text++

Joi Anderson - jna2123
Klarizsa Padilla - ksp2127
Maria Javier - mj2729

Contents

Contents
1. Introduction

2. Lexical Conventions

2.1 Comments

2.2 |dentifiers

2.3 Keywords
2.3.1 Type-specifiers

2.4 Constants
2.4.1 Integer Constants
2.4.2 Float Constants
2.4.3 Character Constants
2.4.4 String Constants

2.6 Operators

2.6 Separators

3. Declarations
3.1 Function Declarations

3.2 Variable Declarations

4. Expressions
4.1.1 |dentifier
4.1.2 Constant
4.1.3 String
4.2 Unary Operators
4.3 Multiplicative Operators
4.7 Boolean Operators

5. Statements
5.2 Conditional Statements
5.3 While Statements
5.4 For Statements
5.5 Return statements

6. Interpolation

N NN oo 00000 U1 N

O 0 O O o 0o 0o

—_—
N O O

_ = A =
A PP W W W

—_
N

7. Scope Rules
7.1 Variable Scope
7.2 Function Scope

8. Arrays
8.1 1D Array

9. Separators

10. Styling Operators
10.1 Header Operations
10.2 Emphasis Operations

11. Formatted Output

3.3.1 Function Declarations
3.3.2 Variable Declarations
3.3.3 Function Structure

14
14
15

15
15

15

16
16
16

16

1. Introduction

text++ is a markup language designed for the production of technical documentation
in an intuitive programming form. Unlike other templating languages like LaTeX,
text++ is a markup language with algorithmic computing capabilities, allowing
programmers to write documents as efficiently as they would write code.

2. Lexical Conventions

This section covers the text++ lexical convention for comments and tokens. There are
six kinds of tokens: identifiers, keywords, constants, strings, operators, and separators.
Blanks, tabs, newlines, and comments separate tokens, but they otherwise have no
syntactic significance.

2.1 Comments

A single line comment in text++ starts with the // characters and extends to the
end of the physical line of code. A single line comment can exist at the start of a
line or following whitespace or code.

// This is a comment

Multi-line comments start with the /* characters and terminate with the */
characters, ignoring all other characters encapsulated between the start and
terminating characters.

/* This is a comment.

It can have multiple lines. */

2.2 ldentifiers

An identifier is a sequence of letters and digits, and the first character must
be alphabetic. Identifiers must start with an alphabetic character, including
the '_' character. ldentifiers are case-sensitive.

2.3 Keywords

The following identifiers are reserved for use as keywords, and may not be used

otherwise.
® if @® while ® bool
@® else ® continue ® true
® elif ® break ® false
® for ® return ® def
® dec

2.3.1 Type-specifiers

Type-specifiers include bool, int, float, and string.

2.4 Constants

There are four types of constants, each with their own type, form and value :

2.4.1 Integer Constants

An integer literal is a sequence of digits, represented by characters [0-9].

Integer constants have type int.

2.4.2 Float Constants

A floating constant consists of an integer part, a decimal point, and a
fraction part. Float constants have type float.

2.4.3 Character Constants

A character constant is a symbol enclosed in single quotes, such as 'x'.

Non printable characters can be represented via an escape sequence.
@ Newline: "\n’
@ Tab: "\t

@ Carriage return: \r’

2.4.4 String Constants

Strings are marked with double quotes. The compiler will terminate

strings with "\O’, the null byte, so that programs scanning a string can find
its end.

2.6 Operators

An operator character signifies that an operation should be performed. The

operators [], (), and {} are used to encapsulate expressions and must
occur in pairs.

Operator can be one of the following:

+ - * / % ===< <=>>= ||| mm (decrement) pp (increment)

2.6 Separators

A separator is a symbol between each element. Separator tokens include *,’
';" and whitespace is ignored. Separators are allowed in the following syntax:
Arrays:

Array a = [1,2,3,4,5]

A[0:3] =9

3. Declarations

3.1 Function Declarations

Functions are declared as:

functionName(type parameter){

3.2 Variable Declarations

Variables are declared as:
@ variableName[expression];

A variable may have its value updated, as long as its type remains consistent.

