value expression is decremented. Applicable to type int. 

11 



 
 

  

4.3 Multiplicative Operators 

Multiplication 

  expression * expression 

 

The binary * operator indicates multiplication. Applicable to type int and float. 

 

Division 

  expression / expression 

 

The binary / operator indicates division. Applicable to type int and float. 

 

Modulus  

  expression % expression 

 

The binary % operator yields the remainder from the division of the first                         
expression by the second. Both operands must be int. The remainder                     
keeps the sign of the dividend. 

 

Concatenation 

  expression ^ expression 

 

To concatenate two strings on a single line, use the concatenation                     
operator (a single ‘^’). Applicable to type string. 

 

 4.4 Additive Operators 
 

Addition 

 expression + expression 

 

12 



The result is the sum of the expressions. Applicable to type int and float. 

 

Subtraction 

expression − expression 

 

The result is the difference of the operands. Applicable to type int and float. 
  
 4.5 Relational Operators  

 

 

expression < expression  

expression > expression 

expression <= expression  

expression >= expression  

 

The operators < , > , <= , and >= all yield false if the relation is false and 
true if the relation is true. 

  
 4.6 Equality Operators  

 

Equal and Not Equal  

expression == expression  

expression != expression  

 
The == and the != operators are analogous to the relational operators except 
for their lower precedence. Thus `a < b == c < d` is true whenever `a < b` and 
also `c < d`. 

  

 4.7 Boolean Operators 
 

And 

expression && expression  

  

The && operator returns true if both its operands are true, false otherwise. The 
second operand is not evaluated if the first operand is false. 

13 



Or 

expression || expression  

 

The || operator returns true if at least one of its operands is true, false otherwise. 

 

5. Statements 
 

Statements are executed in sequence. 
  
 5.1 End of Statement 
  

The end of each statement is marked by a single ‘;’. 
  
 5.2 Expression Statements 
  

The majority of statements are expression statements, taking the form: 
 

expression 

 

These statements are usually assignments or function calls. 
   

5.3 Conditional Statements 

  

if(expression) { 
   statement; 

}  

 

else { 
   statement; 

} 

  
If the expression is true, the (first) statement is executed. If the expression is 
false and there is an else, the second statement is executed. The elseless if 
problem is resolved by attaching an else to the last encountered if. 

14 



  

 5.4 While Statements 
  

while(expression) { 
   statement; 

} 

 

The statement is executed as long as the expression is true. The evaluation 
of the expression occurs after each execution of the statement. 

  

  

5.5 For Statements 

  

for(expr1; expr2; expr3) { 
   statement; 

} 

 

expr1 specifies initialization for the loop, expr2 is a test condition (evaluated                       
before each iteration), and expr3 is an increment specification. The loop exits                       
when expr2 is false. 

  
  

5.6 Return statements 

  

return 

return (expression) 

 

A function returns to its caller via a return statement. The second case returns 
the value of the expression. If the type expected by the caller does not 
match that of the return statement, an error will be thrown. 

 

   

15 



6. Scope Rules 

6.1 Variable Scope 
  

Variables declared outside of functions have global scope and can be                     
accessed anywhere within the program. If declared within a function, variables                     
only remain in scope for the duration of the function’s execution. Parameters                       
passed into a function as arguments are declared as local variables within the                         
scope of the function. 

  

6.2 Function Scope 
  

A function may not be called before it has been declared. All functions have 
global scope by default. 

 6.3  Function Call 

To call a function, you simply need to pass the required parameters along 
with the function name, and if the function returns a value, then you can 
store the returned value. 

nameOfMethod (argument1, argument2, argument3) ; 

 

   

16 



7. Primitives 
 

7.1 Page Creation 

 

This function creates a new page and adds it after the last page of a 
document. The function expects zero arguments and returns no value. 

 

addPage(); 

  

7.2 Text 

 
 

italic:  This function enables the user to change the current font to italics 
by calling italic(). The function expects zero arguments and returns no 
value. Upon its call, the italics style with persist until it is changed with a 
bold() or regular() call. 

 

italic();  

 
 

bold:  This function enables the user to change the current font to bold by 
calling bold(). The function expects zero arguments and returns no value. 
Upon its call, the bold style with persist until it is changed with an italic() 
or regular() call. 

 

bold();  

 

regular: This function enables the user to change the current font from 
italics or bold back to standard font by calling regular(). The function 

17 



expects zero arguments and returns no value. The regular font style is set 
by default in a new document. This regular font styling will continue from 
the start of the document and upon its call until it is changed with a bold() 
or italic() call. 

 

regular();  

 

changeFontSize:  Sets the size, font and style of the current font. Two 
arguments, the font name and font size, are required. The font options 
are: Helvetica, Times, and Courier. There are no number restrictions on 
the font size. 

 

changeFontSize(string font, int size);  

 

changeColor:  This function sets the color of the text. The set color will 
persist from its call until the color is changed again. The changeColor 
function requires three parameters r (red), g (green), b (blue)-- the level of 
each color element. The argument values must be float values between 0 
and 1. 

 

changeColor(float r, float g, float b);  

 

moveTo:  Sets the current position for text. Sets the start point for the 
path to the point (x, y). Valid x and y coordinates are not limited by the 
page width and height.  

 

moveTo(int x, int y);  

 

textWidth:  changes the width of a page where text can be written. This 
function expects a integer value less than the set page width. 

 

textWidth(int val);  

18 



 

drawLine:  prints a line from a specified coordinate position to a particular 
end coordinate. This function requires four parameters, where both the 
starting and ending x and y coordinates must be coordinates that lay 
within the set page width and height to be displayed otherwise the 
overflow will be cut off at the page limits.  

 

drawLine(int beginX, float beginY, int endX, int endY);  

 

drawRectangle: prints a rectangle from a specified position to a specified 
width and height. This function requires four parameters, where both the 
starting x and y coordinates, along with the coordinates after the addition 
of the width and height integers, must be coordinates that lay within the 
set page width and height. The width and height parameters may be 
negative and are oriented around the specified x and y point. 

 

drawRectangle(int beginX, float beginY, int width, int 

height);  

 

textout:  This function enables a user to write a piece of text at specific x, 
y coordinate. This function does handle text wrapping. 

 

textout(int x, int y, string myText);  

 

write:  This function enables a user to write a piece of text at the current 
position of the cursor. This function does handle text wrapping. 

 

write(string myText);  

 

getPageHeight:  This function takes zero parameters and returns the 
height of the page. 

19 



getPageHeight();  

 

getPageWidth: This function takes zero parameters and returns the width 
of the page. 

getPageWidth();  

 

 

pageNumber: This function takes two parameters (an x coordinate and a 
y coordinate) and prints  the page number of the current page at the 
passed x and y coordinates. 

pageNumber(int x, int y);  

 

7.3 Alignment 

 

left:  This function sets the alignment of the text to left. The default 
alignment at the creation of a new document is also left.  Left alignment 
persists from the start of the document and its call until it is set to a 
different alignment with a center() or right() call. Zero arguments are 
expected in this function.  

 

left();  

 

right: This function sets the alignment of the text to centered, and this 
alignment persists until it is set to a different alignment with a left() or 
center() call. Zero arguments are expected in this function.  

 

right();  

 

20 



center: This function sets the alignment of the text to centered, and this 
alignment persists until it is set to a different alignment with a left() or 
right() call. Zero arguments are expected in this function.  

 

center();  

 

8. Standard Library 

8.1 Title 

pageTitle:  This function takes a string as it argument and centers it in 
large font at the current position on the current page from which it is 
called. 

 

pageTitle(string myTitle);  

 

8.2 Drawing 

horizontalLine: This function draws a line horizontally across the width of 
the page at the current position of the text. Zero arguments are expected 
in this function.  

 

horizontalLine();  

 

table: This function draws a table on the page based on four arguments: 
the number of rows in the table, the number of columns in the table, and 
the table width and length. If the width or height go beyond the 
dimensions of a page, the table by default will fill the page in that 
dimension. 

 

21 



table(int row, int column, int tableWidth, int tableHeight); 

 

8.3 Headings 

heading: This function takes string and formats it based on HTML 
heading standards. Headings are defined with the heading1 to heading6 
calls. heading1 headings should be used for main headings, followed by 
heading2 headings, then the less important heading3, and so on. This 
function takes no parameters and the style will persist for all text until the 
size of current font is reset using either the heading or changeFontSize 
functions. 

 

heading1(); 

heading2(); 

heading3(); 

heading4(); 

heading5(); 

heading6(); 

 

9. PDF Defaults 
Defaults in text++ documents are portrait style layout, with a width of 595 pixels and a 
height of 842 pixels. It is also important to note that in our documents the bottom left 
corner of the page is the origin of the x-y coordinate system. The default font and size 
for the text on the page is: Helvetica, 12. 

 

 

  
  

22 



Sample Logo Program: 

 

 

def void logo(){ 
 
   int i; 
   int ph; 
   int pw; 
   int offsetX; 
   int offsetY; 
 
   pw = getPageWidth(); 
   ph = getPageHeight(); 
   offsetX = 10; 
   offsetY = 100; 
 
   for (i = 0; i < 3; i = i + 1){ 
      drawRectangle(pw/2 - offsetX, ph - offsetY, 50, 50); 
      offsetX = offsetX + 5; 
      offsetY = offsetY + 5; 
    } 
    heading1(); 
    textOut( "G" , pw/2 - 5, ph - 90, 0);  
} 
 
def void start(){ 
  logo(); 
} 

 
 
 

   

23 



4. Project Plan 
 

4.1 Process Used 

text++ was planned in two major settings: roughly biweekly meetings with Professor Edwards 
and weekly team meetings. In the first portion of the semester, these meetings served to 
address the broad language goals and working on the milestone assignments. However, as the 
semester progressed, so did the technical specificity of our meetings and task lists. Our team 
then set goals each week in the form of agile sprints. Our sprints were based on the feedback 
of Professor Edwards and the remaining tasks for our language. Using this method were able to 
make consist progress towards our goals while ensuring the quality of completed tasks. 
 
4.2 Programming Style Guide 
 

● Indent to indicate scope.  
● Writing multiple statements on the same line is discouraged. 
● Continuation lines should use a hanging indent. 
● Surround assignment, boolean, and concat operators with a single space on either side.  
● Wrap lines at 120 characters.  

4.3 Project Timeline 

9/11 — Assigning team roles and brainstorming ideas for the project.  
9/14 — Language brainstorming and decisions on language.   
9/16 — Brainstorming applications of language.  
9/17 — Discuss more ideas to smooth out usage.  
9/18 — Proposal drafting. 
9/19 — Submission of proposal and searching of open source PDF generator 
10/5 — Discuss and set up environment which includes Virtual Box and LibHaru.  
10/7 — Resolved issues with installing the same environment. Explored LibHaru 
10/12 — Began the implementation of AST, parser, and scanner. Revisited grammar 
errors. 
10/15 — Continuation of AST, parser, and scanner. Submitted. 
10/28 — Worked on issues in the grammar. Hammered down core syntax of the language.  
11/2 — Began creation of the type checker. Decided what additional standard library 
functions we would need.  
11/4 — Started working on the Hello World Demo. Encountered shared folder issues.  

24 



11/11 — Continued implementing syntax of text++. Worked to resolve Issues with Hello 
World Demo. Start implementing basic standard library functions.  
11/16 — Hello World Demo Due.  
11/18 — Work to resolve integration issues and bugs with LibHaru.  
11/25 — Start work on semantic checker including for assignment and binary operators  
11/30 — Implementation of strings. Starting implementing PDF functions in standard 
library.  
12/2 — Continued implementing PDF functions in standard library.  
12/7 — Working on passing text writing function. Continue implementing other PDF 
functions in standard library.  
12/9 — Resolving issues in translator. Continue implementing standard library. Wrote 
wrapper functions for LibHaru functions.  
12/14 — Implemented error messages. 
12/16 — Concluded the implementation of the write function and other standard library 
functions. Worked on the development of sample programs.  
12/17 — Writing final report.  
12/19 — Final Report Due. Concluded editing final report. 

 
 

4.4 Roles and Responsibilities 

Joi Anderson: Project Management and Tester 

Maria Javier: System Architect and Tester 

Klarizsa Padilla: Language Guru and Documentation 

 

4.5 Software Development Environment Used 
We used the following programming and development environment:  

● Libraries and Languages: Ocaml version 4.07, including Ocamlyacc version 4.07 and 
Ocammllex version 4.07 extensions. LLVM Ocaml version 5.0. gcc version 9.0  

● Software: Development was done on SublimeText 
● OS: Development was done on OSX 10.13 and on Ubuntu 18.04. 

   

25 



4.6 Project Log 
 

 
 

* Note: Joi’s number of commits is higher than Maria’s because Joi was unable to configure a shared file. 

   

26 



5. Architectural Design 
 

5.1 Block Diagram 

 
 

5.2 Interfaces Between the Components 
 
Scanner  
The scanner.mll was implemented using ocamellex. The scanner takes in source files as a 
symbol stream and tokenizes it. This tokenization process provides syntax checking, and rejects 
illegal symbols. The scanner is responsible for stripping out information that is not necessary 
(e.g. comments and whitespace) for the the compilation process. 
 
Parser and AST 
The ast.ml and parser.mly files were implemented using using ocamlyacc. The token stream 
produced by the scanner is then input to the parser. The parser produces an abstract syntax 
tree (AST) from the input. The abstract syntax tree describes the structure of the program. An 
acceptable structure of the AST is provided to the parser.mly by the ast.ml file. In this parsing 
process further synat checking is performed. Programs that do not meet AST syntactic 
requirements are then rejected. 
 
Semantic Checker 
The analyzer.ml and sast.ml files form the text++ analyzer and semantic checker. These files, 
the semantic checker, were implemented in OCaml. The input into the semantic checker is the 
the AST produced by the parser. The output of the semantic checker is a semantically analyzed 
abstract syntax tree (SAST). The SAST, in addition to describing the overall program structure, 

27 



contains information attached in the analyzer. The sast.ml file provides the acceptable form of 
the SAST to the analyzer.ml file. In this phase, the input undergoes rigorous semantic checking.  
Programs that violate declaration, type, order, or any text++ requirements are rejected. In this 
phase built-in variables and functions are added to the sast by the analyzer.  
 
Code Generator  
The generator.ml file was implemented in OCaml. The input into the code generator is the 
SAST produced by the analyzer, in turn C code is produced. The majority of the code this file 
generates is hard coded in codegen.ml. However, the codegen also draws on code from our 
standard library - written in C utilizing libharu (a third-party library).  
 
text++ Library 
The text++ Library was implemented in C - the associated files are hello.c. The text++ library 
makes use of the libharu library for carrying out some of the more complex conversions from 
text++ to C code in the generator (e.g. rendering a pdf). 
 

