GaE

Graphs Ain’t Easy

Andrew Jones (adj2129)
Kevin Zeng (ksz2109)
Samara Nebel (srn2134)

Introduction

Graphs

e Complex data structure
e Ubiquitous and fundamental

Goal:

e We want to provide the end user a
streamlined interface to easily
write programs that read and
parse graphs.

o,
Karl

o
JoniAryn
Baetan
o
Rvtegar
&
? vierys
S\
Lo
N 7 _picole ' Gomn
3 Eia o
SN en %
R c Elara
o Podrek Ohern
e s\ Kevishas
E / S Chataya
seladhor ¢) Walto® JofreMargaenyan Amory
Shireen Ay Gl Riligmgandey ——tWosla Grsgor
af . » - Bronn
e
Genry i Ll
.
North Dakota Maine
« |
2 Montana 2
Washington 1 | Minnesota N
| | D . New Hampshire
Alaska | Soutt Dz Nisconsin - ®
I am— | South Dafota | Wisconsiny By Verpat
- Oregon gtk | / X
i/ \ « \
Hevai | Wyoming_ | & / .
L/ X / | Aoway | [Massachusetts
\/ Névada~_ L/ | o T . |
et | Nebragka | R indiana Newvorky | e
Califomia | Vah n, | | Ohic vl opo son
N \ | | 4
\ & | Pennayiania Comnecticut
. Wy | \New Jersey
Arizona._ | Karsas"§50-1" Kentuckyjest Girginia \ |

"\
New Mexicadkishoma, A
\ g [N\

o =L e
Arkansasenrmesee Vitginia ManiaDelaware

o 7 sgee '

Texas [

[.
w4« | North Carolina
LouisianaMississippi
 etrgaSouth Caro
Llabamadeorgia South Carolina
Network Gra|
\ According to Adjacency
. Image Generated using NodeXL
Florida Fruchterman-Reingold Layout

h of U.S. States

Bae: Come over

Dijkstra: But there are so many routes to take and

I don't know which one's the fastest

Bae: My parents aren't home
Dijkstra:

" ; g
Dijkstra's algorithm

Graph search algorithm

Not to be confused with Dykstra's projection algorithm.

Dijkstra's algorithm is an algorithm for finding the shortest paths between
nodes in a graph, which may represent, for example, road networks. It was
conceived by computer scientist Edsger W. Dijkstra in 1956 and published
three years later[112]

The algorithm exists in many variants; Dijkstra's original variant found the
shortest path between two nodes,”?) but a more common variant fixes a

single node as the "source” node and finds shortest paths from the source
to all other nodes in the graph, producing a shortest-path tree.

Architecture

Scanner Codegen Linker

Input: source program Input: tokens Input: ast Input: sast Input: LLVM IR and C
Library

Output: tokens Output: ast Output: sast Output: LLVM IR
Output: executable

Data Types

int 32-bit signed integer

double 32-bit floating point number

bool Boolean - 0 == false, 1 == true

char ASCII character

string An array of ASCII characters

array A list that can store elements of a single type

map<k, v> Variable-size mapping that associates key of type k to value of type v

graph<n, e>

Weighted and directed graph with nodes of type n and edge weights of type e

edge<n, w>

A three-tuple consisting of source node, destination node, and edge weight where n
is the node type and w is the edge weight type

struct

A group of data elements grouped together under one name as a type definition

Base types

Container
types

Keywords

func int double
bool char string
map graph edge
struct in if

else for while

return true false

Operators

Integer operators (add, subtract, multiply, divide, mod, increment, decrement)

Double operators (add, subtract, multiply, divide, mod)

Boolean logic operators (or, and, not)

Relational and equality operators (less than, greater than, less than/equal, greater
than/equal, equal, not equal)

Assignment operators

String operator (concatenation)

Array and map operator (index)

Array, map, and graph operator (in)

Variable Declaration and Instantiation

Variables must be declared before they are instantiated Container types (array, map, and graph) must be
instantiated with either a literal or their respective

int x; ~init () function

x = 0y

X = 5; int arrl[];

int arr2[];
NOTE: formally, : = is the assignment operator and = is arrl := [1, 2, 31;
the re-assign operator, but in practice using either arr2 := arr init();
operator will exhibit the same outcomes. append (arr2, 1);

