Final Presentation

Maggie Mallernee, Zachary Silber, Michael Tong, Richard
Zhang, Joshua Zweig

Overview

What is C% (and however do you pronounce it)?

Cryptography Implementation is Hard

Software developers are failing to implement
crypto correctly, data reveals

Lack of specialized training for developers and crypto libraries that are too
complex lead to widespread encryption failures

O60060COOOCO0O

Goals

Encourage Improve
Correctness Readability

Extensibility

Ease the burden of large
number arithmetic

Basics of C%
* Compiles to LLVM
* C-like syntax and semantics
* Heap memory management: malloc() and free()

* User input: printf() and scanf()

Overview

The Big Stuff
* Cryptographic types: Stones, Mints, Elliptic Curves, and Points
* Painless arbitrary precision arithmetic

* Overloaded operators covering group operations of modular
integers and points over curves

Project Management

51 PRs, 37 Closed, 282 commits

Feb 19' 2017 — May 10' 2017 © Contributions: Commits v

Contributions to master, excluding merge commits

40
30
20

10

Feb19 Feb 26 Mar 05 Mar 12 Mar 19 Mar 26 Apr 02 Apr 09 Apr 16 Apr 23 Apr 30 May 07

Version

Sunday ° [) ° .‘ c 0 0 o

Control .o : 0o

YK
Tuesday ° . ° ® e 0o @ °
Wednesday e O e 0 O e o () . ‘ °
Thursday ® o ° e o o o o o () e @ o
Friday ° e c 0000000 . [
Saturday ° ° ® QO o ° ° @ o o @ o

12a 1a 2a 3a 4a 5a ©6a 7a 8a 9a 10a Ma 12p 1p 2p 3p 4p 65p ©6p 7p 8p 9p 10p 1p

Testing

It works! This is how we know!

M & Jzfree v I3
#37 by joshuazweig was merged 12 days ago « Approved

[Adding mint tests. Plus a tiny bit of random cleaning. v 31
#36 by zsilber was merged 13 days ago « Approved

[Change so stone printing is dec and update tests v
#35 by joshuazweig was merged 13 days ago « Approved

[Python preprocessor working. v 7
#34 by mikecmtong was merged 13 days ago « Approved

- Execute entire test suite on every push/PR

COnti NUOUS * Provide detailed feedback
|nteg ration * Enforce all tests passing

° Review required

At least one approved review is required by reviewers with write access. Learn more.

All checks have passed Hide all checks
2 successful checks

v 0 i integration/travis-ci/pr — The Travis Cl build passed Details

v e i integration/travis-ci/push — The Travis Cl build passed Details

Merging is blocked

Merging can be performed at ically with one app d review.

‘ Merge pull request ‘ ~ | You can also open this in GitHub Desktop or view command line instructions.

Architecture

A journey from source code to shared secrets

p e #include statements
c/ [. Build guards
O

The Big Picture

e Semantic

Verify checking

e Link to openssl
Generate bignum

LLVM e Builtin functions
* Type specific behavior

BIGNUM xri1l BN new();
BIGNUM xr?2 BN new();

(rl, a, b);
(r2, rl1, c);

Welcome to the C% compiler CMC!
USAGE: ./bin/cmc [-h help] [-t token] [-a ast] [-1 1lvm] [-c ll-file] [-s s-file] [-e exe-file] <file-name>.cm
OPTIONS:

help This option prints this message!

token This option prints the tokenized program to stdout.

ast This option prints the abstract syntax tree of the program to stdout.

1lvm Compiles <file-name>.cm to 1llvm and prints the result to stdout.

11-file Compiles <file-name>.cm to llvm and puts the result in <file-name>.11l. This is the default option.

assembly Compiles <file-name>.cm to llvm, translates to assembly, and puts the result in <file-name>.s
(leaves <file-name>.1ll in directory as well)

executable Creates the executable version of <file-name>.cm, simply called <file-name> to be run ./<file-name>
(leaves behind the corresponding .11 and .s files as well)

Options allowing user access to each step in the compilation
process

Can see the tokenized program, AST, LLVM (sdtout or .1l file),
assembly (.s), and compile to a full executable

What exactly does C%
do for me?

We're glad you asked

The Jist

* It's like C!
* Syntax/Comments
* Expressions/Statements
* Control Flow

* Key Features
* Pre-processing
* Input/Output
* Scoping
- Declaration flexibility
* Memory management
* Operator overloading

Stones: Basis of all other cryptographic types, links to OpenSSL/BN

stone Xx; stone Xx;
x = "5"; x = "999999999999999999";

Mints: Integers in a finite field modulo some prime p
stone sl;
stone s2;
mint m;

mint m;
m - <ll13ll, ll101II>;

mint ml;
mint m2;
curve *c;

<ml, m2>;

Points: Points on a curve, with operations relative to that curve

curve c; curve c;
point *p; point *pInf;

p = <C, "12", "103">; pIn.F - <C, ~>;

Cryptography Library

* We provide some cool examples!

Caesar C|pher7 * Caesar Cipher

- Simple shifting using Mints
* Stream Cipher

* Mints and Access methods provide easy tracking of repeated values
mod a constant moduli with improved readbility

- Diffie Hellman (Modular integer and ECC)
* Points improve readability

We have you
covered

* No confusion on Point arithmetic
 ElGamal Encryption
° Extremely intuitive and clear when using built in Curves and Points

point %R, str point *P,

R—>E = P->E;
if (P->inf) {

R->x = Q->x;

R->y = Q->y;

R—>inf = Q—>inf;
} else if (Q—>inf) {

R->x =

R—>y

R—>i
} else {

BIGNUM

BIGNUM

BN_CTX *

BIGNUM

BIGNUM

BIGNUM x*

Q—>x, P->x);

(t2)) {

P—>x, P—>E
t1, t1, P—->E
t1, t1, P—>E
t1, t2, P—>E
t1, P—>E

P—>y, P>y,
(t2, t2, P->E

(lambda, t1, t2,

return;

(t2, t2, P->E MRcEX)
(lambda, t1, t2, P—>E

(t1, lambda, P—>E cEx)h
(t1, t1, P—->x, P—>E -
(xval, t1, Q—>x, P—>E 5 GEEI)A

(t1, P->x, xval, P—>E
(t1, lambda, t1, P—E
(yval, t1, P->y, P—>E

point *Q) {