5.2 Who Implemented Each Component 

Component Contributors 

Scanner Joi, Maria, Klarizsa 

Parser Joi, Maria, Klarizsa 

AST Joi, Maria 

SAST Joi, Maria 

Semant Joi, Maria 

Codegen Joi, Maria 

textPlusPlus.ml Joi, Maria 

hello.c Joi, Maria 

 
 
  

28 



6. Test Plan 
 

 

6.1 Source Language Programs 

<test-while.tpp> 

def void start(){ 
int x; 

 

x = 0; 

while(x < 10){ 
write("Falalalala lala la la"); 
x = x + 1; 

} 

} 

 
<test-while.out> 

Falalalala lala la la 

Falalalala lala la la 

Falalalala lala la la 

Falalalala lala la la 

Falalalala lala la la 

Falalalala lala la la 

Falalalala lala la la 

Falalalala lala la la 

Falalalala lala la la 

Falalalala lala la la 

  
 
<test-for.tpp> 

def void start(){ 
int x; 

 

for(x = 0;x < 4; x = x+1;){ 
write("Do re me"); 

} 

29 



} 

 
<test-for.out> 

Do re me  

Do re me  

Do re me  

Do re me 

  

6.2 Test Suites to Test Translators 

 
All tests are stored in the /tests/ folder. Tests are split into a test suite and output based on 
name. 

6.3 Why and How These Test Cases Were Chosen 

text++ used MicroC’s test source files as a foundation to automate the build of our own tests. 
The readMe provides instructions on how to run the test programs. An environment that 
already has Ocaml, ocamlbuild, LLVM, and opam is necessary. For this project, the developers 
utilized the VM image provided in order to replicate an environment with all of these 
installations. On top of this, Libharu is required because some of its library components are 
used in our language. 
 
Libharu has the following dependencies: automake, autoconf, zlib1g-dev, libpng-dev, and 
libtools. Once these dependencies are installed, LibHaru should be installed successfully. 
Directions for doing this are on the project README. The final component especially needed 
to run tests is python-pdfminer. python-pdfminor contains the source code for a command line 
tool, pdf2txt which converts a pdf file into a valid ASCII file.   
 
In order to execute the tests, run make in the project directory after downloading the tar file. 
Tests are all located in a tests directory. Each test tests a small component of the language in 
order to see if valid ASCII is produced. The test are named test-<name of component>.tpp. 
Make clean should clean any intermediary files that were created after running make. 
 
The output of a successfully compiled text++ program is a PDF file with ASCII characters,                             
stylized fonts, and lines for graphics. To check whether test programs were correctly rendered,                           
the contents of the PDF files were extracted into a stream of ASCII characters using pdf2text.                               
While many features of text++ were tested in the test suite, the test are primarily meaningful                               
for the built-in functions involving changes to the outputted ASCII characters that were                         
extracted from the document.  

30 



6.4 Automation Used in Testing 

As aforementioned, the testing automation is based on the Micro-C testing suite. In the /tests/ 
folder the testall.sh script compiles and runs all *.cqm files. It then will look at the 
corresponding *.err or *.out file of the same name and compare the output of the file to the 
output of the script . Errors or differences that arise in compilation in are passed to stdout. 

6.5 Division of Tasks 

The testing gurus were responsible for unit testing the features that were assigned to them. 
Additionally, the testing gurus were responsible for coordinating to build appropriate 
integration tests. 
 
 

 

 

 

 

  

31 



7. Lessons Learned 
 

7.1 Lessons Learned  

 
Maria Javier 
 
I’ve never made a language before and after completing this project I have a better 
understanding about language design. I’ve learned that it is extremely important to 
define the overall goal and the characteristics of a language early on so that when the 
time comes to write code, there are no disputes about syntax and or structure. There 
are definitely more improvements that could be made on our project and I have 
developed a greater understanding about how hard it is to place a group of characters 
onto a page in a stylized matter. It’s more than just adding a string to a page and I 
faced a lot obstacles as I was trying to get wrapping to work correctly. Although I did 
struggle with Ocaml in the beginning, I now understand how powerful of a language it 
can be when constructing a compiler for a language. It is a headache to get everything 
working but when it works, it’s beautiful.  
 
Joi Anderson 
 
My biggest lesson from creating the compiler was to do my research first. After                           
researching typesetting and markup languages like TeX and LaTeX, I was able to make                           
note of some of their language design decisions and useful features to use in our own                               
language. TeX has an extensive word wrapping, page break, and hyphenation                     
algorithm that we try attempted to implement in our language to provide users with                           
features they would typically like to see in a language like text++. 

 
Klarizsa Padilla 
 
Our team started early but we spent a lot of time hashing out the ideas our project. It 
was challenging to decide syntax, and functionality because each of us has a different 
idea of what is “intuitive” or looks more appealing.  A lot of our long discussions early 
in the semester were about what we wanted our language to do. I learned that you’ve 
got to make a decision, a solid one, and stick to it if you want to make progress as 
opposed to swaying back and forth in indecision.   

 
 

32 



7.2 Advice for Future Teams  
See your advisor early, and check in often. If you are having a blocker it is important to 
recognize when too much time has been spent in the same stage and get help as soon as 
possible. Having weekly meetings scheduled with your adviser is also a good way to ensure 
you are making progress. Try to finish the scanner and the parser as soon as possible. Do not 
leave testing until the end. Testing helps with being able to catch weird edge cases and you 
don’t want to get caught in a really big bug right before the deadline.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

33 



8. Code Listings 
 

Scanner 
 

(* Ocamllex scanner for textPlusPlus *) 
 

{ open Parser } 
 

let digit = ['0' - '9'] 
let digits = digit+ 
 

rule token = parse 
  [' ' '\t' '\r' '\n'] { token lexbuf } (* Whitespace *) 
| "/*"     { comment lexbuf }           (* Comments *) 

| '('      { LPAREN } 

| ')'      { RPAREN } 

| '{'      { LBRACE } 

| '}'      { RBRACE } 

| '['      { LBRACKET } 

| ']'      { RBRACKET } 

| ';'      { SEMI } 

| ','      { COMMA } 

 

(* Arithmetic Operators *) 

| '+'      { PLUS } 

| '-'      { MINUS } 

| '*'      { TIMES } 

| '/'      { DIVIDE } 

| '='      { ASSIGN } 

 

(* Relational Operators *) 

| "=="     { EQ } 

| "!="     { NEQ } 

| '<'      { LT } 

| "<="     { LEQ } 

| ">"      { GT } 

| ">="     { GEQ } 

 

34 



(* Logical Operators *) 

| "&&"     { AND } 

| "||"     { OR } 

| "!"      { NOT } 

 

(* Control Flow *) 

| "if"     { IF } 

| "else"   { ELSE } 

| "for"    { FOR } 

| "while"  { WHILE } 

| "return" { RETURN } 

 

(* Keywords *) 

| "int"    { INT } 

| "bool"   { BOOL } 

| "float"  { FLOAT } 

| "string" { STRING } 

| "void"   { VOID } 

| "true"   { BLIT(true)  } 

| "false"  { BLIT(false) } 

| "def"    { DEFINE } 

(* Literals and Identifiers *) 

 

| digits as lxm { LITERAL(int_of_string lxm) } 

| digits '.'  digit* ( ['e' 'E'] ['+' '-']? digits )? as lxm { FLIT(lxm) } 

| '"' (['\x20'-'\x7E']* as lxm) '"' { STRLITERAL(lxm) }  

| ['a'-'z' 'A'-'Z']['a'-'z' 'A'-'Z' '0'-'9' '_']*     as lxm { ID(lxm) } 

| eof { EOF } 

| _ as char { raise (Failure("illegal character " ^ Char.escaped char)) } 

 

and comment = parse 

  "*/" { token lexbuf } 

| _    { comment lexbuf } 

 
 
 
 
   

35 



Parser 

/* Ocamlyacc parser for textPlusPlus */ 
 

%{ 

open Ast 
%} 

 

%token SEMI LPAREN RPAREN LBRACE RBRACE LBRACKET RBRACKET COMMA PLUS MINUS 
TIMES DIVIDE ASSIGN 
%token NOT EQ NEQ LT LEQ GT GEQ AND OR 
%token RETURN IF ELSE FOR WHILE INT BOOL FLOAT STRING VOID DEFINE 
%token <int> LITERAL 
%token <bool> BLIT 
%token <string> STRLITERAL 
%token <string> ID FLIT 
%token EOF 
 

%start program 
%type <Ast.program> program 
 

%nonassoc NOELSE 
%nonassoc ELSE 
%right ASSIGN 
%left OR 
%left AND 
%left EQ NEQ 
%left LT GT LEQ GEQ 
%left PLUS MINUS 
%left TIMES DIVIDE 
%right NOT 
 

%% 

 

program: 

  declarations EOF { $1 } 
 

declarations: 

   /* nothing */ { ([], [])               } 
 | declarations variable_declaration { (($2 :: fst $1), snd $1) } 
 | declarations function_declaration { (fst $1, ($2 :: snd $1)) } 

 

function_declaration: 

36 



   DEFINE typ ID LPAREN parameters RPAREN LBRACE vdecl_list codeblock 
RBRACE 

     { { typ = $2; 
 fname = $3; 
 formals = List.rev $5; 
 locals = List.rev $8; 
 body = List.rev $9 } } 

 

parameters: 

    /* nothing */ { [] } 
  | formal_list   { $1 } 
 

formal_list: 

    typ ID                   { [($1,$2)]     } 
  | formal_list COMMA typ ID { ($3,$4) :: $1 } 
 

typ: 

    INT   { Int   } 
  | STRING { String } 
  | BOOL  { Bool  } 

  | FLOAT { Float } 

  | VOID  { Void  } 

 

vdecl_list: 

    /* nothing */    { [] } 
  | vdecl_list variable_declaration { $2 :: $1 } 
 

variable_declaration: 

   typ ID SEMI { ($1, $2) } 
 

codeblock: 

    /* nothing */  { [] } 
  | codeblock stmt { $2 :: $1 } 
 

stmt: 

    expression SEMI                                 { Expr $1            } 
  | RETURN expr_opt SEMI                            { Return $2          } 
  | LBRACE codeblock RBRACE                         { Block(List.rev $2) } 

  | IF LPAREN expression RPAREN stmt %prec NOELSE   { If($3, $5, Block([])) 

} 

  | IF LPAREN expression RPAREN stmt ELSE stmt      { If($3, $5, $7) } 

  | FOR LPAREN expr_opt SEMI expression SEMI expr_opt RPAREN stmt 

37 



                                                    { For($3, $5, $7, $9) } 

  | WHILE LPAREN expression RPAREN stmt             { While($3, $5) } 

 

expr_opt: 

    /* nothing */       { Noexpr } 
  | expression          { $1 } 
 

expression: 

    LITERAL                             { Literal($1) } 
  | STRLITERAL                          { StrLiteral($1) } 
  | FLIT                               { Fliteral($1) } 

  | BLIT                                { BoolLit($1) } 

  | ID                                  { Id($1) } 

  | expression PLUS   expression        { Binop($1, Add,   $3)   } 

  | expression MINUS  expression        { Binop($1, Sub,   $3)   } 

  | expression TIMES  expression        { Binop($1, Mult,  $3)   } 

  | expression DIVIDE expression        { Binop($1, Div,   $3)   } 

  | expression EQ     expression        { Binop($1, Equal, $3)   } 

  | expression NEQ    expression        { Binop($1, Neq,   $3)   } 

  | expression LT     expression        { Binop($1, Less,  $3)   } 

  | expression LEQ    expression        { Binop($1, Leq,   $3)   } 

  | expression GT     expression        { Binop($1, Greater, $3) } 

  | expression GEQ    expression        { Binop($1, Geq,   $3)   } 

  | expression AND    expression        { Binop($1, And,   $3)   } 

  | expression OR     expression        { Binop($1, Or,    $3)   } 

  | MINUS expression %prec NOT          { Unop(Neg, $2)  } 

  | NOT expression                      { Unop(Not, $2)  } 

  | ID ASSIGN expression                { Assign($1, $3) } 

  | ID LPAREN optional_arguments RPAREN { Call($1, $3)   } 

  | LPAREN expression RPAREN            { $2 } 

 

optional_arguments: 

    /* nothing */  { [] } 
  | arguments      { List.rev $1 } 
 

arguments: 

    expression                    { [$1] } 
  | arguments COMMA expression    { $3 :: $1 } 
 

 
 
 

38 



AST 

(* Abstract Syntax Tree *) 
 

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Greater | Geq 
| 

          And | Or 

 

type uop = Neg | Not 

 

type typ = Int | Bool | Float | Void | String 

 

type bind = typ * string 

 

type expr = 

    Literal of int 

  | StrLiteral of string 

  | Fliteral of string 

  | BoolLit of bool 

  | Id of string 

  | Binop of expr * op * expr 

  | Unop of uop * expr 

  | Assign of string * expr 

  | Call of string * expr list 

  | Noexpr 

 

type stmt = 

    Block of stmt list 

  | Expr of expr 

  | Return of expr 

  | If of expr * stmt * stmt 

  | For of expr * expr * expr * stmt 

  | While of expr * stmt 

 

type func_decl = { 

    typ : typ; 

    fname : string; 

    formals : bind list; 

    locals : bind list; 

    body : stmt list; 

  } 

 

type program = bind list * func_decl list 

39 



 

(* Pretty-printing functions *) 

 

let string_of_op = function 

    Add -> "+" 

  | Sub -> "-" 

  | Mult -> "*" 

  | Div -> "/" 

  | Equal -> "==" 

  | Neq -> "!=" 

  | Less -> "<" 

  | Leq -> "<=" 

  | Greater -> ">" 

  | Geq -> ">=" 

  | And -> "&&" 

  | Or -> "||" 

 

let string_of_uop = function 

    Neg -> "-" 

  | Not -> "!" 

