
A contract fulfillment language

Contents
1. Motivation and Background
2. Implementation Details
3. How it works
4. Development Strategy and learnings
5. Demo

Motivation and Background
● Scolang is a “Smart Contracts” based language, this means that a listener

gets fulfilled and it triggers an action

● Automate all the repetitive “IFTTT” tasks that users might have
○ Versatile use cases - IoT, Networking, Load balancing…

● Tried writing an “Alexa Skill” to turn on a phillips hue light and play some
music = world of pain.

Implementation Details
1. Programming Paradigm
2. Data Types
3. Key inbuilt functions

Programming Paradigm

Listener ActionExit
Reject Resolve

Contract

Declare multiple contracts in one script and they’ll all be executed concurrently!

Listener b = { println (“I’m a listener!”); resolve; };

Action a = { println(“I’m an action!”); };

a -> b; /* This is a contract */

Data Types

Integer 32 bit signed integer

Boolean 1-bit Boolean variable

Float 64-bit Float

String 8 bit pointer

Standard Data Types

Scolang Types

Listener Function Pointer

Action Function Pointer

Contract Integer

Key Inbuilt Functions

1. Webhook(port_number) : Opens a webhook at that port that’s waiting for an input

2. Query(query_details) : Send a query to an endpoint of your choosing

3. system_call(systemcall) : Execute cmd commands on your system

Purpose - Promoting IoT use case and versatility by allowing powerful contracts by having very open

ended functions.

Specifications
1. Statically scoped

2. Declarations must precede use/initialisation

3. Static types

How it works : Under the hood

1. Listeners are essentially functions waiting to either die or return

2. Actions are also essentially functions

3. Whenever a contract is encountered, the listener-action pair is bound and
forked into its own program, parent program returns to create more
children.

During codegen, the compiler walks through the AST, casts actions/listeners to
functions and then prepares the binding by calling a C-function we wrote that
manipulates the pointers to execute sequentially

Compiler Architecture

 LLVM IRCodegenSemantParserscannersource.sav

Ocaml Compiler

IR to Executable

LLVM IR

Std Lib
Executable

Tokens AST SAST

Development Strategy
1. Testing in Travis CI + Shared VM for inspection
2. Environment Preservation using Docker
3. Written in OCaml, Python, C
4. Communication and Task Management via Trello and Messenger

Timeline

B-Weekly sprints before due dates

Learnings
1. Start early and use the regression testing suite as much as possible
2. Don’t waste time on things that are not the compiler(wasted a lot of time on travis CI)
3. Be less ambitious (We originally wanted to have algebraic expressions across listeners and

chaining)
4. Team work makes the dream work - contribution % was near 20% for all 5 members.

Demo
- Solving the problem that initiated this entire project

- Writing an alexa skill to turn on the lights and play some music.

Sushanth Raman All rounder

Jackson Chen Language Guru

Sambhav Anand Architecture

Varun Varahabhotla Project Manager

Kanishk Vashisht Testing incharge