Control Flow (if, for, while)

/* this will print 2 */

For:
int 1i;

for i := 0; 1 < 10; 1i++ {

printi (i) ;

/* this will print 0-9 */

While

int x;

x = 0;

while (x != 10) {
printi (x);

X++;

/* this will print 0-9

*/

Functions

A function declaration has the form: Example:
func func name (parameter-list) return-type
func average of two(int x, int y) int ({

Parameter list: A series of variable types separated by commas

(can be empty) int tmp;
Return type must be specified. tmp := (x + y) / 2;
Inside the function: return tmp;

e Variables must be declared at the beginning
e There must be a return statement at the end which returns }
the corresponding return type

Every program must have a main function:

func main() int {}

Arrays and Maps

Arrays:
string[] arr;
arr := [Yhello”, “world”]
Types:
e Primitives: int, double, string, char, bool

e Structs
e Edges

Maps:

map<string,

my map := [“zero”: O,

Key Types:

string, int, char, struct

Value Types:

Primitives

A\

int> my map;

one

I8N
.

1]

Array and Map Built-in Functions

Arrays:

lena (arr) Returns length of the array.

arr[index] Returns element from the array.
arr[index] = wvalue Utilizes the index
operator to change the value stored at the index to
the new value.

append (arr, value) Appends the value to
the end of the array.

arr init () Initializes an empty array.

el in arr Returns boolean for whether arr

contains el

lenm (my map) Returns length of the map.
my map [key] Returns value corresponding to
the stored key-value pair.

my map[key] = value Utilizes the index
operator to change the value corresponding to the
key. If the key does not exist, this will add a new
key-value pair to the map.

map init () Initializes an empty map.
getKeys (my map) Returns an array of the
keys from the map.

key in my map Returns boolean for
whether key is akey inmy map

Declared at the beginning of the program in the global

scope. Example:
struct My struct {
value: int,

name: string

Struct attributes may only be base types, i.e. char, bool,
int, double, and string.

Variables of this struct type can then be assigned as
follows:

My struct wvar;

var:= { value: 1, name: “hello” };
Individual fields can be accessed as well:

prints (var.name) ;

/* this will print “hello” */

Edges

Edge: a three-tuple of structs, i.e. (src, dst, val)

Edge is a generic type:
e First type parameter is node type
e Second type parameter is edge value type
e Both types MUST be a struct type

Each Edge represents one directed edge between the two
specified nodes with the specified edge value.

struct Node {
name: string

}

struct Value {
value: int

}

edge<Node, Value> e;
e = (
{name: “src”},
{name: “dst”},
{value: 10}

Graphs

Graph: a collection of edges struct Int {
value: int

Graph is a generic type, with type parameter definitions }

and restrictions the same as Edge. ;raph<1nt, Int> g;

g = {

{value: 1}, {value: 2}, {value: 10}),
{value: 1}, {value: 3}, {value: 5}),

{value: 1}, {value: 4}, {value: 12}),
{value: 2}, {value: 3}, {value: 8}),

Nodes are uniquely identified based on struct equality, (

1.e. nodel and node2 refer to the same node iff all their (

attributes are the same. 2
I

At most one edge can exist in a graph with the same

source and destination node.

Graph And Edge Built-in Functions

Graphs:

graph init()

o Initializes an empty graph. Edges can then be
added to the graph using the addEdge ()
function.

getNodes (graph)

o Returns an array of node structs.

getEdges (graph)

o Returns an array of edges.

addEdge (graph, new edge)

o Adds edge new edge to the graph.

n in graph

o Returns boolean for whether n is a node inside

graph

getSrc (edge)

O Returns source node struct.
getDst (edge)

o Returns destination node struct.
getVal (edge)

o Returns edge value struct.
setSrc (edge, node struct)

o Sets the source node of edge to node struct
setDst (edge, node struct)

o Sets the destination node of edge to

node struct.

setVal (edge, node struct)

o Sets the edge value of edge to node struct

Demo

Thank you!