 

let rec string_of_expr = function 

    Literal(l) -> string_of_int l 

  | StrLiteral(l) -> l 

  | Fliteral(l) -> l 

  | BoolLit(true) -> "true" 

  | BoolLit(false) -> "false" 

  | Id(s) -> s 

  | Binop(e1, o, e2) -> 

      string_of_expr e1 ^ " " ^ string_of_op o ^ " " ^ string_of_expr e2 

  | Unop(o, e) -> string_of_uop o ^ string_of_expr e 

  | Assign(v, e) -> v ^ " = " ^ string_of_expr e 

  | Call(f, el) -> 

      f ^ "(" ^ String.concat ", " (List.map string_of_expr el) ^ ")" 

  | Noexpr -> "" 

 

let rec string_of_stmt = function 

    Block(stmts) -> 

      "{\n" ^ String.concat "" (List.map string_of_stmt stmts) ^ "}\n" 

  | Expr(expr) -> string_of_expr expr ^ ";\n"; 

  | Return(expr) -> "return " ^ string_of_expr expr ^ ";\n"; 

  | If(e, s, Block([])) -> "if (" ^ string_of_expr e ^ ")\n" ^ 

40 



string_of_stmt s 

  | If(e, s1, s2) ->  "if (" ^ string_of_expr e ^ ")\n" ^ 

      string_of_stmt s1 ^ "else\n" ^ string_of_stmt s2 

  | For(e1, e2, e3, s) -> 

      "for (" ^ string_of_expr e1  ^ " ; " ^ string_of_expr e2 ^ " ; " ^ 

      string_of_expr e3  ^ ") " ^ string_of_stmt s 

  | While(e, s) -> "while (" ^ string_of_expr e ^ ") " ^ string_of_stmt s 

 

let string_of_typ = function 

    Int -> "int" 

  | String -> "string" 

  | Bool -> "bool" 

  | Float -> "float" 

  | Void -> "void" 

 

let string_of_vdecl (t, id) = string_of_typ t ^ " " ^ id ^ ";\n" 

 

let string_of_fdecl fdecl = 

  "def " ^ string_of_typ fdecl.typ ^ " " ^ 

  fdecl.fname ^ "(" ^ String.concat ", " (List.map snd fdecl.formals) ^ 

  ")\n{\n" ^ 

  String.concat "" (List.map string_of_vdecl fdecl.locals) ^ 

  String.concat "" (List.map string_of_stmt fdecl.body) ^ 

  "}\n" 

 

let string_of_program (vars, funcs) = 

  String.concat "" (List.map string_of_vdecl vars) ^ "\n" ^ 

  String.concat "\n" (List.map string_of_fdecl funcs) 

 
 
 
 
   

41 



Semant 

(* Semantic checking for textPlusPlus compiler *) 
 

open Ast 
open Sast 
 

module StringMap = Map.Make(String) 
 

(* Semantic checking of the AST. Returns an SAST if successful, 
   throws an exception if something is wrong. 
 

   Check each global variable, then check each function *) 
 

let check (globals, functions) = 
 

  (* Verify a list of bindings has no void types or duplicate names *) 
  let check_binds (kind : string) (binds : bind list) = 
    List.iter (function 

(Void, b) -> raise (Failure ("Illegal void " ^ kind ^ " " ^ b)) 
      | _ -> ()) binds; 

    let rec dups = function 

        [] -> () 

      | ((_,n1) :: (_,n2) :: _) when n1 = n2 -> 

  raise (Failure ("Duplicate name"  ̂ kind  ̂ " "  ̂ n1)) 
      | _ :: t -> dups t 
    in dups (List.sort (fun (_,a) (_,b) -> compare a b) binds) 

  in 

 

  (**** Check global variables ****) 

 

  check_binds "global" globals; 

 

  (**** Check functions ****) 

 

  (* Collect function declarations for built-in functions: no bodies *) 

  

    let built_in_decls =  

  

    StringMap.add "addPage" 

     { typ = Int; fname = "addPage"; formals = []; 

       locals = []; body = [] } 

 

42 



 

 

       (StringMap.add "left" 

     { typ = Void; fname = "left"; formals = []; 

       locals = []; body = [] } 

 

       (StringMap.add "right" 

     { typ = Void; fname = "right"; formals = []; 

       locals = []; body = [] } 

 

       (StringMap.add "center" 

     { typ = Void; fname = "center"; formals = []; 

       locals = []; body = [] } 

 

       (StringMap.add "write" 

       { typ = Void; fname = "write"; formals = [(String, "x")]; 

          locals = []; body = [] } 

 

        (StringMap.add "textOut" 

      { typ = Void; fname = "textOut"; formals = [(Int, "y"); (Int, "z"); 

(String, "x");]; 

        locals = []; body = [] } 

 

        ( StringMap.add "moveTo" 

      { typ = Void; fname = "moveTo"; formals = [(Int, "x"); (Int, "y")]; 

        locals = []; body = [] }  

  

 

 

       (StringMap.add "bold" 

     { typ = Void; fname = "bold"; formals = []; 

       locals = []; body = [] } 

 

        (StringMap.add "italic" 

    { typ = Void; fname = "italic"; formals = []; 

        locals = []; body = [] } 

 

        (StringMap.add "regular" 

    { typ = Void; fname = "regular"; formals = []; 

        locals = []; body = [] } 

 

        (StringMap.add "changeColor" 

43 



    { typ = Void; fname = "changeColor"; formals = [(Float, "x"); (Float, 

"y"); (Float, "z")]; 

        locals = []; body = [] } 

 

        (StringMap.add "changeFontSize" 

    { typ = Void; fname = "changeFontSize"; formals = [(String, "x"); (Int, 

"y")]; 

        locals = []; body = [] } 

 

 

 

        (StringMap.add "drawLine" 

    { typ = Void; fname = "drawLine"; formals = [(Int, "x"); (Int, "y"); 

(Int, "z"); (Int, "a")]; 

        locals = []; body = [] } 

 

        (StringMap.add "drawRectangle" 

     { typ = Void; fname = "drawRectangle"; formals = [(Int, "x"); (Int, 

"y"); (Int, "z"); (Int, "a")]; 

        locals = []; body = [] } 

 

 

 

        (StringMap.add "pageNumber" 

        { typ = Int; fname = "pageNumber"; formals = [(Int, "x"); (Int, 

"y");]; 

           locals = []; body = [] } 

  

 

 

        (StringMap.add "getTextWidth" 

     { typ = Int; fname = "getTextWidth"; formals = [(String, "x")]; 

        locals = []; body = [] } 

 

        (StringMap.add "getPageHeight" 

     { typ = Int; fname = "getPageHeight"; formals = []; 

        locals = []; body = [] } 

 

        (StringMap.add "getPageWidth" 

     { typ = Int; fname = "getPageWidth"; formals = []; 

        locals = []; body = [] }  

 

44 



 

        (StringMap.add "pageTitle" 

     { typ = Void; fname = "pageTitle"; formals = [(String, "x");]; 

        locals = []; body = [] }  

 

        (StringMap.add "table" 

        { typ = Void; fname = "table"; formals = [(Int, "x"); (Int, "y"); 

(Int, "z"); (Int, "a")]; 

           locals = []; body = [] }  

 

  

        (StringMap.add "heading1" 

        { typ = Void; fname = "heading1"; formals = []; 

           locals = []; body = [] }  

 

        (StringMap.add "heading2" 

        { typ = Void; fname = "heading2"; formals = []; 

          locals = []; body = [] }  

  

        (StringMap.add "heading3" 

        { typ = Void; fname = "heading3"; formals = []; 

            locals = []; body = [] }  

 

        (StringMap.add "heading4" 

        { typ = Void; fname = "heading4"; formals = []; 

            locals = []; body = [] }  

 

        (StringMap.add "heading5" 

        { typ = Void; fname = "heading5"; formals = []; 

          locals = []; body = [] }  

 

        (StringMap.add "heading6" 

        { typ = Void; fname = "heading6"; formals = []; 

            locals = []; body = [] } 

 

        (StringMap.add "getCurrentY" 

        { typ = Int; fname = "getCurrentY"; formals = []; 

            locals = []; body = [] } 

 

        (StringMap.add "getCurrentX" 

        { typ = Int; fname = "getCurrentX"; formals = []; 

            locals = []; body = [] } 

45 



 

        (StringMap.add "getCapHeight" 

        { typ = Int; fname = "getCapHeight"; formals = []; 

            locals = []; body = [] } 

 

        (StringMap.add "getLowHeight" 

        { typ = Int; fname = "getLowHeight"; formals = []; 

            locals = []; body = [] } 

 

        (StringMap.add "getTextBytes" 

        { typ = Int; fname = "getTextBytes"; formals = [(String, "x"); 

(Int, "y"); (Int, "z")]; 

            locals = []; body = [] } 

  

        (StringMap.add "setRMargin" 

        { typ = Int; fname = "setRMargin"; formals = [(Int, "y")]; 

            locals = []; body = [] } 

 

        (StringMap.add "setLMargin" 

        { typ = Int; fname = "setLMargin"; formals = [(Int, "y")]; 

            locals = []; body = [] } 

 

        (StringMap.add "setTopMargin" 

        { typ = Int; fname = "setTopMargin"; formals = [(Int, "y")]; 

            locals = []; body = [] } 

 

        (StringMap.add "setBotMargin" 

        { typ = Int; fname = "setBotMargin"; formals = [(Int, "y")]; 

            locals = []; body = [] } StringMap.empty 

 

     )))))))))))))))))))))))))))))))))) 

  

  in 

 

  (* Add function name to symbol table *) 

  let add_func map fd =  

    let built_in_err = "The function " ^ fd.fname ^ " is a built in 

function and may not be defined." 

    and dup_err = "Duplicate function name: " ^ fd.fname  

    and make_err er = raise (Failure er) 

    and n = fd.fname (* Name of the function *) 

    in match fd with (* No duplicate functions or redefinitions of 

46 



built-ins *) 

         _ when StringMap.mem n built_in_decls -> make_err built_in_err 

       | _ when StringMap.mem n map -> make_err dup_err  

       | _ ->  StringMap.add n fd map  

  in 

 

  (* Collect all function names into one symbol table *) 

  let function_decls = List.fold_left add_func built_in_decls functions 

  in 

  

  (* Return a function from our symbol table *) 

  let find_func s =  

    try StringMap.find s function_decls 

    with Not_found -> raise (Failure ("The following function is undefined: 

" ^ s)) 

  in 

 

  (* let _ = find_func "main" in (* Ensure "main" is defined *) *) 

 

  let check_function func = 

    (* Make sure no formals or locals are void or duplicates *) 

    check_binds "formal" func.formals; 

    check_binds "local" func.locals; 

 

    (* Raise an exception if the given rvalue type cannot be assigned to 

       the given lvalue type *) 

    let check_assign lvaluet rvaluet err = 

       if lvaluet = rvaluet then lvaluet else raise (Failure err) 

    in  

 

    (* Build local symbol table of variables for this function *) 

    let symbols = List.fold_left (fun m (ty, name) -> StringMap.add name ty 

m) 

                StringMap.empty (globals @ func.formals @ func.locals 

) 

    in 

 

    (* Return a variable from our local symbol table *) 

    let type_of_identifier s = 

      try StringMap.find s symbols 

      with Not_found -> raise (Failure ("The following variable is 

undeclared: " ^ s)) 

47 



    in 

 

    (* Return a semantically-checked expression, i.e., with a type *) 

    let rec expr = function 

        Literal  l -> (Int, SLiteral l) 

      | StrLiteral l -> (String, SStrLiteral l) 

      | Fliteral l -> (Float, SFliteral l) 

      | BoolLit l  -> (Bool, SBoolLit l) 

      | Noexpr     -> (Void, SNoexpr) 

      | Id s       -> (type_of_identifier s, SId s) 

      | Assign(var, e) as ex ->  

          let lt = type_of_identifier var 

          and (rt, e') = expr e in 

          let err = "Illegal assignment of a" ^ string_of_typ lt ^ " to a " 

^  

            string_of_typ rt ^ " in " ^ string_of_expr ex 

          in (check_assign lt rt err, SAssign(var, (rt, e'))) 

      | Unop(op, e) as ex ->  

          let (t, e') = expr e in 

          let ty = match op with 

            Neg when t = Int || t = Float -> t 

          | Not when t = Bool -> Bool 

          | _ -> raise (Failure ("Illegal use of unary operator with a " ^  

                                 string_of_uop op ^ string_of_typ t ^ 

                                 " in " ^ string_of_expr ex)) 

          in (ty, SUnop(op, (t, e'))) 

      | Binop(e1, op, e2) as e ->  

          let (t1, e1') = expr e1  

          and (t2, e2') = expr e2 in 

          (* All binary operators require operands of the same type *) 

          let same = t1 = t2 in 

          (* Determine expression type based on operator and operand types 

*) 

          let ty = match op with 

            Add | Sub | Mult | Div when same && t1 = Int   -> Int 

          | Add | Sub | Mult | Div when same && t1 = Float -> Float 

          | Equal | Neq            when same               -> Bool 

          | Less | Leq | Greater | Geq 

                     when same && (t1 = Int || t1 = Float) -> Bool 

          | And | Or when same && t1 = Bool -> Bool 

          | _ -> raise ( 

      Failure ("Illegal binary operator " ^ 

48 



                       string_of_typ t1 ^ " " ^ string_of_op op ^ " " ^ 

                       string_of_typ t2 ^ " in " ^ string_of_expr e)) 

          in (ty, SBinop((t1, e1'), op, (t2, e2'))) 

      | Call(fname, args) as call ->  

          let fd = find_func fname in 

          let param_length = List.length fd.formals in 

          if List.length args != param_length then 

            raise (Failure ("The function expected " ^ string_of_int 

param_length ^  

                            " arguments in " ^ string_of_expr call)) 

          else let check_call (ft, _) e =  

            let (et, e') = expr e in  

            let err = "Illegal argument found " ^ string_of_typ et ^ 

              " expected " ^ string_of_typ ft ^ " in " ^ string_of_expr e 

            in (check_assign ft et err, e') 

          in  

          let args' = List.map2 check_call fd.formals args 

          in (fd.typ, SCall(fname, args')) 

    in 

 

    let check_bool_expr e =  

      let (t', e') = expr e 

      and err = "Expected Boolean expression in " ^ string_of_expr e 

      in if t' != Bool then raise (Failure err) else (t', e')  

    in 

 

    (* Return a semantically-checked statement i.e. containing sexprs *) 

    let rec check_stmt = function 

        Expr e -> SExpr (expr e) 

      | If(p, b1, b2) -> SIf(check_bool_expr p, check_stmt b1, check_stmt 

b2) 

      | For(e1, e2, e3, st) -> 

  SFor(expr e1, check_bool_expr e2, expr e3, check_stmt st) 

      | While(p, s) -> SWhile(check_bool_expr p, check_stmt s) 

      | Return e -> let (t, e') = expr e in 

        if t = func.typ then SReturn (t, e')  

        else raise ( 

  Failure ("Return gives " ^ string_of_typ t ^ " expected " ^ 

   string_of_typ func.typ ^ " in " ^ string_of_expr e)) 

  

    (* A block is correct if each statement is correct and nothing 

       follows any Return statement.  Nested blocks are flattened. *) 

49 



      | Block sl ->  

          let rec check_stmt_list = function 

              [Return _ as s] -> [check_stmt s] 

            | Return _ :: _   -> raise (Failure "Nothing may follow a 

return statement.") 

            | Block sl :: ss  -> check_stmt_list (sl @ ss) (* Flatten 

blocks *) 

            | s :: ss         -> check_stmt s :: check_stmt_list ss 

            | []              -> [] 

          in SBlock(check_stmt_list sl) 

 

    in (* body of check_function *) 

    { styp = func.typ; 

      sfname = func.fname; 

      sformals = func.formals; 

      slocals  = func.locals; 

      sbody = match check_stmt (Block func.body) with 

SBlock(sl) -> sl 

      | _ -> raise (Failure ("internal error: block didn't become a 

block?")) 

