
Final	Presentation	
Maggie	Mallernee,	Zachary	Silber,	Michael	Tong,	Richard	
Zhang,	Joshua	Zweig	



Overview	
What	is	C%	(and	however	do	you	pronounce	it)?	



Why	C%?	

Cryptography	Implementation	is	Hard	

	

Goals	
	

	

Encourage	
Correctness	

Improve	
Readability	

Extensibility	

Ease	the	burden	of	large	
number	arithmetic	



Overview	

Basics	of	C%	
�  Compiles	to	LLVM	

�  C-like	syntax	and	semantics	

�  Heap	memory	management:	malloc()	and	free()	

�  User	input:	printf()	and	scanf()	

The	Big	Stuff	
�  Cryptographic	types:	Stones,	Mints,	Elliptic	Curves,	and	Points	

�  Painless	arbitrary	precision	arithmetic	

�  Overloaded	operators	covering	group	operations	of	modular	
integers	and	points	over	curves	



Project	Management	
51	PRs,	37	Closed,	282	commits	



Version	
Control	



Testing	
It	works!	This	is	how	we	know!	



Continuous	
Integration	

�  Execute	entire	test	suite	on	every	push/PR	
�  Provide	detailed	feedback	
�  Enforce	all	tests	passing	



Architecture	
A	journey	from	source	code	to	shared	secrets	



The	Big	Picture	

Preprocess	
•  #include	statements	
•  Build	guards	

Scan	

Parse	

Verify	 •  Semantic	
checking	

Generate	
LLVM	

•  Link	to	openssl	
bignum	

•  Built	in	functions	
•  Type	specific	behavior	



BigNum	
Arithmetic	

openssl/bn.h	

(BIGNUM)	

special_arith.c	

codegen.ml	

(stone)	



Compiler	
Interface	

�  Options	allowing	user	access	to	each	step	in	the	compilation	
process	

�  Can	see	the	tokenized	program,	AST,	LLVM	(sdtout	or	.ll	file),	
assembly	(.s),	and	compile	to	a	full	executable	



What	exactly	does	C%	
do	for	me?	
We’re	glad	you	asked	



The	Jist	

�  It’s	like	C!	
�  Syntax/Comments	
�  Expressions/Statements	
�  Control	Flow	

�  Key	Features	
�  Pre-processing	
�  Input/Output	
�  Scoping	
�  Declaration	flexibility	
�  Memory	management	
�  Operator	overloading	



Cryptographic	
Types	

�  Stones:	Basis	of	all	other	cryptographic	types,	links	to	OpenSSL/BN	

� Mints:	Integers	in	a	finite	field	modulo	some	prime	p		

�  Curves:	Elliptic	curves,	comprised	of	two	mints	

�  Points:	Points	on	a	curve,	with	operations	relative	to	that	curve	



Caesar	Cipher?	
	
We	have	you	
covered	

Cryptography	Library	
	

� We	provide	some	cool	examples!	
�  Caesar	Cipher	

�  Simple	shifting	using	Mints	
�  Stream	Cipher	

�  Mints	and	Access	methods	provide	easy	tracking	of	repeated	values	
mod	a	constant	moduli	with	improved	readbility	

�  Diffie	Hellman	(Modular	integer	and	ECC)	
�  Points	improve	readability	
�  No	confusion	on	Point	arithmetic		

�  ElGamal	Encryption	
�  Extremely	intuitive	and	clear	when	using	built	in	Curves	and	Points	



ECC:		
C	v	C%	