@ age[23];
@age

@age[@age + 3];
@age
@age['a’];

4. Expressions

Precedence of operators follows a standard order of operations (GEMDAS - Grouping
symbols, Exponents, Multiplication, Division, Addition, Subtraction). text++is a
left-associative language (evaluated left to right, after the application of order of
operations).

4.1 Primary Expressions

4.1.1 Identifier

An identifier (like a variable) is a primary expression whose type is not
required to be defined in its declaration.

4.1.2 Constant

Character, boolean, and integer.

4.1.3 String

A string is a primary expression.

4.2 Unary Operators

- expression

Can be applied to the int type. The result is the negative of the expression.

Logical negation operator. Applicable for type boolean.

expression pp

The left-value expression is incremented. Applicable to type int.

expression mm

The left-value expression is decremented. Applicable to type int.

4.3 Multiplicative Operators

expression * expression

The binary * operator indicates multiplication. Applicable to type int.

expression / expression

The binary / operator indicates division. Applicable to type int.

expression % expression

The binary % operator yields the remainder from the division of the first
expression by the second. Both operands must be int. The remainder
keeps the sign of the dividend.

4.4 Additive Operators

expression + expression

The result is the sum of the expressions. Applicable to type int.

expression - expression

The result is the difference of the operands. Applicable to type int.

4.5 Relational Operators

expression < expression
expression > expression

expression <= expression
expression >= expression

The operators <, >, <=, and >= all yield false if the relation is false and
true if the relation is true.

4.6 Equality Operators

expression == expression

expression != expression

The == and the != operators are analogous to the relational operators except
for their lower precedence. Thus a < b == ¢ < d' is true whenever ‘a < b" and
also'c<d.

4.7 Boolean Operators

expression && expression

The && operator returns true if both its operands are true, false otherwise. The
second operand is not evaluated if the first operand is false.

expression || expression

The || operator returns true if at least one of its operands is true, false otherwise.

5. Statements

Statements are executed in sequence.

5.0 End of Statement

The end of each statement is marked by a single \n’.

5.1 Expression Statements

The majority of statements are expression statements, taking the form:

expression

These statements are usually assignments or function calls.

5.2 Conditional Statements

@if (expression) statement

@if(expression) {
statement

}

@else {
statement

}

If the expression is true, the (first) statement is executed. If the expression is
false and there is an else, the second statement is executed. The elseless if
problem is resolved by attaching an else to the last encountered if.

5.3 While Statements

@while(expression) {
statement

}

The statement is executed as long as the expression is true. The evaluation
of the expression occurs after each execution of the statement.

5.4 For Statements

@for(exprl; expr2;expr3) {
statement

}

expri1 specifies initialization for the loop, expr2 is a test condition (evaluated
before each iteration), and expr3 is an increment specification. The loop exits
when expr2 is false.

5.5 Return statements

return
return (expression)

A function returns to its caller via a return statement. The second case returns
the value of the expression. If the type expected by the caller does not
match that of the return statement, an error will be thrown.

6. Interpolation

Built-in “math mode” or interpolation may be called using the @{} for multi line
math blocks or @() for single line math blocks

7. Scope Rules

7.1 Variable Scope

Variables declared outside of functions have global scope and can be
accessed anywhere within the program. If declared within a function, variables
only remain in scope for the duration of the function’s execution. Parameters

passed into a function as arguments are declared as local variables within the
scope of the function.

7.2 Function Scope

A function may not be called before it has been declared. All functions have
global scope by default.

8. Arrays

8.1 1D Array

A 1D array is declared by:

@ myarray[[1,2,3,4]];

where myarray is the name of the array, and the type is int.

9. Separators

/N

A separator is a symbol between each element. Separator tokens include *," *;
and whitespace is ignored. Separators are allowed in the following syntax:

@ myarray[[1,2,3,4]];

10. Styling Operators

10.1 Header Operations

@mystring()
{ return "string is" @h6 ("this")}

There are 6 format types for headers. To call a particular type of header
styling on strings one must use @h followed by the particular number,
between 1 and 6, associated with the formatting the author desires.

10.2 Emphasis Operations

@b (@mystring) bolds the value of mystring
@i (Emystring) italicizes the value of mystring
@u (@mystring) underlines the value of mystring

11. Formatted Output

The user can export their code in a formatted PDF using

The PDF extension of text++ will interpolate values before formatting the text
into the final PDF document.