    } 

  in (globals, List.map check_function functions) 

 
 
 
 
   

50 



Sast 

(* Semantically-checked Abstract Syntax Tree *) 
 

open Ast 
 

type sexpr = typ * sx 
and sx = 
    SLiteral of int 
  | SStrLiteral of string 
  | SFliteral of string 

  | SBoolLit of bool 

  | SId of string 

  | SBinop of sexpr * op * sexpr 

  | SUnop of uop * sexpr 

  | SAssign of string * sexpr 

  | SCall of string * sexpr list 

  | SNoexpr 

 

type sstmt = 

    SBlock of sstmt list 

  | SExpr of sexpr 

  | SReturn of sexpr 

  | SIf of sexpr * sstmt * sstmt 

  | SFor of sexpr * sexpr * sexpr * sstmt 

  | SWhile of sexpr * sstmt 

 

type sfunc_decl = { 

    styp : typ; 

    sfname : string; 

    sformals : bind list; 

    slocals : bind list; 

    sbody : sstmt list; 

  } 

 

type sprogram = bind list * sfunc_decl list 

 

(* Pretty-printing functions *) 

 

let rec string_of_sexpr (t, e) = 

  "(" ^ string_of_typ t ^ " : " ^ (match e with 

    SLiteral(l) -> string_of_int l 

  | SStrLiteral(l) -> l 

51 



  | SBoolLit(true) -> "true" 

  | SBoolLit(false) -> "false" 

  | SFliteral(l) -> l 

  | SId(s) -> s 

  | SBinop(e1, o, e2) -> 

      string_of_sexpr e1 ^ " " ^ string_of_op o ^ " " ^ string_of_sexpr e2 

  | SUnop(o, e) -> string_of_uop o ^ string_of_sexpr e 

  | SAssign(v, e) -> v ^ " = " ^ string_of_sexpr e 

  | SCall(f, el) -> 

      f ^ "(" ^ String.concat ", " (List.map string_of_sexpr el) ^ ")" 

  | SNoexpr -> "" 

  ) ^ ")"   

 

let rec string_of_sstmt = function 

    SBlock(stmts) -> 

      "{\n" ^ String.concat "" (List.map string_of_sstmt stmts) ^ "}\n" 

  | SExpr(expr) -> string_of_sexpr expr ^ ";\n"; 

  | SReturn(expr) -> "return " ^ string_of_sexpr expr ^ ";\n"; 

  | SIf(e, s, SBlock([])) -> 

      "if (" ^ string_of_sexpr e ^ ")\n" ^ string_of_sstmt s 

  | SIf(e, s1, s2) ->  "if (" ^ string_of_sexpr e ^ ")\n" ^ 

      string_of_sstmt s1 ^ "else\n" ^ string_of_sstmt s2 

  | SFor(e1, e2, e3, s) -> 

      "for (" ^ string_of_sexpr e1  ^ " ; " ^ string_of_sexpr e2 ^ " ; " ^ 

      string_of_sexpr e3  ^ ") " ^ string_of_sstmt s 

  | SWhile(e, s) -> "while (" ^ string_of_sexpr e ^ ") " ^ string_of_sstmt 

s 

 

let string_of_sfdecl fdecl = 

  "def " ^ string_of_typ fdecl.styp ^ " " ^ 

  fdecl.sfname ^ "(" ^ String.concat ", " (List.map snd fdecl.sformals) ^ 

  ")\n{\n" ^ 

  String.concat "" (List.map string_of_vdecl fdecl.slocals) ^ 

  String.concat "" (List.map string_of_sstmt fdecl.sbody) ^ 

  "}\n" 

 

let string_of_sprogram (vars, funcs) = 

  String.concat "" (List.map string_of_vdecl vars) ^ "\n" ^ 

  String.concat "\n" (List.map string_of_sfdecl funcs) 

 
   

52 



Textplusplus 

(* Top-level of the textPlusPlus compiler: scan & parse the input, 
   check the resulting AST and generate an SAST from it, generate LLVM IR, 
   and dump the module *) 
 

type action = Ast | Sast | LLVM_IR | Compile 
 

let () = 

  let action = ref Compile in 

  let set_action a () = action := a in 

  let speclist = [ 

    ("-a", Arg.Unit (set_action Ast), "Print the AST"); 

    ("-s", Arg.Unit (set_action Sast), "Print the SAST"); 

    ("-l", Arg.Unit (set_action LLVM_IR), "Print the generated LLVM IR"); 

    ("-c", Arg.Unit (set_action Compile), 

      "Check and print the generated LLVM IR (default)"); 

  ] in  

  let usage_msg = "usage: ./textplusplus.native [-a|-s|-l|-c] [file.tpp]" 

in 

  let channel = ref stdin in 

  Arg.parse speclist (fun filename -> channel := open_in filename) 

usage_msg; 

  

  let lexbuf = Lexing.from_channel !channel in 

  let ast = Parser.program Scanner.token lexbuf in  

  match !action with 

    Ast -> print_string (Ast.string_of_program ast) 

  | _ -> let sast = Semant.check ast in 

    match !action with 

      Ast     -> () 

    | Sast    -> print_string (Sast.string_of_sprogram sast) 

    | LLVM_IR -> print_string (Llvm.string_of_llmodule (Codegen.translate 

sast)) 

    | Compile -> let m = Codegen.translate sast in 

Llvm_analysis.assert_valid_module m; 

print_string (Llvm.string_of_llmodule m) 

 
 
   

53 



Testall 

#!/bin/sh 
 

# Regression testing script for textPlusPlus 
# Step through a list of files 
#  Compile, run, and check the output of each expected-to-work test 
#  Compile and check the error of each expected-to-fail test 
 

# Path to the LLVM interpreter 
LLI="lli" 

#LLI="/usr/local/opt/llvm/bin/lli" 
 

# Path to the LLVM compiler 
LLC="llc" 

 

# Path to the C compiler 
CC="cc" 

 

# Path to the textplusplus compiler.  Usually "./textplusplus.native" 
# Try "_build/textplusplus.native" if ocamlbuild was unable to create a 
symbolic link. 

#TEXTPLUSPLUS="./textplusplus.native" 
TEXTPLUSPLUS="_build/textplusplus.native" 

 

# Set time limit for all operations 
ulimit -t 30 

 

globallog=testall.log 

rm -f $globallog 

error=0 

globalerror=0 

 

keep=0 

 

Usage() { 

    echo "Usage: testall.sh [options] [.tpp files]" 

    echo "-k    Keep intermediate files" 

    echo "-h    Print this help" 

    exit 1 

} 

 

SignalError() { 

54 



    if [ $error -eq 0 ] ; then 

echo "FAILED" 

error=1 

    fi 

    echo "  $1" 

} 

 

# Compare <outfile> <reffile> <difffile> 
# Compares the outfile with reffile.  Differences, if any, written to 
difffile 

Compare() { 

    generatedfiles="$generatedfiles $3" 

    echo diff -b $1 $2 ">" $3 1>&2 

    diff -b "$1" "$2" > "$3" 2>&1 || { 

SignalError "$1 differs" 

echo "FAILED $1 differs from $2" 1>&2 

    } 

} 

 

# Run <args> 
# Report the command, run it, and report any errors 
Run() { 

    echo $* 1>&2 

    eval $* || { 

SignalError "$1 failed on $*" 

return 1 

    } 

} 

 

# RunFail <args> 
# Report the command, run it, and expect an error 
RunFail() { 

    echo $* 1>&2 

    eval $* && { 

SignalError "failed: $* did not report an error" 

return 1 

    } 

    return 0 

} 

 

Check() { 

    error=0 

55 



    basename=`echo $1 | sed 's/.*\\/// 

                             s/.tpp//'` 

    reffile=`echo $1 | sed 's/.tpp$//'` 

    basedir="`echo $1 | sed 's/\/[^\/]*$//'`/." 

 

    echo -n "$basename..." 

 

    echo 1>&2 

    echo "###### Testing $basename" 1>&2 

 

    generatedfiles="" 

 

    generatedfiles="$generatedfiles ${basename}.ll ${basename}.s 

${basename}.exe ${basename}.out" && 

    Run "$TEXTPLUSPLUS" "$1" ">" "${basename}.ll" && 

    Run "$LLC" "-relocation-model=pic" "${basename}.ll" ">" "${basename}.s" 

&& 

    Run "$CC" "-o" "${basename}.exe" "${basename}.s" "hello.o " "-lhpdf" && 

    Run "./${basename}.exe" && 

    Run "pdf2txt" "-o" "${basename}.out" "text.pdf" && 

    Compare ${basename}.out ${reffile}.out ${basename}.diff 

 

    # Report the status and clean up the generated files 

 

    if [ $error -eq 0 ] ; then 

if [ $keep -eq 0 ] ; then 

    rm -f $generatedfiles 

fi 

echo "OK" 

echo "###### SUCCESS" 1>&2 

    else 

echo "###### FAILED" 1>&2 

globalerror=$error 

    fi 

} 

 

CheckFail() { 

    error=0 

    basename=`echo $1 | sed 's/.*\\/// 

                             s/.tpp//'` 

    reffile=`echo $1 | sed 's/.tpp$//'` 

    basedir="`echo $1 | sed 's/\/[^\/]*$//'`/." 

56 



 

    echo -n "$basename..." 

 

    echo 1>&2 

    echo "###### Testing $basename" 1>&2 

 

    generatedfiles="" 

 

    generatedfiles="$generatedfiles ${basename}.err ${basename}.diff" && 

    RunFail "$TEXTPLUSPLUS" "<" $1 "2>" "${basename}.err" ">>" $globallog 

&& 

    Compare ${basename}.err ${reffile}.err ${basename}.diff 

 

    # Report the status and clean up the generated files 

 

    if [ $error -eq 0 ] ; then 

if [ $keep -eq 0 ] ; then 

    rm -f $generatedfiles 

fi 

echo "OK" 

echo "###### SUCCESS" 1>&2 

    else 

echo "###### FAILED" 1>&2 

globalerror=$error 

    fi 

} 

 

while getopts kdpsh c; do 

    case $c in 

k) # Keep intermediate files 

    keep=1 

    ;; 

h) # Help 

    Usage 

    ;; 

    esac 

done 

 

shift `expr $OPTIND - 1` 

 

LLIFail() { 

  echo "Could not find the LLVM interpreter \"$LLI\"." 

57 



  echo "Check your LLVM installation and/or modify the LLI variable in 

testall.sh" 

  exit 1 

} 

 

which "$LLI" >> $globallog || LLIFail 

 

if [ ! -f hello.o ] 

then 

    echo "Could not find hello.o" 

    echo "Try \"make hello.o\"" 

    exit 1 

fi 

 

if [ $# -ge 1 ] 

then 

    files=$@ 

else 

    files="tests/test-*.tpp tests/fail-*.tpp" 

fi 

 

for file in $files 

do 

    case $file in 

*test-*) 

    Check $file 2>> $globallog 

    ;; 

*fail-*) 

    CheckFail $file 2>> $globallog 

    ;; 

*) 

    echo "unknown file type $file" 

    globalerror=1 

    ;; 

    esac 

done 

 

exit $globalerror 

 
 
   

58 



Codegen 

(* Code generation: translate takes a semantically checked AST and 
produces LLVM IR 
 

LLVM tutorial: Make sure to read the OCaml version of the tutorial 
 

http://llvm.org/docs/tutorial/index.html 
 

Detailed documentation on the OCaml LLVM library: 
 

http://llvm.moe/ 
http://llvm.moe/ocaml/ 
 

*) 

 

module L = Llvm 
module A = Ast 
open Sast  
 

module StringMap = Map.Make(String) 
 

(* translate : Sast.program -> Llvm.module *) 
let translate (globals, functions) = 
  let context    = L.global_context () in 
  

  (* Create the LLVM compilation module into which 
     we will generate code *) 
  let the_module = L.create_module context "textPlusPlus" in 
 

  (* Get types from the context *) 
  let i32_t      = L.i32_type    context 
  and i1_t       = L.i1_type     context 
  and float_t    = L.double_type context 
  and str_t      = L.pointer_type (L.i8_type context) 
  and void_t     = L.void_type   context in 
 

  (* Return the LLVM type for a textPlusPlus type *) 
  let ltype_of_typ = function 
      A.Int   -> i32_t 
    | A.Bool  -> i1_t 
    | A.Float -> float_t 

    | A.Void  -> void_t 

59 



    | A.String -> str_t 

  in 

 

  (* Create a map of global variables after creating each *) 

  let global_vars : L.llvalue StringMap.t = 

    let global_var m (t, n) =  

      let init = match t with 

          A.Float -> L.const_float (ltype_of_typ t) 0.0 

        | _ -> L.const_int (ltype_of_typ t) 0 

      in StringMap.add n (L.define_global n init the_module) m in 

    List.fold_left global_var StringMap.empty globals in 

 

 

  let addPage_t : L.lltype = 

      L.function_type i32_t [| |] in 

  let addPage_func : L.llvalue = 

      L.declare_function "addPage" addPage_t the_module in 

 

 

 

  let left_t : L.lltype = 

    L.function_type i32_t [| |] in 

  let left_func : L.llvalue = 

      L.declare_function "left" left_t the_module in 

  

  let right_t : L.lltype = 

    L.function_type i32_t [| |] in 

  let right_func : L.llvalue = 

      L.declare_function "right" right_t the_module in 

 

  let center_t : L.lltype = 

    L.function_type i32_t [| |] in 

  let center_func : L.llvalue = 

      L.declare_function "center" center_t the_module in 

 

  let write_t : L.lltype = 

    L.function_type i32_t [| str_t |] in 

  let write_func : L.llvalue = 

      L.declare_function "write" write_t the_module in 

 

  let textOut_t : L.lltype = 

    L.function_type i32_t [| i32_t ; i32_t ; str_t|] in 

60 



  let textOut_func : L.llvalue = 

      L.declare_function "textOut" textOut_t the_module in  

 

  let moveTo_t : L.lltype = 

    L.function_type i32_t [| i32_t; i32_t |] in 

  let moveTo_func : L.llvalue = 

      L.declare_function "moveTo" moveTo_t the_module in  

  

 

 

  let bold_t : L.lltype = 

      L.function_type i32_t [| |] in 

  let bold_func : L.llvalue = 

      L.declare_function "bold" bold_t the_module in 

  

    let italic_t : L.lltype = 

      L.function_type i32_t [| |] in 

  let italic_func : L.llvalue = 

      L.declare_function "italic" italic_t the_module in 

  

  let regular_t : L.lltype = 

      L.function_type i32_t [| |] in 

  let regular_func : L.llvalue = 

      L.declare_function "regular" regular_t the_module in 

  

  let changeColor_t : L.lltype = 

    L.function_type i32_t [| float_t; float_t; float_t |] in 

  let changeColor_func : L.llvalue = 

      L.declare_function "changeColor" changeColor_t the_module in 

  

  let changeFontSize_t : L.lltype = 

      L.function_type i32_t [| str_t; i32_t |] in 

  let changeFontSize_func : L.llvalue = 

      L.declare_function "changeFontSize" changeFontSize_t the_module in 

  

 

