©

UNI-corn

A Java-like hardware description language

Agenda

Introduction (Gael)

Language Features (Dan)

Compiler Architecture (Lalo/Adiza)
Project Plan (Gael)

Testing (Maryam)

Lessons Learned (All)

Demo (Lalo)

Introduction

Team Members

o?
1 1

project manager sys. architec

maryam

@C“%

Background

What: A simple hardware description language (HDL)
Why:

e Great HDL languages out there
e Syntax unfamiliar for CS students starting in Java/C++

e UNI-corn has Java-like syntax
Um...why the name?

e Only one data type - binary strings

Language Features

Building Blocks

Buses

id = (0 | 1)xb = e.g. a = 101b;
Gates

and, or, xor, not, nand, nor, xnor,
Modules

modID(&€ | in1<N>...inM<N>) {

e | exprl;...;exprK;
out: & | exprl;...;exprK;

Registers
id := bus *initial busx;
Loops

for i in N { expro;...

;exprk; };

Combinational Logic

fullAdder (a<1>, b<1>, cin<1>) {

sum = (a xor b) xor cin;
cout = (sum and cin) or (a and b);
out: sum<l>, cout<l>;
}
main() {
a = 1b;
b = 1b;
c = 0Ob;
print s : fullAdder(a,b,c)[0];
out:;

)

A

em

carryin|®

(®)sum

arryOut

Sequential Logic

shift4Reg(a<4>) {

bl := a *0000b*;
b2 := bl *0000b*;
b3 := b2 *0000bx*;
b4 := b3 *0000bx*;

out: bl<4>, b2<4>, b3<4>, b<4>;

}

main() {
a = 1000b;
print s : shift4Reg(a);
out:;

CLK

Derd

Bringing It All Together

main() {
a = 1011010b;
b = 0011101b;
m = modA(a,b) [sum];

print m: m;

out:;

fA(a, b, cIn) {

axb a xor bj;

sum = axb xor carrylIn;

carry = (axb and cIn) or
(a and b);

out: sum, carry,

modA (a<n>,b<n>) {

c[0] = 0b;

for (i from © to n-1) {
sum[i] = fA(a[i],
b[i],c[i]) [sum];
c[i+1] = fA(al[i],
b[i]l,c[i]) [carryl;

+s

out:sum<n>;

Compiler Architecture

Overview

ascii characters

Tokens

'

Parser

AST1—>

Semantic

Checker

AST;

Harden

S
Fill
Modules

——

SAST

Elaboration Process

oD

collapse

ey

Elaborate

N
Simplify
Lines

PR

Indexing

]

Registers

R

LLVM IR

Sorted Netlist

Collapse

—_—

Flags

-a Print the AST

-m Print the modfilled AST

-h Print the hardened AST

-s Print the SAST

-f Print Netlist with collapsed for loops
-n Print Netlist

-sl Print Netlist with Simplified Lines

-i Print Netlist with collapsed inidices
-n2 Print MoreSimplified Netlist

-t Print Topsorted Netlist

-io Print Topsorted Netlist after IO stuff
-1 Print the generated LLVM IR

~c Check and print the generated LLVM IR (default)

Fancy / Highlights from Compiler

Generics and loops

main(b) {

modA(101b) ;
out:c;

modA (a<n>) {
for(i to 4){
b[4] = alil;
s

out:;

C-linking

extern b_0;
extern c_0;

int main() {
tick();
b_0 = c_0;
tick();

Features To Come:

—~Multi-file compilation

Project Plan

Timelines and Owners

Many details
excluded
here, included
in Final Report

DELIVERABLE
KEY MILSETONES
Proposal

LRM

Hello World
COMPILER

Scanner.mll

Modfill.ml

Semant.ml

Elaborate.ml

Topsort.ml

Codegen.ml

Test Suite

SUBMIT COMPILER
FINAL REPORT
Final Report

Final Presentation

Demo

LEAD

Gael
Dan, Maryam
Lalo
Gael

Lalo

Lalo

Lalo

Lalo

Lalo, Maryam

Maryam

Gael
Gael

Lalo

CONTRIBUTOR(S)

Rest

Rest

Gael, Maryam
Adiza, Dan

Maryam

N/A

Maryam
Gael

Gael

Gael

Dan
N/A

Maryam

COLLABORATORS

N/A
N/A
N/A

N/A

Gael

N/A

Gael

Dan

N/A

Lalo

Adiza
N/A

N/A

FEATURES

N/A
N/A
N/A

- syntax error checking

- basic modules
- mutuall rec. loops

- variable declaration (scope)
- type matching
- topologically sorted gates

Conjunction with above features
deadlines

- break stuff (see plan)

DEADLINE

Sept. 19
Oct. 15
Nov. 14

Oct 01

Oct 27

Oct 29

Dec 03
Dec 10

Conjunction with above
feature deadlines

Same as above

Dec 19

Dec 03, 10, 12
Dec 10, 12

Dec 19

Commit History Highlights

12
10

o N & O @

Oct 07 Oct 14 Oct 21 Oct 28 Nov 04 Nov 11 Nov 18 Nov 25 Dec 02 Dec 09 Dec 16

Lalo: 84 | Gael: 47 | Maryam: 42 | Dan: 12 | Adiza: 12

Testing

Plan and Strategy

Scanner & Parser (Pretty Print)
Testing the pipeline process
Unit Testing

Errors in Complicated Program
Integration Testing

Automated Testing

Unit Testing Strategy (per feature)

. /testCases
. /comments . /indexing ./registers
. /creatingBuses . /keywords ./programs
./EOFTerminators ./Main
. /evaluatingGates . /overloading
. /gatePrecedence ./printFunc

Results and Learnings

e Importance of Unit Testing
e Neigh!

e Double Negation

Lessons Learned

Lessons Learned

Gael: Being strategic about workflow from the start is key
Adiza: I learned about software development in a team setting.

Maryam: Time is not your friend in this class. Plan your every move!
Start early! Use all the available resources to you

Lalo: Complexity breeds chaos. Work incrementally.

Dan: Teamwork and good communication are intangible yet valuable
skills that can greatly help the development process

