
bawk
“bad awk”: a powerful text processing language

Ashley An, Christine Hsu,
Melanie Sawyer, Victoria Yang
PLT Fall 2018

Motivation

● Robust text processing language with intuitive C-like syntax

● Make it easy to analyze, read, and write to files

● Data-driven

● More verbose than awk

● Abstract away boilerplate code that repeatedly executes same actions

over lines of a file

● Addition of mutable multidimensional arrays, easily mutable

configuration variables

Tutorial – Run a bawk Program

./bawk.sh hello.bawk input.txt
./bawk.sh [.bawk file] [input file]

hello.bawk
BEGIN {}
LOOP {

print($0);
}
END {}

input.txt
hello
world

Tutorial – Program Structure
BEGIN {

function declarations and global variable declarations
}
LOOP {

loop over each line of a file; execute these statements for each
line
}
END {

execute these statements after we’re done with the file
}
CONFIG { # optional

set the field (word) separator & record (line) separator
}

Tutorial

Types
int a;
bool b;
string s;
rgx r;
string[] s_arr;
int[][][][][][] arr;

Operators
field access ($)
string concatenation (&)
rgx, string, boolean comparison
integer operations
logical operations
array access

Tutorial
Functions & Control Flow

int function (int a, int b) {
while (a != b) {

if (a > b) {
a = a - b;

}
else {

b = b - a;
}

}
return a;

}

Control Flow

int i = 0;
arr = [1, 2, 3, 4, 5];

for (i=0; i < 10; i++) {
print(int_to_string(arr[i]));

}

● “if” statements do not require
matching “else” blocks

Tutorial
Other Special Keywords

● NF – Number of Fields

● RS – Record Separator

● FS – Field Separator

Built-in Functions

● type conversion functions

e.g. int_to_string

● array functions

insert, delete, contains,
length, index_of

● print

● nprint

Key Features – File Looping

LOOP {

everything in here is executed

once for each line of the file

}

● Continues looping until entire file is

read through

● CONFIG block sets how the file will be

looped through

○ Line separators are set with “RS”

○ Field separators are set with “FS”

Key Features – Field Access ($)

Access a specified field of a line

Set in CONFIG block:
● FS = Field Separator

○ FS = “,”
● RS = Record Separator

○ RS = “\r\n”

Sample Line: Another layer of indirection

print($0):
>> Another layer of indirection

print($1):
>> Another

print($2):
>> layer

Key Features – Infinitely nested mutable arrays

int [][][] m;

m = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]];

m[0][0][0] = 0; # m = [[[0, 2], [3, 4]], [[5, 6], [7, 8]]];

delete(m, 1); # m = [[[0, 2], [3, 4]]]

insert(m, 1, [[9, 10], [11, 12]]); # m= [[[0, 2], [3, 4]], [[9, 10], [11, 12]]];

Key Features – Regex

● POSIX regex pattern matching with wrapper functions
● Allows text filtering and expression comparisons

pattern = ‘i .[a-zA-Z]* plt’;

if (feeling ~ pattern) {

print(feeling);
}

would match on “I love plt”, “I hate plt”, “I despise plt”, “I fear plt”, “I enjoy plt”

would not match on “I plt”, “I do not love plt”

System Architecture

● C libraries implement arrays, built-in conversion functions, regex, and main function

System Architecture

Testing

● Pass and fail tests for each stage of development
○ Lexer, parser, semantic checking, code generation

● Aim to pinpoint every feature of our language
● Check that the correct output / error messages are being generated
● Range from small tests (ex: basic operations) to larger tests (ex: file reading)
● Use bawk.sh [./bawk file] [input file] to run single test
● Use testall.sh to run all tests -> to automate running over 150 tests

Testing

vhjvhlvh

Demo

./bawk.sh demo/demo.bawk demo/shuffled.txt