 

  let drawLine_t : L.lltype = 

      L.function_type i32_t [| i32_t; i32_t; i32_t; i32_t |] in 

  let drawLine_func : L.llvalue = 

      L.declare_function "drawLine" drawLine_t the_module in  

  

61 



  let drawRectangle_t : L.lltype = 

      L.function_type i32_t [| i32_t; i32_t; i32_t; i32_t |] in 

  let drawRectangle_func : L.llvalue = 

      L.declare_function "drawRectangle" drawRectangle_t the_module in  

  

  

 

  let pageNumber_t : L.lltype = 

    L.function_type i32_t [| i32_t; i32_t |] in 

  let pageNumber_func : L.llvalue = 

      L.declare_function "pageNumber" pageNumber_t the_module in 

 

  let getTextWidth_t : L.lltype = 

    L.function_type i32_t [| str_t |] in 

  let getTextWidth_func : L.llvalue = 

      L.declare_function "getTextWidth" getTextWidth_t the_module in 

  

  let getPageHeight_t : L.lltype = 

    L.function_type i32_t [|  |] in 

  let getPageHeight_func : L.llvalue = 

      L.declare_function "getPageHeight" getPageHeight_t the_module in 

 

  let getPageWidth_t : L.lltype = 

    L.function_type i32_t [|  |] in 

  let getPageWidth_func : L.llvalue = 

      L.declare_function "getPageWidth" getPageWidth_t the_module in 

  

 

  

  let pageTitle_t : L.lltype = 

      L.function_type i32_t [| str_t |] in 

  let pageTitle_func : L.llvalue = 

      L.declare_function "pageTitle" pageTitle_t the_module in 

  

  let table_t : L.lltype = 

    L.function_type i32_t [| i32_t; i32_t; i32_t; i32_t |] in 

  let table_func : L.llvalue = 

      L.declare_function "table" table_t the_module in  

 

  let heading1_t : L.lltype = 

    L.function_type i32_t [| |] in 

  let heading1_func : L.llvalue = 

62 



    L.declare_function "heading1" heading1_t the_module in 

  let heading2_t : L.lltype = 

    L.function_type i32_t [| |] in 

  let heading2_func : L.llvalue = 

    L.declare_function "heading2" heading2_t the_module in 

  let heading3_t : L.lltype = 

    L.function_type i32_t [| |] in 

  let heading3_func : L.llvalue = 

    L.declare_function "heading3" heading3_t the_module in 

  let heading4_t : L.lltype = 

    L.function_type i32_t [| |] in 

  let heading4_func : L.llvalue = 

    L.declare_function "heading4" heading4_t the_module in 

  let heading5_t : L.lltype = 

    L.function_type i32_t [| |] in 

  let heading5_func : L.llvalue = 

    L.declare_function "heading5" heading5_t the_module in 

  let heading6_t : L.lltype = 

    L.function_type i32_t [| |] in 

  let heading6_func : L.llvalue = 

    L.declare_function "heading6" heading6_t the_module in 

  let getCurrentY_t : L.lltype = 

  L.function_type i32_t [| |] in 

  let getCurrentY_func : L.llvalue = 

    L.declare_function "getCurrentY" getCurrentY_t the_module in 

  let getCurrentX_t : L.lltype = 

  L.function_type i32_t [| |] in 

  let getCurrentX_func : L.llvalue = 

    L.declare_function "getCurrentX" getCurrentX_t the_module in 

  let getCapHeight_t : L.lltype = 

  L.function_type i32_t [| |] in 

  let getCapHeight_func : L.llvalue = 

    L.declare_function "getCapHeight" getCapHeight_t the_module in 

  let getLowHeight_t : L.lltype = 

  L.function_type i32_t [| |] in 

  let getLowHeight_func : L.llvalue = 

    L.declare_function "getLowHeight" getLowHeight_t the_module in 

  let getTextBytes_t : L.lltype = 

  L.function_type i32_t [| str_t; i32_t; i32_t |] in 

  let getTextBytes_func : L.llvalue = 

    L.declare_function "getTextBytes" getTextBytes_t the_module in 

    (***) 

63 



  let setRMargin_t : L.lltype = 

  L.function_type i32_t [| i32_t|] in 

  let setRMargin_func : L.llvalue = 

  L.declare_function "setRMargin" setRMargin_t the_module in 

  let setLMargin_t : L.lltype = 

  L.function_type i32_t [| i32_t|] in 

  let setLMargin_func : L.llvalue = 

  L.declare_function "setLMargin" setLMargin_t the_module in 

  let setTopMargin_t : L.lltype = 

  L.function_type i32_t [| i32_t |] in 

  let setTopMargin_func : L.llvalue = 

  L.declare_function "setTopMargin" setTopMargin_t the_module in 

  let setBotMargin_t : L.lltype = 

  L.function_type i32_t [| i32_t |] in 

  let setBotMargin_func : L.llvalue = 

  L.declare_function "setBotMargin" setBotMargin_t the_module in 

 

  (* Define each function (arguments and return type) so we can  

     call it even before we've created its body *) 

  let function_decls : (L.llvalue * sfunc_decl) StringMap.t = 

    let function_decl m fdecl = 

      let name = fdecl.sfname 

      and formal_types =  

Array.of_list (List.map (fun (t,_) -> ltype_of_typ t) fdecl.sformals) 

      in let ftype = L.function_type (ltype_of_typ fdecl.styp) formal_types 

in 

      StringMap.add name (L.define_function name ftype the_module, fdecl) m 

in 

    List.fold_left function_decl StringMap.empty functions in 

  

  (* Fill in the body of the given function *) 

  let build_function_body fdecl = 

    let (the_function, _) = StringMap.find fdecl.sfname function_decls in 

    let builder = L.builder_at_end context (L.entry_block the_function) in 

 

    (* Construct the function's "locals": formal arguments and locally 

       declared variables.  Allocate each on the stack, initialize their 

       value, if appropriate, and remember their values in the "locals" map 

*) 

    let local_vars = 

      let add_formal m (t, n) p =  

        L.set_value_name n p; 

64 



let local = L.build_alloca (ltype_of_typ t) n builder in 

        ignore (L.build_store p local builder); 

StringMap.add n local m  

 

      (* Allocate space for any locally declared variables and add the 

       * resulting registers to our map *) 

      and add_local m (t, n) = 

let local_var = L.build_alloca (ltype_of_typ t) n builder 

in StringMap.add n local_var m  

      in 

 

      let formals = List.fold_left2 add_formal StringMap.empty 

fdecl.sformals 

          (Array.to_list (L.params the_function)) in 

      List.fold_left add_local formals fdecl.slocals  

    in 

 

    (* Return the value for a variable or formal argument. 

       Check local names first, then global names *) 

    let lookup n = try StringMap.find n local_vars 

                   with Not_found -> StringMap.find n global_vars 

    in 

 

    (* Construct code for an expression; return its value *) 

    let rec expr builder ((_, e) : sexpr) = match e with 

      SLiteral i  -> L.const_int i32_t i 

      | SStrLiteral i -> L.build_global_stringptr i "string" builder 

      | SBoolLit b  -> L.const_int i1_t (if b then 1 else 0) 

      | SFliteral l -> L.const_float_of_string float_t l 

      | SNoexpr     -> L.const_int i32_t 0 

      | SId s       -> L.build_load (lookup s) s builder 

      | SAssign (s, e) -> let e' = expr builder e in 

                          ignore(L.build_store e' (lookup s) builder); e' 

      | SBinop ((A.Float,_ ) as e1, op, e2) -> 

  let e1' = expr builder e1 

  and e2' = expr builder e2 in 

  (match op with  

    A.Add     -> L.build_fadd 

  | A.Sub     -> L.build_fsub 

  | A.Mult    -> L.build_fmul 

  | A.Div     -> L.build_fdiv  

  | A.Equal   -> L.build_fcmp L.Fcmp.Oeq 

65 



  | A.Neq     -> L.build_fcmp L.Fcmp.One 

  | A.Less    -> L.build_fcmp L.Fcmp.Olt 

  | A.Leq     -> L.build_fcmp L.Fcmp.Ole 

  | A.Greater -> L.build_fcmp L.Fcmp.Ogt 

  | A.Geq     -> L.build_fcmp L.Fcmp.Oge 

  | A.And | A.Or -> 

      raise (Failure "internal error: semant should have rejected 

and/or on float") 

  ) e1' e2' "tmp" builder 

      | SBinop (e1, op, e2) -> 

  let e1' = expr builder e1 

  and e2' = expr builder e2 in 

  (match op with 

    A.Add     -> L.build_add 

  | A.Sub     -> L.build_sub 

  | A.Mult    -> L.build_mul 

          | A.Div     -> L.build_sdiv 

  | A.And     -> L.build_and 

  | A.Or      -> L.build_or 

  | A.Equal   -> L.build_icmp L.Icmp.Eq 

  | A.Neq     -> L.build_icmp L.Icmp.Ne 

  | A.Less    -> L.build_icmp L.Icmp.Slt 

  | A.Leq     -> L.build_icmp L.Icmp.Sle 

  | A.Greater -> L.build_icmp L.Icmp.Sgt 

  | A.Geq     -> L.build_icmp L.Icmp.Sge 

  ) e1' e2' "tmp" builder 

      | SUnop(op, ((t, _) as e)) -> 

          let e' = expr builder e in 

  (match op with 

    A.Neg when t = A.Float -> L.build_fneg  

  | A.Neg                  -> L.build_neg 

          | A.Not                  -> L.build_not) e' "tmp" builder 

 

 

    | SCall ("addPage", []) -> 

      L.build_call addPage_func [| |] "addPage" builder 

  

    | SCall ("left", []) -> 

      L.build_call left_func [| |] "left" builder 

    | SCall ("right", []) -> 

      L.build_call right_func [| |] "right" builder 

    | SCall ("center", []) -> 

66 



      L.build_call center_func [| |] "center" builder 

 

    | SCall ("write", [e]) -> 

      L.build_call write_func [| (expr builder e) |] "write" builder 

    | SCall ("textOut", [e; y; z]) -> 

      L.build_call textOut_func [| (expr builder e); (expr builder y); 

(expr builder z) |] "textOut" builder 

    | SCall ("moveTo", [e; y]) -> 

      L.build_call moveTo_func [| (expr builder e); (expr builder y)|] 

"moveTo" builder   

 

    | SCall ("bold", []) -> 

      L.build_call bold_func [|  |] "bold" builder 

    | SCall ("italic", []) -> 

      L.build_call italic_func [|  |] "italic" builder  

    | SCall ("regular", []) -> 

      L.build_call regular_func [|  |] "regular" builder  

    | SCall ("changeColor", [e; y; z]) -> 

      L.build_call changeColor_func [| (expr builder e); (expr builder y); 

(expr builder z) |] "changeColor" builder 

    | SCall ("changeFontSize", [e ; y]) -> 

      L.build_call changeFontSize_func [| (expr builder e); (expr builder 

y)  |] "changeFontSize" builder 

  

    | SCall ("drawLine", [e; y; z; a]) -> 

      L.build_call drawLine_func [| (expr builder e); (expr builder y); 

(expr builder z); (expr builder a)|] "drawLine" builder 

    | SCall ("drawRectangle", [e; y; z; a]) -> 

      L.build_call drawRectangle_func [| (expr builder e); (expr builder 

y); (expr builder z); (expr builder a) |] "drawRectangle" builder 

  

    | SCall ("pageNumber", [e; y]) -> 

      L.build_call pageNumber_func [|(expr builder e); (expr builder y) |] 

"pageNumber" builder  

    | SCall ("getTextWidth", [e]) -> 

      L.build_call getTextWidth_func [| (expr builder e) |] "getTextWidth" 

builder 

    | SCall ("getPageHeight", []) -> 

      L.build_call getPageHeight_func [| |] "getPageHeight" builder  

    | SCall ("getPageWidth", []) -> 

      L.build_call getPageWidth_func [| |] "getPageWidth" builder  

 

67 



    | SCall ("pageTitle", [e]) -> 

      L.build_call pageTitle_func [| (expr builder e) |] "pageTitle" 

builder 

    | SCall ("table", [e; y; z; a]) -> 

      L.build_call table_func [| (expr builder e); (expr builder y); (expr 

builder z); (expr builder a) |] "table" builder  

 

    | SCall ("heading1", []) -> 

      L.build_call heading1_func [| |] "heading1" builder  

    | SCall ("heading2", []) -> 

      L.build_call heading2_func [| |] "heading2" builder  

    | SCall ("heading3", []) -> 

      L.build_call heading3_func [| |] "heading3" builder  

    | SCall ("heading4", []) -> 

      L.build_call heading4_func [| |] "heading4" builder  

    | SCall ("heading5", []) -> 

      L.build_call heading5_func [| |] "heading5" builder  

    | SCall ("heading6", []) -> 

      L.build_call heading6_func [| |] "heading6" builder 

    | SCall ("getCurrentY", []) -> 

      L.build_call getCurrentY_func [| |] "getCurrentY" builder  

    | SCall ("getCurrentX", []) -> 

      L.build_call getCurrentX_func [| |] "getCurrentX" builder 

    | SCall ("getCapHeight", []) -> 

      L.build_call getCapHeight_func [| |] "getCapHeight" builder 

    | SCall ("getLowHeight", []) -> 

      L.build_call getLowHeight_func [| |] "getLowHeight" builder 

    | SCall ("getTextBytes", [x;y;z]) -> 

      L.build_call getTextBytes_func [| (expr builder x); (expr builder y); 

(expr builder z) |] "getTextBytes" builder 

    | SCall ("setRMargin", [e]) -> 

      L.build_call setRMargin_func [| (expr builder e) |] "setRMargin" 

builder 

    | SCall ("setLMargin", [e]) -> 

      L.build_call setLMargin_func [| (expr builder e) |] "setLMargin" 

builder 

    | SCall ("setTopMargin", [e]) -> 

      L.build_call setTopMargin_func [| (expr builder e) |] "setTopMargin" 

builder 

    | SCall ("setBotMargin", [e]) -> 

      L.build_call setBotMargin_func [| (expr builder e) |] "setBotMargin" 

builder 

68 



 

 

  

      | SCall (f, args) -> 

         let (fdef, fdecl) = StringMap.find f function_decls in 

 let llargs = List.rev (List.map (expr builder) (List.rev args)) in 

 let result = (match fdecl.styp with  

                        A.Void -> "" 

                      | _ -> f ^ "_result") in 

         L.build_call fdef (Array.of_list llargs) result builder 

    in 

  

    (* LLVM insists each basic block end with exactly one "terminator"  

       instruction that transfers control.  This function runs "instr 

builder" 

       if the current block does not already have a terminator.  Used, 

       e.g., to handle the "fall off the end of the function" case. *) 

    let add_terminal builder instr = 

      match L.block_terminator (L.insertion_block builder) with 

Some _ -> () 

      | None -> ignore (instr builder) in 

 

    (* Build the code for the given statement; return the builder for 

       the statement's successor (i.e., the next instruction will be built 

       after the one generated by this call) *) 

 

    let rec stmt builder = function 

SBlock sl -> List.fold_left stmt builder sl 

      | SExpr e -> ignore(expr builder e); builder  

      | SReturn e -> ignore(match fdecl.styp with 

                              (* Special "return nothing" instr *) 

                              A.Void -> L.build_ret_void builder  

                              (* Build return statement *) 

                            | _ -> L.build_ret (expr builder e) builder ); 

                     builder 

      | SIf (predicate, then_stmt, else_stmt) -> 

         let bool_val = expr builder predicate in 

 let merge_bb = L.append_block context "merge" the_function in 

         let build_br_merge = L.build_br merge_bb in (* partial function *) 

 

 let then_bb = L.append_block context "then" the_function in 

 add_terminal (stmt (L.builder_at_end context then_bb) then_stmt) 

69 



   build_br_merge; 

 

 let else_bb = L.append_block context "else" the_function in 

 add_terminal (stmt (L.builder_at_end context else_bb) else_stmt) 

   build_br_merge; 

 

 ignore(L.build_cond_br bool_val then_bb else_bb builder); 

 L.builder_at_end context merge_bb 

 

      | SWhile (predicate, body) -> 

  let pred_bb = L.append_block context "while" the_function in 

  ignore(L.build_br pred_bb builder); 

 

  let body_bb = L.append_block context "while_body" the_function in 

  add_terminal (stmt (L.builder_at_end context body_bb) body) 

    (L.build_br pred_bb); 

 

  let pred_builder = L.builder_at_end context pred_bb in 

  let bool_val = expr pred_builder predicate in 

 

  let merge_bb = L.append_block context "merge" the_function in 

  ignore(L.build_cond_br bool_val body_bb merge_bb pred_builder); 

  L.builder_at_end context merge_bb 

 

      (* Implement for loops as while loops *) 

      | SFor (e1, e2, e3, body) -> stmt builder 

    ( SBlock [SExpr e1 ; SWhile (e2, SBlock [body ; SExpr e3]) ] ) 

    in 

 

    (* Build the code for each statement in the function *) 

    let builder = stmt builder (SBlock fdecl.sbody) in 

 

    (* Add a return if the last block falls off the end *) 

    add_terminal builder (match fdecl.styp with 

        A.Void -> L.build_ret_void 

      | A.Float -> L.build_ret (L.const_float float_t 0.0) 

      | t -> L.build_ret (L.const_int (ltype_of_typ t) 0)) 

  in 

 

  List.iter build_function_body functions; 

  the_module 

 

70 



 
Hello.c 

/* 

 * << Haru Free PDF Library 2.0.0 >> -- attach.c 
 * Copyright (c) 1999-2006 Takeshi Kanno <takeshi_kanno@est.hi-ho.ne.jp> 
 */ 
 

#include <stdlib.h> 

#include <stdio.h> 

#include <string.h> 

#include <setjmp.h> 

#include "hpdf.h" 

 

 

// Document Handling 
char fname[256]; 
HPDF_Doc pdf; 
 

// Page Handling  
HPDF_Page firstPage; 
HPDF_Page currentPage; 
 

HPDF_REAL pageHeight; 
HPDF_REAL pageWidth; 
 

int pnumber; 
 

//Text Handling 
HPDF_REAL currentX; 
HPDF_REAL currentY; 
 

float tw; 
 

// Font Handling 
HPDF_Font defaultFont; 
HPDF_Font currentFont; 
HPDF_REAL defaultSize; 
HPDF_REAL currentSize; 
 

HPDF_Font helvetica; 
HPDF_Font helveticaItalic; 
HPDF_Font helveticaBold; 

71 



 

HPDF_Font times; 
HPDF_Font timesItalic; 
HPDF_Font timesBold; 
 

HPDF_Font courier; 
HPDF_Font courierItalic; 
HPDF_Font courierBold; 
 

float textWidth; 
int alignment; 
int lmarg; 
int rmarg; 
int bmarg; 
int tmarg; 
 

 

extern void start(); 
 

jmp_buf env; 
 

// Error Handling 
 

void 

error_handler (HPDF_STATUS   error_no, 
               HPDF_STATUS   detail_no, 
               void         *user_data 
) 

{    printf ("ERROR: error_no=%04X, detail_no=%u\n", (HPDF_UINT)error_no, 
                (HPDF_UINT)detail_no); 
    longjmp(env, 1); 
} 

 

 

// PAGE HANDLING FUNCTIONS  
 

int  addPage(){ 
 

/* creates and adds new page to PDF */ 
HPDF_Page newPage; 
newPage = HPDF_AddPage(pdf); 

 

72 



/* updates current page and page number */ 
currentPage = newPage; 
pnumber = pnumber + 1; 

 

/* sets the font, size, and line width for page */ 
HPDF_Page_SetFontAndSize(currentPage, currentFont, currentSize); 
HPDF_Page_SetLineWidth(currentPage, 1); 

 

    /* initializes value for pageHeight and pageWidth */ 
    pageHeight = HPDF_Page_GetHeight(currentPage); 
    pageWidth = HPDF_Page_GetWidth(currentPage); 
 

/* sets  X and Y cooridintes to top left of page with margins*/ 
currentX = 25;  
currentY = pageHeight - 25; 

 

return 0; 
} 

 

// TEXT HANDLING FUNCTIONS  
 

int left(){ 
 

alignment = 0; 
return 0; 

} 

 

int right(){ 
alignment = 1; 
return 0; 

} 

 

int center(){ 
alignment = 2; 
return 0; 

} 

 

int getCapHeight(){ 
    int f_height_point = HPDF_Font_GetCapHeight(currentFont); 
    return (int)(f_height_point * currentSize / 1000.0); 
} 

 

73 



int getLowHeight(){ 
    int f_height_point = HPDF_Font_GetXHeight(currentFont); 
    return (int)(f_height_point * currentSize / 1000.0); 
} 

 

//gets how much bytes can fit in one line given some margins on a line 
int getTextBytes(char * text, int lmargin, int rmargin){ 
    ///assuming left and right margins are the same 
    int page_limit = pageWidth - lmargin - rmargin; 
    return (int)( HPDF_Page_MeasureText(currentPage, text, page_limit, 
HPDF_TRUE, NULL)); 
} 

 

int setLMargin(int marg){ 
    lmarg = marg; 
    return 0; 
} 

 

int setRMargin(int marg){ 
    rmarg = marg; 
    return 0; 
} 

 

int setTopMargin(int marg){ 
    tmarg = marg; 
    return 0; 
} 

 

int setBotMargin(int marg){ 
    bmarg = marg; 
    return 0; 
} 

 

 

 

int write(char * text){ 
    // align: 0 means left, 1 means right, 2 means center 
 

    int page_limit = pageWidth - lmarg - rmarg; 
 

    int f_height_point = HPDF_Font_GetCapHeight(currentFont); 
    int f_real_h = f_height_point * currentSize / 1000.0; 

74 



 

    int last_line = 0; 
 

    int pos = 0; 
 

    int textWidth = 0; 
    int move_right = 0; 
    currentX = lmarg; 
    currentY = pageHeight - tmarg;  
 

    HPDF_Page_SetFontAndSize(currentPage, currentFont, currentSize);  
    HPDF_Page_BeginText(currentPage); 
 

    for(;;){ 
 

 int bytes = HPDF_Page_MeasureText(currentPage, text, page_limit, 
HPDF_TRUE, NULL); 
        char *start = &text[pos]; 
        char *end = &text[pos + bytes]; 
        size_t length = end - start; 
  

        char *curr_string = (char *) malloc(length + 1); 
        memcpy(curr_string, start, length);  
        curr_string[length] = '\0'; 
 

        switch(alignment) { 
 case 0: ; //left alighnment 
 HPDF_Page_TextOut (currentPage, currentX, currentY, 
curr_string); 

 break; 

 

 case 1: ; //right alighnment 
 textWidth = HPDF_Page_TextWidth(currentPage, 
curr_string); 

                move_right = (pageWidth - rmarg) - (textWidth + lmarg); 
                HPDF_Page_TextOut (currentPage, currentX + move_right, 
currentY, curr_string); 
                break; 
 

 case 2: ; //means center 
 textWidth = HPDF_Page_TextWidth(currentPage, 
curr_string); 

75 



                move_right = ((pageWidth - rmarg) - (textWidth + lmarg)) / 
2; 
                HPDF_Page_TextOut (currentPage, currentX + move_right, 
currentY, curr_string); 
                break; 
        } 
  

        free(curr_string); 
        currentY = currentY - 2 * f_real_h; 
        text = text + bytes; 
 

        //for the case the person writes stuff thats longer 
        //than the page can fit 
        if (currentY <= bmarg){ //default bottom marg is 25 is the bottom 
margin 

            HPDF_Page_EndText (currentPage); 
 

            HPDF_Page newPage; 
            newPage = HPDF_AddPage(pdf); 
 

            currentPage = newPage; 
 

            HPDF_Page_BeginText (currentPage); 
            HPDF_Page_SetFontAndSize (currentPage, currentFont, 
currentSize); 

  

            currentX = lmarg; //set it to the margin 
            currentY = pageHeight - tmarg; 
        } 
 

        if (last_line == 1){ 
            break; 
        } 
 

        if (strlen(text) <= bytes){ 
            last_line = 1; 
        } 
 

    } 
 

    HPDF_Page_EndText (currentPage); 
 

76 



    return 0; 
} 

 

int textOut(int x, int y, char * text){ 
// align: 0 means left, 1 means right, 2 means center 

 

    currentX = x; 
    currentY = y; 
 

    int page_limit = pageWidth - lmarg - rmarg; 
 

    int f_height_point = HPDF_Font_GetCapHeight(currentFont); 
    int f_real_h = f_height_point * currentSize / 1000.0; 
 

    int last_line = 0; 
 

    int pos = 0; 
 

    int textWidth = 0; 
    int move_right = 0; 
 

    HPDF_Page_SetFontAndSize(currentPage, currentFont, currentSize);  
    HPDF_Page_BeginText(currentPage); 
 

    for(;;){ 
 

 int bytes = HPDF_Page_MeasureText(currentPage, text, page_limit, 
HPDF_TRUE, NULL); 
        char *start = &text[pos]; 
        char *end = &text[pos + bytes]; 
        size_t length = end - start; 
  

        char *curr_string = (char *) malloc(length + 1); 
        memcpy(curr_string, start, length);  
        curr_string[length] = '\0'; 
 

        switch(alignment) { 
 case 0: ; //left alighnment 
 HPDF_Page_TextOut (currentPage, currentX, currentY, 
curr_string); 

 break; 

 

77 



 case 1: ; //right alighnment 
 textWidth = HPDF_Page_TextWidth(currentPage, 
curr_string); 

                move_right = (pageWidth - rmarg) - (textWidth + lmarg); 
                HPDF_Page_TextOut (currentPage, currentX + move_right, 
currentY, curr_string); 
                break; 
 

 case 2: ; //means center 
 textWidth = HPDF_Page_TextWidth(currentPage, 
curr_string); 

                move_right = ((pageWidth - rmarg) - (textWidth + lmarg)) / 
2; 
                HPDF_Page_TextOut (currentPage, currentX + move_right, 
currentY, curr_string); 
                break; 
        } 
  

        free(curr_string); 
        currentY = currentY - 2 * f_real_h; 
        text = text + bytes; 
 

        //for the case the person writes stuff thats longer 
        //than the page can fit 
        if (currentY <= bmarg){ //here 25 is the bottom margin 
            HPDF_Page_EndText (currentPage); 
 

            HPDF_Page newPage; 
            newPage = HPDF_AddPage(pdf); 
 

            currentPage = newPage; 
 

            HPDF_Page_BeginText (currentPage); 
            HPDF_Page_SetFontAndSize (currentPage, currentFont, 
currentSize); 

  

            currentX = lmarg; //set it to the margin 
            currentY = pageHeight - tmarg; 
        } 
 

        if (last_line == 1){ 
            break; 

78 



        } 
 

        if (strlen(text) <= bytes){ 
            last_line = 1; 
        } 
 

    } 
 

    HPDF_Page_EndText (currentPage); 
 

    return 0; 
 

} 

 

int moveTo(int x , int y){ 
//take page, x, and y position  
HPDF_REAL x_pos = x; //Harcoded for now 50 
HPDF_REAL y_pos = y; 
HPDF_Page_MoveTo(currentPage, x_pos, y_pos); 

 

return 0; 
} 

 

 

// FONT HANDLING FUNCTIONS  
 

int bold(){ 
 

/* changes current font to Helvetica Bold */ 
if ((currentFont == helvetica) || (currentFont == helveticaItalic)){ 

currentFont = helveticaBold; 
HPDF_Page_SetFontAndSize(currentPage, currentFont, 

currentSize); 

} 

 

/* changes current font to Times Bold */ 
if ((currentFont == times) || (currentFont == timesItalic)){ 

currentFont = timesBold; 
HPDF_Page_SetFontAndSize(currentPage, currentFont, 

currentSize); 

} 

 

79 



/* changes current font to Courier Bold */ 
if ((currentFont == courier) || (currentFont == courierItalic)){ 

currentFont = courierBold; 
HPDF_Page_SetFontAndSize(currentPage, currentFont, 

currentSize); 

} 

 

return 0; 
} 

 

int italic(){ 
 

/* changes current font to Helvetica Italic */ 
if ((currentFont == helvetica) || (currentFont == helveticaBold)){
 

currentFont = helveticaItalic; 
HPDF_Page_SetFontAndSize(currentPage, currentFont, 

currentSize); 

} 

 

/* changes current font to Times Italic */ 
if ((currentFont == times) || (currentFont == timesBold)){ 

currentFont = timesItalic; 
HPDF_Page_SetFontAndSize(currentPage, currentFont, 

currentSize); 

} 

 

/* changes current font to Courier Italic */ 
if ((currentFont == courier) || (currentFont == courierBold)){ 

currentFont = courierItalic; 
HPDF_Page_SetFontAndSize(currentPage, currentFont, 

currentSize); 

} 

 

return 0; 
} 

 

int regular(){ 
 

/* changes current font to Helvetica */  
if ((currentFont == helveticaItalic) || (currentFont == 

helveticaBold)){ 

80 



currentFont = helvetica; 
HPDF_Page_SetFontAndSize(currentPage, currentFont, 

currentSize); 

} 

 

/* changes current font to Times */ 
if ((currentFont == timesItalic) || (currentFont == timesBold)){ 

currentFont = times; 
HPDF_Page_SetFontAndSize(currentPage, currentFont, 

currentSize); 

} 

 

/* changes current font to Courier */ 
if ((currentFont == courierItalic) || (currentFont == courierBold)){ 

currentFont = courier; 
HPDF_Page_SetFontAndSize(currentPage, currentFont, 

currentSize); 

} 

 

return 0; 
} 

 

int changeColor( float red, float green, float blue){ 
 

/* sets the RGB values for the font */ 
HPDF_Page_SetRGBFill(currentPage, red, green, blue); 
return 0; 

}  

 

int changeFontSize (char * font, int newSize){ 
 

/* updates current font and size */ 
currentFont = HPDF_GetFont(pdf, font, NULL); 
currentSize = newSize; 

 

/* set new font and size to current page */ 
HPDF_Page_SetFontAndSize(currentPage, currentFont, currentSize); 
return 0; 

} 

 

 

// SHAPE + LINE HANDLING FUNCTIONS  

81 



 

int drawLine( int startX, int startY, int endX, int endY){ 
 

// Draws a line from (startX, startY) to (endX, endY) 
HPDF_Page_MoveTo(currentPage, startX, startY); 
HPDF_Page_LineTo(currentPage, endX, endY); 
HPDF_Page_Stroke(currentPage); 

 

return 0; 
} 

 

int drawRectangle( int lowerLeftX, int lowerLeftY, int rectangleWidth, int 
rectangleHeight){ 

 

/* draws a rectangle on dimentions (rectangleWidth x rectangleHeight)  
 with bottom left corner of rectangle at (lowerLeftX, lowerLeftY) */ 

 

HPDF_Page_Rectangle(currentPage, lowerLeftX, lowerLeftY, 
rectangleWidth, rectangleHeight); 

HPDF_Page_Stroke(currentPage); 

 

return 0; 
} 

 

 

 

int pageNumber(int x, int y){ 
 

char strPageNumber[100]; 
sprintf(strPageNumber, "%d", pnumber); 

 

    HPDF_Page_BeginText(currentPage); 
    HPDF_Page_TextOut(currentPage, x, y, strPageNumber); 
    HPDF_Page_EndText(currentPage); 
 

return 0; 
} 

 

 

// Getter Functions 
int getTextWidth(char *text){ 

return HPDF_Page_TextWidth(currentPage, text); 

82 



}  

 

int getPageHeight(){ 
 

return (int)pageHeight; 
}  

 

int getPageWidth(){ 
 

return (int)pageWidth; 
}  

 

int getCurrentX(){ 
    return (int)currentX; 
} 

 

int getCurrentY(){ 
    return (int)currentY; 
} 

 

// FUNCTIONS FOR STANDARD LIBRARY 
 

 

// Writes a centered single line on the current page 
int pageTitle(char* text){ 
 

HPDF_Page_SetFontAndSize (currentPage, currentFont, currentSize); 
tw = HPDF_Page_TextWidth (currentPage, text); 
HPDF_Page_BeginText (currentPage); 
HPDF_Page_TextOut (currentPage, (HPDF_Page_GetWidth(currentPage) - 

tw) / 2, HPDF_Page_GetHeight (currentPage) - currentSize, text); 
HPDF_Page_EndText (currentPage); 

 

return 0; 
 

} 

 

// Headings - changes the font size accordingly (based on HTML standards) 
int heading1(){ 

currentSize = 32; 
HPDF_Page_SetFontAndSize(currentPage, currentFont, currentSize); 
return 0; 

83 



} 

 

int heading2(){ 
currentSize = 24; 
HPDF_Page_SetFontAndSize(currentPage, currentFont, currentSize); 
return 0; 

} 

 

int heading3(){ 
currentSize = 18; 
HPDF_Page_SetFontAndSize(currentPage, currentFont, currentSize); 
return 0; 

} 

 

int heading4(){ 
currentSize = 16; 
HPDF_Page_SetFontAndSize(currentPage, currentFont, currentSize); 
return 0; 

} 

 

int heading5(){ 
currentSize = 14; 
HPDF_Page_SetFontAndSize(currentPage, currentFont, currentSize); 
return 0; 

} 

 

int heading6(){ 
currentSize = 12; 
HPDF_Page_SetFontAndSize(currentPage, currentFont, currentSize); 
return 0; 

} 

 

// Draws a horizantal in the current position 
int horizantalLine(){ 
 

HPDF_Page_MoveTo(currentPage, currentX, currentY); 
HPDF_Page_LineTo(currentPage, pageWidth, currentY); 
HPDF_Page_Stroke(currentPage); 

 

return 0; 
} 

 

84 



int table(int row, int column, int tableWidth, int tableHeight){ 
 

int horizontalMax; 
int verticalMax; 
int rowHeight; 
int columnWidth; 

 

int r; 
int c; 

 

int i; 
int j; 

 

r = row +1; 
c = column + 1; 

 

 

if (tableWidth > (pageWidth - currentX)){ 
horizontalMax = pageWidth - currentX; 

}  

else { 

horizontalMax = tableWidth; 

} 

 

if (tableHeight >  currentY){ 

verticalMax = currentY; 

}  

else { 

verticalMax = tableHeight; 

} 

 

rowHeight = verticalMax / row; 

columnWidth = horizontalMax / column; 

 

 

// Draw horizantal lines 

 for ( i = 0 ; i < r ; i++ ){ 

 

HPDF_Page_MoveTo(currentPage, currentX, currentY - (rowHeight * 

i)); 

HPDF_Page_LineTo(currentPage, horizontalMax, currentY - 

(rowHeight * i)); 

85 



HPDF_Page_Stroke(currentPage); 

 

 } 

  

// Draw vertical lines 

 for ( j = 1 ; j < c ; j++ ){ 

 

HPDF_Page_MoveTo(currentPage, currentX + (columnWidth * j), 

currentY); 

HPDF_Page_LineTo(currentPage, currentX + (columnWidth * j), 

currentY - verticalMax); 

HPDF_Page_Stroke(currentPage); 

 

 } 

 

 return 0; 

 

} 

 

 

 

 

 

 

 

int main(int argc){ 

 

    /* starts program 

 * creates a PDF document */ 

 

    pdf = HPDF_New(error_handler, NULL);  

 

    if (!pdf) { 

        printf ("error: cannot create PdfDoc object\n"); 

        return 1; 

    }  

 

 

    /* initializing fonts */ 

helvetica = HPDF_GetFont(pdf, "Helvetica", NULL); 

helveticaItalic = HPDF_GetFont(pdf, "Helvetica-Oblique", NULL); 

helveticaBold = HPDF_GetFont(pdf, "Helvetica-Bold", NULL); 

86 



 

times = HPDF_GetFont(pdf, "Times-Roman", NULL); 

timesItalic = HPDF_GetFont(pdf, "Times-Italic", NULL); 

timesBold = HPDF_GetFont(pdf, "Times-Bold", NULL); 

 

courier = HPDF_GetFont(pdf, "Courier", NULL); 

courierItalic = HPDF_GetFont(pdf, "Courier-Oblique", NULL); 

courierBold = HPDF_GetFont(pdf, "Courier-Bold", NULL); 

 

 

/* creates and adds new page to PDF */ 

    firstPage = HPDF_AddPage(pdf);  

    currentPage = firstPage; 

    pnumber = 1; 

 

 

    /* sets default color, size, and font */ 

    defaultFont = HPDF_GetFont (pdf, "Helvetica", NULL); 

    currentFont = defaultFont; 

    defaultSize = 12; 

    currentSize = defaultSize; 

    HPDF_Page_SetFontAndSize(firstPage, defaultFont, defaultSize);  

 

/* sets the default alignment to left*/ 

alignment = 0; 

 

    /* initializes value for pageHeight and pageWidth */ 

    pageHeight = HPDF_Page_GetHeight(firstPage); 

    pageWidth = HPDF_Page_GetWidth(firstPage); 

 

    /* sets line  stroke width */ 

    HPDF_Page_SetLineWidth(firstPage, 1); 

 

    /* set default margins to 25 */ 

    rmarg = 25; 

    lmarg = 25; 

    bmarg = 25; 

    tmarg = 25; 

 

 

/* sets  X and Y cooridintes to top left of page */ 

    currentX = lmarg; 

87 



    currentY = pageHeight - tmarg; 

 

    /* program starts */ 

    start(); 

 

 

    /* ends program  

     * saves file as 'text.pdf' */ 

    HPDF_SaveToFile (pdf, "text.pdf"); 

    HPDF_Free (pdf); 

 

    return 0; 

} 

 

#ifdef BUILD_TEST 

int main() 

{ 

    hello(0); 

    return 0; 

} 

#endif 

 
 
fail-add-page.tpp  

addPage(); 

 

fail-bold.tpp  

def void start(){ 
   bold("bold sentence");  
} 

 

 
fail-italic.tpp 

def void start(){  
   italic("italic sentence");  
} 

 

fail-regular.tpp  

def void start(){  

88 



   regular("regular sentence");  
} 

 

fail-start.tpp  

def void start(1){ 
} 

 

fail-text-out.tpp 

def void start(){  
   textOut(10,10,10);  
   textOut("Hello World");  
} 

 

fail-write.tpp  

def void start(){  
   write(123);  
} 

 

test-add-page.tpp 

def void start(){  
   write("Hello World!"); 
   addPage();  
   write("Hello Again World!!");  
} 

 

test-bold.tpp 

def void start(){  
   bold();  
   write("Bolding!");  
} 

 

test-bot-margin.tpp 

def void start(){  
  setBotMargin(100);  
  write("At school we were given an hour-long break for 
lunch each day. Because my mother didn't work and our 
apartment was so close by, I usually marched home with four or five other 
girls in tow, all of us talking nonstop, ready to sprawl on the kitchen 

89 



floor to play jacks and watch All My Children while my mom handed out 
sandwiches. This, for me, began a habit that has sustained me for life, 
keeping a close and high-spirited council of girlfriends safe harbor of 
female wisdom. In my lunch group, we dissected whatever had gone on that 
morning at school, any beefs we had with teachers, any assignments that 
struck us as useless. Our opinions were largely formed by committee. We 
idolized the Jackson 5 and weren't sure how we felt about the Osmonds. 
Watergate had happened, but none of us understood it. It seemed like a lot 
of old guys talking into microphones in Washington, D.C., which to us was 
just a faraway city filled with a lot of white buildings and white men. My 
mom, meanwhile, was plenty happy to serve us. It gave her an easy window 
into our world. As my friends and I ate and gossiped, she often stood by 
quietly, engaged in some household chore, not hiding the fact that she was 
taking in every word. In my family, with four of us packed into less than 
nine hundred square feet of living space, we'd never had any privacy 
anyway. It mattered only sometimes. Craig, who was suddenly interested in 
girls, had started taking his phone calls behind closed doors in the 
bathroom, the phone's curlicue cord stretched taut across the hallway from 
its wall-mounted base in the kitchen.As Chicago schools went, Bryn Mawr 
fell somewhere between a bad school and a good school. Racial and economic 
sorting in the South Shore neighborhood continued through the 1970s, 
meaning that the student population only grew blacker and poorer with each 
year. There was, for a time, a citywide integration movement to bus kids to 
new schools, but Bryn Mawr parents had successfully fought it off, arguing 
that the money was better spent improving the school itself. As a kid, I 
had no perspective on whether the facilities were run-down or whether it 
mattered that there were hardly any white kids left. The school ran from 
kindergarten all the way through eighth grade, which meant that by the time 
I had reached the upper grades, I knew every light switch, every chalkboard 
and cracked patch of hallway. I knew nearly every teacher and most of the 
kids. For me, Bryn Mawr was practically an extension of home. As I was 
entering seventh grade, the Chicago Defender, a weekly newspaper that was 
popular with African American readers, ran a vitriolic opinion piece that 
claimed Bryn Mawr had gone, in the span of a few years, from being one of 
the city's best public schools to a run- down slum governed by a ghetto 
mentality. Our school principal, Dr. Lavizzo, immediately hit back with a 
letter to the editor, defending his community of parents and students and 
deeming the newspaper piece an outrageous lie, which seems designed to 
incite only feelings of failure and flight.Dr. Lavizzo was a round, cheery 
man who had an Afro that puffed out on either side of his bald spot and who 
spent most of his time in an office near the building's front door. It's 
clear from his letter that he understood precisely what he was up against. 

90 



Failure is a feeling long before it becomes an actual result. It's 
vulnerability that breeds with self- doubt and then is escalated, often 
deliberately, by fear. Those feelings of failure he mentioned were 
everywhere already in my neighborhood, in the form of parents who couldn't 
get ahead financially, of kids who were starting to suspect that their 
lives would be no different, of families who watched their better-off 
neighbors leave for the suburbs or transfer their children to Catholic 
schools. There were predatory real estate agents roaming South Shore all 
the while, whispering to homeowners that they should sell before it was too 
late, that they'd help them get out while you still can. The inference 
being that failure was coming, that it was inevitable, that it had already 
half arrived. You could get caught up in the ruin or you could escape it. 
They used the word everyone was most afraid of ghetto dropping it like a 
lit match. My mother bought into none of this. She'd lived in South Shore 
for ten years already and would end up staying another forty. She didn't 
buy into fear mongering and at the same time seemed equally inoculated 
against any sort of pie-in-the-sky idealism. She was a 
straight-down-the-line realist, controlling what she could. At Bryn Mawr, 
she became one of the most active members of the PTA, helping raise funds 
for new classroom equipment, throwing appreciation dinners for the 
teachers, and lobbying for the creation of a special multigrade classroom 
that catered to higher-performing students. This last effort was the 
brainchild of Dr. Lavizzo, who'd gone to night school to get his PhD in 
education and had studied a new trend in grouping students by ability 
rather than by again essence, putting the brighter kids together so they 
could learn at a faster pace."); } 

 

 

test-center-wrap.tpp  

def void start(){  
   center();  
   write("At school we were given an hour-long break for lunch each day. 
Because my mother didn't work and our apartment was so close by, I usually 
marched home with four or five other girls in tow, all of us talking 
nonstop, ready to sprawl on the kitchen floor to play jacks and watch All 
My Children while my mom handed out sandwiches."); } 

 

 

 

 

 

91 



test-draw-line.tpp  

def void start(){  
   drawLine(25, 300, 70, 400);  
} 

 

 

test-for.tpp  

def void start(){  
   int x;  
   for(x = 0; x < 4; x = x + 1){ 
      write("Do re me");  
   }  

} 

 

 

test-get-bytes.tpp 

def void start(){  
   int x;  
   x = getTextBytes("Hello World", 25, 25);  
   /* Hello World is < page_limit so should return bytes in     Hello World 
*/  

 

   if(x == 11){ 
      write("Correct Bytes to fit on Page"); } 
   else{  
      write("Incorrect Bytes to fit on Page");  
   }  

} 

 

test-get-low-height.tpp 

def void start(){  
   int x;  
   changeFontSize("Helvetica", 12); 
   x = getCapHeight();  
   if(x == 8){  
     write("Correct Height"); } 
   else{  
      write("Incorrect Height");  
   }  

} 

92 



 

test-get-cap-height.tpp 

def void start(){  
   int x;  
   changeFontSize("Helvetica", 12); 
   x = getCapHeight();  
   if(x == 8){  
      write("Correct Height");  
   }else{  

      write("Incorrect Height");  
   }  

} 

 

test-heading.tpp 

def void start(){  
   heading2();  
   write("Header");  
} 

 

test-hello.tpp 

def void start(){  
   write("Hello World!");  
} 

 

 

test-italic.tpp 

def void start(){  
   italic();  
   write("Italiscing!");  
} 

 

test-left-margin.tpp 

def void start(){  
   setLMargin(100);  
   write("At school we were given an hour-long break for lunch each day. 
Because my mother didn't work and our apartment was so close by, I usually 
marched home with four or five other girls in tow, all of us talking 
nonstop, ready to sprawl on the kitchen floor to play jacks and watch All 
My Children while my mom handed out sandwiches. This, for me, began a habit 

93 



that has sustained me for life, keeping a close and high-spirited council 
of girlfriends safe harbor of female wisdom. In my lunch group, we 
dissected whatever had gone on that morning at school, any beefs we had 
with teachers, any assignments that struck us as useless. Our opinions were 
largely formed by committee. We idolized the Jackson 5 and weren't sure how 
we felt about the Osmonds. Watergate had happened, but none of us 
understood it. It seemed like a lot of old guys talking into microphones in 
Washington, D.C., which to us was just a faraway city filled with a lot of 
white buildings and white men. My mom, meanwhile, was plenty happy to serve 
us. It gave her an easy window into our world. As my friends and I ate and 
gossiped, she often stood by quietly, engaged in some household chore, not 
hiding the fact that she was taking in every word. In my family, with four 
of us packed into less than nine hundred square feet of living space, we'd 
never had any privacy anyway. It mattered only sometimes. Craig, who was 
suddenly interested in girls, had started taking his phone calls behind 
closed doors in the bathroom, the phone's curlicue cord stretched taut 
across the hallway from its wall-mounted base in the kitchen.As Chicago 
schools went, Bryn Mawr fell somewhere between a bad school and a good 
school. Racial and economic sorting in the South Shore neighborhood 
continued through the 1970s, meaning that the student population only grew 
blacker and poorer with each year. There was, for a time, a citywide 
integration movement to bus kids to new schools, but Bryn Mawr parents had 
successfully fought it off, arguing that the money was better spent 
improving the school itself. As a kid, I had no perspective on whether the 
facilities were run-down or whether it mattered that there were hardly any 
white kids left. The school ran from kindergarten all the way through 
eighth grade, which meant that by the time I had reached the upper grades, 
I knew every light switch, every chalkboard and cracked patch of hallway. I 
knew nearly every teacher and most of the kids. For me, Bryn Mawr was 
practically an extension of home. As I was entering seventh grade, the 
Chicago Defender, a weekly newspaper that was popular with African American 
readers, ran a vitriolic opinion piece that claimed Bryn Mawr had gone, in 
the span of a few years, from being one of the city's best public schools 
to a run- down slum governed by a ghetto mentality. Our school principal, 
Dr. Lavizzo, immediately hit back with a letter to the editor, defending 
his community of parents and students and deeming the newspaper piece an 
outrageous lie, which seems designed to incite only feelings of failure and 
flight.Dr. Lavizzo was a round, cheery man who had an Afro that puffed out 
on either side of his bald spot and who spent most of his time in an office 
near the building's front door. It's clear from his letter that he 
understood precisely what he was up against. Failure is a feeling long 
before it becomes an actual result. It's vulnerability that breeds with 

94 



self- doubt and then is escalated, often deliberately, by fear. Those 
feelings of failure he mentioned were everywhere already in my 
neighborhood, in the form of parents who couldn't get ahead financially, of 
kids who were starting to suspect that their lives would be no different, 
of families who watched their better-off neighbors leave for the suburbs or 
transfer their children to Catholic schools. There were predatory real 
estate agents roaming South Shore all the while, whispering to homeowners 
that they should sell before it was too late, that they'd help them get out 
while you still can. The inference being that failure was coming, that it 
was inevitable, that it had already half arrived. You could get caught up 
in the ruin or you could escape it. They used the word everyone was most 
afraid of ghetto dropping it like a lit match. My mother bought into none 
of this. She'd lived in South Shore for ten years already and would end up 
staying another forty. She didn't buy into fear mongering and at the same 
time seemed equally inoculated against any sort of pie-in-the-sky idealism. 
She was a straight-down-the-line realist, controlling what she could. At 
Bryn Mawr, she became one of the most active members of the PTA, helping 
raise funds for new classroom equipment, throwing appreciation dinners for 
the teachers, and lobbying for the creation of a special multigrade 
classroom that catered to higher-performing students. This last effort was 
the brainchild of Dr. Lavizzo, who'd gone to night school to get his PhD in 
education and had studied a new trend in grouping students by ability 
rather than by again essence, putting the brighter kids together so they 
could learn at a faster pace.");  
} 

 

test-page-number.tpp 

def void start(){  
   pageNumber(25, 300);  
} 

 

test-page-title.tpp  

def void start(){  
   pageTitle("My name is textPlusPlus");  
} 

 

test-rect.tpp  

def void start(){  
   drawRectangle(25, 300, 100, 100);  
} 

95 



 

test-regular.tpp  

def void start(){  
   regular();  
   write("Regular!");  

} 

 

 

 

test-right-margin.tpp 

def void start(){  
   setRMargin(100);  
   write("At school we were given an hour-long break for lunch each day. 
Because my mother didn't work and our apartment was so close by, I usually 
marched home with four or five other girls in tow, all of us talking 
nonstop, ready to sprawl on the kitchen floor to play jacks and watch All 
My Children while my mom handed out sandwiches. This, for me, began a habit 
that has sustained me for life, keeping a close and high-spirited council 
of girlfriends safe harbor of female wisdom. In my lunch group, we 
dissected whatever had gone on that morning at school, any beefs we had 
with teachers, any assignments that struck us as useless. Our opinions were 
largely formed by committee. We idolized the Jackson 5 and weren't sure how 
we felt about the Osmonds. Watergate had happened, but none of us 
understood it. It seemed like a lot of old guys talking into microphones in 
Washington, D.C., which to us was just a faraway city filled with a lot of 
white buildings and white men. My mom, meanwhile, was plenty happy to serve 
us. It gave her an easy window into our world. As my friends and I ate and 
gossiped, she often stood by quietly, engaged in some household chore, not 
hiding the fact that she was taking in every word. In my family, with four 
of us packed into less than nine hundred square feet of living space, we'd 
never had any privacy anyway. It mattered only sometimes. Craig, who was 
suddenly interested in girls, had started taking his phone calls behind 
closed doors in the bathroom, the phone's curlicue cord stretched taut 
across the hallway from its wall-mounted base in the kitchen.As Chicago 
schools went, Bryn Mawr fell somewhere between a bad school and a good 
school. Racial and economic sorting in the South Shore neighborhood 
continued through the 1970s, meaning that the student population only grew 
blacker and poorer with each year. There was, for a time, a citywide 
integration movement to bus kids to new schools, but Bryn Mawr parents had 
successfully fought it off, arguing that the money was better spent 
improving the school itself. As a kid, I had no perspective on whether the 

96 



facilities were run-down or whether it mattered that there were hardly any 
white kids left. The school ran from kindergarten all the way through 
eighth grade, which meant that by the time I had reached the upper grades, 
I knew every light switch, every chalkboard and cracked patch of hallway. I 
knew nearly every teacher and most of the kids. For me, Bryn Mawr was 
practically an extension of home. As I was entering seventh grade, the 
Chicago Defender, a weekly newspaper that was popular with African American 
readers, ran a vitriolic opinion piece that claimed Bryn Mawr had gone, in 
the span of a few years, from being one of the city's best public schools 
to a run- down slum governed by a ghetto mentality. Our school principal, 
Dr. Lavizzo, immediately hit back with a letter to the editor, defending 
his community of parents and students and deeming the newspaper piece an 
outrageous lie, which seems designed to incite only feelings of failure and 
flight.Dr. Lavizzo was a round, cheery man who had an Afro that puffed out 
on either side of his bald spot and who spent most of his time in an office 
near the building's front door. It's clear from his letter that he 
understood precisely what he was up against. Failure is a feeling long 
before it becomes an actual result. It's vulnerability that breeds with 
self- doubt and then is escalated, often deliberately, by fear. Those 
feelings of failure he mentioned were everywhere already in my 
neighborhood, in the form of parents who couldn't get ahead financially, of 
kids who were starting to suspect that their lives would be no different, 
of families who watched their better-off neighbors leave for the suburbs or 
transfer their children to Catholic schools. There were predatory real 
estate agents roaming South Shore all the while, whispering to homeowners 
that they should sell before it was too late, that they'd help them get out 
while you still can. The inference being that failure was coming, that it 
was inevitable, that it had already half arrived. You could get caught up 
in the ruin or you could escape it. They used the word everyone was most 
afraid of ghetto dropping it like a lit match. My mother bought into none 
of this. She'd lived in South Shore for ten years already and would end up 
staying another forty. She didn't buy into fear mongering and at the same 
time seemed equally inoculated against any sort of pie-in-the-sky idealism. 
She was a straight-down-the-line realist, controlling what she could. At 
Bryn Mawr, she became one of the most active members of the PTA, helping 
raise funds for new classroom equipment, throwing appreciation dinners for 
the teachers, and lobbying for the creation of a special multigrade 
classroom that catered to higher-performing students. This last effort was 
the brainchild of Dr. Lavizzo, who'd gone to night school to get his PhD in 
education and had studied a new trend in grouping students by ability 
rather than by again essence, putting the brighter kids together so they 
could learn at a faster pace.");  

97 



} 

 

test-right-wrap.tpp 

def void start(){  
   right();  
   write("At school we were given an hour-long break for lunch each day. 
Because my mother didn't work and our apartment was so close by, I usually 
marched home with four or five other girls in tow, all of us talking 
nonstop, ready to sprawl on the kitchen floor to play jacks and watch All 
My Children while my mom handed out sandwiches.");  
} 

 

test-text-out.tpp 

def void start(){  
   int x;  
   int y;  
   x = 10;  
   y = 50;  
   textOut(x, y, "Hello World!");  
} 

 

test-top-margin.tpp 

def void start(){  
   setTopMargin(100);  

   write("At school we were given an hour-long break for lunch each day. 
Because my mother didn't work and our apartment was so close by, I usually 
marched home with four or five other girls in tow, all of us talking 
nonstop, ready to sprawl on the kitchen floor to play jacks and watch All 
My Children while my mom handed out sandwiches. This, for me, began a habit 
that has sustained me for life, keeping a close and high-spirited council 
of girlfriends safe harbor of female wisdom. In my lunch group, we 
dissected whatever had gone on that morning at school, any beefs we had 
with teachers, any assignments that struck us as useless. Our opinions were 
largely formed by committee. We idolized the Jackson 5 and weren't sure how 
we felt about the Osmonds. Watergate had happened, but none of us 
understood it. It seemed like a lot of old guys talking into microphones in 
Washington, D.C., which to us was just a faraway city filled with a lot of 
white buildings and white men. My mom, meanwhile, was plenty happy to serve 
us. It gave her an easy window into our world. As my friends and I ate and 
gossiped, she often stood by quietly, engaged in some household chore, not 

98 



hiding the fact that she was taking in every word. In my family, with four 
of us packed into less than nine hundred square feet of living space, we'd 
never had any privacy anyway. It mattered only sometimes. Craig, who was 
suddenly interested in girls, had started taking his phone calls behind 
closed doors in the bathroom, the phone's curlicue cord stretched taut 
across the hallway from its wall-mounted base in the kitchen.As Chicago 
schools went, Bryn Mawr fell somewhere between a bad school and a good 
school. Racial and economic sorting in the South Shore neighborhood 
continued through the 1970s, meaning that the student population only grew 
blacker and poorer with each year. There was, for a time, a citywide 
integration movement to bus kids to new schools, but Bryn Mawr parents had 
successfully fought it off, arguing that the money was better spent 
improving the school itself. As a kid, I had no perspective on whether the 
facilities were run-down or whether it mattered that there were hardly any 
white kids left. The school ran from kindergarten all the way through 
eighth grade, which meant that by the time I had reached the upper grades, 
I knew every light switch, every chalkboard and cracked patch of hallway. I 
knew nearly every teacher and most of the kids. For me, Bryn Mawr was 
practically an extension of home. As I was entering seventh grade, the 
Chicago Defender, a weekly newspaper that was popular with African American 
readers, ran a vitriolic opinion piece that claimed Bryn Mawr had gone, in 
the span of a few years, from being one of the city's best public schools 
to a run- down slum governed by a ghetto mentality. Our school principal, 
Dr. Lavizzo, immediately hit back with a letter to the editor, defending 
his community of parents and students and deeming the newspaper piece an 
outrageous lie, which seems designed to incite only feelings of failure and 
flight.Dr. Lavizzo was a round, cheery man who had an Afro that puffed out 
on either side of his bald spot and who spent most of his time in an office 
near the building's front door. It's clear from his letter that he 
understood precisely what he was up against. Failure is a feeling long 
before it becomes an actual result. It's vulnerability that breeds with 
self- doubt and then is escalated, often deliberately, by fear. Those 
feelings of failure he mentioned were everywhere already in my 
neighborhood, in the form of parents who couldn't get ahead financially, of 
kids who were starting to suspect that their lives would be no different, 
of families who watched their better-off neighbors leave for the suburbs or 
transfer their children to Catholic schools. There were predatory real 
estate agents roaming South Shore all the while, whispering to homeowners 
that they should sell before it was too late, that they'd help them get out 
while you still can. The inference being that failure was coming, that it 
was inevitable, that it had already half arrived. You could get caught up 
in the ruin or you could escape it. They used the word everyone was most 

99 



afraid of ghetto dropping it like a lit match. My mother bought into none 
of this. She'd lived in South Shore for ten years already and would end up 
staying another forty. She didn't buy into fear mongering and at the same 
time seemed equally inoculated against any sort of pie-in-the-sky idealism. 
She was a straight-down-the-line realist, controlling what she could. At 
Bryn Mawr, she became one of the most active members of the PTA, helping 
raise funds for new classroom equipment, throwing appreciation dinners for 
the teachers, and lobbying for the creation of a special multigrade 
classroom that catered to higher-performing students. This last effort was 
the brainchild of Dr. Lavizzo, who'd gone to night school to get his PhD in 
education and had studied a new trend in grouping students by ability 
rather than by again essence, putting the brighter kids together so they 
could learn at a faster pace.");  
} 

 

test-while.tpp 

def void start(){  
   int x;  
   x = 0;  
   while(x < 10){  
      write("Falalalala lala la la");  
      x = x + 1;  
   }  

} 

 

test-wrap.tpp 

def void start(){  
   write("At school we were given an hour-long break for lunch each day. 
Because my mother didn't work and our apartment was so close by, I usually 
marched home with four or five other girls in tow, all of us talking 
nonstop, ready to sprawl on the kitchen floor to play jacks and watch All 
My Children while my mom handed out sandwiches.");  
} 

 

 

 

 

 

 

 

 

100 



 

 

101 


